Cometary motion on hyperbolic orbit

Determine a parametric representation \(x(\xi), y(\xi), t(\xi), \vartheta(\xi) \) for the hyperbolic motion in time of a comet with mass \(m \) in the central force potential \(V(r) = -\kappa/r \). Start from the orbital equation \(r(\vartheta) \) from [msl23] and the general integral expression for \(t(r) \) from [mln18]. Then use the parametrization \(\tilde{a} + r = \tilde{a} e \cosh \xi \) with \(\tilde{a} = \kappa/2E \) and \(e^2 = 1 + 2E\ell^2/m\kappa^2 \) with \(E > 0 \), as well as \(p = \tilde{a}(e^2 - 1) \).

Solution: