Mechanocaloric and Thermomechanical Effects

Helium II is a mixture of normal fluid and superfluid 4He. The superfluid has no viscosity and no entropy.

Consider two vessels A and B with rigid insulating walls, separated by a porous material that allows unimpeded superfluid flow but prevents any normal-fluid flow.

The thermal equilibrium of such a system is characterized by the following relations between intensive variables:

$$ T_A \neq T_B, \quad p_A \neq p_B, \quad \mu_A(T_A, p_A) = \mu_B(T_B, p_B). $$

Consider situations in which system B is large compared to system A.

Any process in which a change of p_A or T_A is forced in the smaller system must then satisfy $\mu_A(T_A, p_A) = \mu_B(T_B, p_B) = \text{const}$ i.e. $d\mu_A = 0$.

Gibbs-Duhem equation:

$$ S_A dT_A - V_A dp_A + N_A d\mu_A = 0. $$

$$ d\mu_A = 0 \implies - \frac{S_A}{N_A} dT_A + \frac{V_A}{N_A} dp_A = 0 \implies dp_A = \frac{S_A}{V_A} dT_A. $$

Mechanocaloric effect:

Pouring helium II into system A increases the pressure p_A and causes a superfluid flow through the porous material into system B to maintain chemical equilibrium $d\mu_A = 0$. The fraction of normal fluid in B increases. The temperature T_A rises.

Thermomechanical effect:

Heating up helium II in system A increases the temperature T_A and causes a superfluid flow of superfluid flow into system A to maintain chemical equilibrium $d\mu_A = 0$. The pressure p_a rises and may start a fountain.