Relativistic mass

Two particles with equal masses \(m \) as measured when at rest are undergoing an inelastic collision as shown in the lab frame \(S \). From the conservation of total momentum in frame \(S \) [mln63],

\[
m(v)v + m(0)0 = M(\bar{v})\bar{v}, \quad v = \frac{2\bar{v}}{1 + \bar{v}^2/c^2},
\]

and the relation

\[
m(v) + m(0) = M(\bar{v}),
\]

between individual masses before the collision and compound mass after the collision [mex221], derive the expression

\[
m(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}},
\]

for the relativistic mass, where \(m_0 = m(0) \) is called the rest mass.

Solution: