A particle of mass m moves in the Yukawa potential $V(r) = -(k/r)e^{-r/\rho}$, where k is a measure for the strength and ρ a measure for the range of the interaction. Circular orbits exist only if the angular momentum ℓ does not exceed a certain value ℓ_{max}. For any value $\ell < \ell_{\text{max}}$, there exist two circular orbits, one stable orbit at radius $R_S(\ell)$ and one unstable orbit at radius $R_U(\ell)$.

(a) Establish the (dimensionless) relation, $\ell/\sqrt{mk\rho} = f(R/\rho)$ which determines the values R_U and R_S for given $\ell < \ell_{\text{max}}$ and produce a sketch of that function.

(b) Determine the value of the (conveniently scaled) maximum angular momentum, $\ell_{\text{max}}/\sqrt{mk\rho}$.

(c) Determine the value $R_S(\ell_{\text{max}})/\rho = R_U(\ell_{\text{max}})/\rho$ of the (merged) scaled radii at maximum angular momentum.

Solution: