Quantum Liouville operator [tln47]

The density operator $\rho(t)$ is a positive definite Hermitian operator. Like its classical counterpart, the phase-space density $\rho(\mathbf{X},t)$, it describes what we know about the state of the system.

Normalization: $Tr[\rho(t)] = 1$. Expectation value: $\langle A(t) \rangle = Tr[A\rho(t)]$.

Diagonal representation: $\rho(t) = \sum_{i} p_i |\pi_i(t)\rangle \langle \pi_i(t)|.$

 p_i : probability of finding the system in the state $|\pi_i(t)\rangle$.

$$\Rightarrow \langle A(t) \rangle = \sum_{i} p_{i} \langle \pi_{i}(t) | A | \pi_{i}(t) \rangle = \sum_{nn'} \langle n | A | n' \rangle \langle n' | \rho(t) | n \rangle.$$

 $\{|n\rangle\}$: orthonormal basis. $\langle n'|\rho(t)|n\rangle$: elements of the density matrix.

Schrödinger equation: $H|\pi_i(t)\rangle = i\hbar \frac{\partial}{\partial t}|\pi_i(t)\rangle$.

$$\Rightarrow i\hbar \frac{\partial \rho}{\partial t} = \sum_{i} p_{i} \left[H |\pi_{i}(t)\rangle \langle \pi_{i}(t)| - |\pi_{i}(t)\rangle \langle \pi_{i}(t)| H \right] = H\rho - \rho H = [H, \rho].$$

Liouville operator: $L \equiv \frac{1}{\hbar}[H,]$

Liouville equation: $i\frac{\partial \rho}{\partial t} = \frac{1}{\hbar}[H, \rho] = L\rho.$

Formal solution: $\rho(t) = e^{-iLt}\rho(0) = e^{-iHt/\hbar}\rho(0)e^{iHt/\hbar}$.

Time evolution carried by density operator or by dynamical variable:

$$\langle A(t) \rangle = \text{Tr}[Ae^{-iHt/\hbar}\rho e^{iHt/\hbar}] = \text{Tr}[e^{iHt/\hbar}Ae^{-iHt/\hbar}\rho].$$

von Neumann equation: $i\hbar \frac{\partial \rho}{\partial t} = [H, \rho] \implies \rho(t) = e^{-iHt/\hbar} \rho(0) e^{iHt/\hbar}.$

Heisenberg equation: $i\hbar \frac{\partial A}{\partial t} = -[H, A] \Rightarrow A(t) = e^{iHt/\hbar} A(0) e^{-iHt/\hbar}$.

Density matrix in energy representation $H|\lambda\rangle = E_{\lambda}|\lambda\rangle$:

$$\rho_{\lambda\lambda'}(t) = \sum_{\lambda\lambda'} \langle \lambda | \rho | \lambda' \rangle e^{-i(E_{\lambda} - E_{\lambda'})t/\hbar}.$$

Stationarity of density operator: $i\hbar \frac{\partial \rho}{\partial t} = 0 \implies [H, \rho] = 0.$

 $\Rightarrow \rho$ is diagonal in the energy representation: $\rho = \sum_{\lambda} p_{\lambda} |\lambda\rangle\langle\lambda|$.