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Many-body system perturbed by radiation field ...

Quantum many-body system in thermal equilibrium.

Hamiltonian: H,.

Density operator: py = Z; e Mo with 8 = 1/kgT, Zy = Tr[e~FHo].
Dynamical variable: A (describing some attribute of system).

dA
Heisenberg equation of motion: = %[7—[0, Al

Time evolution: A(t) = e™ot/h Ae="ot/h (formal solution).
Stationarity, [po, Ho] = 0, implies time-independent expectation values:

1 1
(A(t))o = 7Tr [e™PHoerHot/h ge=Hot/h] = — Ty [e7#M0 A] = const.

0 0

Time-dependent quantities do exist in thermal equilibrium!
1

Dynamic correlation function: (A(t)A(0))o = Z)Tr [e_BHOG’HOt/hAe_ZHOt/hA]

In an experiment the system is necessarily perturbed:
H(t) = Ho — b(t)B,

where b(t) is some kind of radiation field (c-number) and B is the dynamical
system variable (operator) to which the field couples.

Examples:

b(t) | B

magnetic field | magnetization
electric field electric polarization
sound wave mass density




Linear response (..

Radiation field b(¢) perturbs equilibrium state of the system #, via coupling
to dynamical variable B.

System response to perturbation measured as expectation value of dynamical
variable A.

Linear response to weak perturbations is predominant under most circum-
stances (away from criticality).

Response function y4p(t) (definition):

o0

(A1) — (A)y = / 0T am(t — 1)D(E).

—0o0

e Linearity: yap(t) is independent of b(t).
e Hermiticity: yap(t) is a real function.

e Causality: xap(t) =0 for t < 0.

e Smoothness: |xap(t)| < oo.

e Analyticity: xap(t) — 0 for t — oc.

Generalized susceptibility (via Fourier transform):

xas(C) = /_+Oo dt e“'ap(t) (analytic for S{C} > 0).

o0

Complex function of real frequency:

Xap(w) = limxap(w +1€) = Xiap(Ww) + 0xip(w)-

Linear response in frequency domain means no mixing of frequencies:
a(w) = xap(w)B(w),

where

+o00 +oo
an(t) = / W it (), b(t) = / W (),

0027T 0027'['

(A(t)) — (A = / Lt w).

—00



Kubo formula for response function ...

Interaction representation for time evolution of H(t) = Ho — b(t)B:

dA 7

- — Hot/h —1Hot/h

7 h[HO’ Al = Alt)=e Ae ,

% = %[Hm B] = B(t) = Mot/ ettt/
dp ? N A / /
D Bl = )=t [ B ()]

Set p(t) = po + p1(t) with py = Z; e Mo,
Full response: (A(t)) — (A)o = Tr{p1(t)A(t)}

t
Leading correction to pg: p1(t) =~ / dt'b(t")[B(t'), po]
Linear response:

(A®) ~ (A= [ oY I{BE). mlAD)

—00

_ % / dt'b(t')Tr{po[A(t), B()]}

—00

_ % / di'b(t')([A(t), B(t')]).

—00

Compare with definition of response function in [nln26].

Kubo formula:

Ran(t = 1) = 200 = ){[A(), Bt ))o.

e Causality requirement is ensured by step function 6(t —t').
e Hermitian A, B imply Hermitian ¢[A, B]. Hence x(t) is real.
e Linear response depends only on equilibrium quantities.

e Response function only depends on time difference ¢ — t'.

The Kubo formula establishes a general link between

- the dynamical properties of a many-body system at equilibrium,

- the dynamical response of that system to experimental probes.



Symmetry properties ..

Response function for Hermitian A is real and vanishes for ¢t < 0:

Raalt) = FOO(AL), A]) = Xyalt) + X (D).

Reactive part is real and symmetric:

1 7

Xaa(t) = 5 [Xaa(t) + Xaa(—t)] = 2—hsgn(t)([A(t), Al).

Dissipative part is imaginary and antisymmetric:

1 1

Xaa(t) = Z[DZAA@) — Xaa(—t)] = ﬁ<[14(t)a14]>~

Response function is determined by its reactive or dissipative part alone:

Xaa(t) = 20(8)X44(t) = 200(t)Xaa(t)-

Generalized susceptibility is complex:
Xaa(w) = Xya(w) +xha(w).

Real part is symmetric:

1

Xaa(w) = §[XAA(W) + xaa(—w)] = Xaa(—w).

Imaginary part is antisymmetric:

1

Xaa(@) = 5, [xaa(@) = xaa(=w)] = =xha(-w).



Kramers-Kronig dispersion relations .

Use analyticity of x44(¢) for {(} > 0.

1 /
Cauchy integral: x44(¢) = %/dg/xéA(gg)'
c _
Im{ g}
c e
R
S — Re{{}
T R +R

Integral converges for (' = W' + 1€/, € — 0.
Integral along semi-circle vanishes for R — oo:
Sum rule implies x44(¢) < [¢|7! for |¢] — oo.

1 +oo XAA(W/>
= = — dw' ===~
Xaa(Q) = 5 /_OO S
_ 1 1 ,
Set ( = w + 1€ and use lim =P + o (W — w).
e—0 W — w F 1€ w—w

() =i (w0 +16) = +°°d , Xaa(w')
w) = lim w+1€) = lim — At A
X4 (og XAA e—0 271 J_ W' —w — 1€

1 —+oco 12 1 —+oco
R dw/XL(W)_}__/

= 571 o —w 5 dw/XAA(w')5(w/ — w) .

—0o0 [e.9]

-~

1xaa(w)

> xane) = Xaal) +iiale) = [ ar K]
T o w—w

Consider real and imaginary parts of this relation separately:

1 +o0 " / 1 +o00 , ,
Xaa(w) == / dw’XAA—(w), Yiglw) = —= / dw/XAA(w )
T J_ |

/ /
00 w —w . w—w

The Kramers-Kronig relations are a consequence of the causality property of
the response function.



[nex63] Causality property of response function.

The Kramers-Kronig dispersion relations

1 [ee] X// (w/) 1 o X/ (w/)

/ IAAA " I XAA

Xaa(w) = */ dw'=25—=, Xaa(w) = —*/ dw' —=7—

T J oo w —w T J oo w —w

between the reactive part x’, , (w) and the dissipative part x’4 4, (w) of the generalized susceptibility
Xa4(w) are a direct consequence of the causality property of the response function Y44 (¢). Show

that x44(¢) for (¢) > 0 can be expressed in terms of x’4 4 (w) as follows:

xaa(¢) = %[ de:}xA_(CZ)'

Solution:



Energy transfer ..

Hamiltonian of system and interaction with radiation field:
H(t) = Ho + Hl(t) = Ho - a(t)A.
Interaction between system and radiation field involves energy transfer.

Rate at which average energy of system changes:

1

d 1
7 (Ho) = —([Ho, H()]) = ——a(t)([Ho, A(1)])-

Calculate linear response ([Ho, A(t)]) — {[Ho, A])o.!
———

0

Application of Kubo formula [nln27]:

(Mo, AO]) = 5 [ dtale) (Mo, A A

—hdA/dt

= S0} = —za(t) [ ata(e)( [ AL A

—00

— 24t [ ata() 140, AW,

— 00

— /_ h dt’a(t)a(t’)%f(AA(t —t)

o0

with response function

Raalt = ¢) = 00t = ){AWD), AE)]o.

The time-averaged energy transfer depends only on the absorptive part,
X%4a(w), of the generalized susceptibility as demonstrated in [nex64] for a
monochromatic perturbation.

'We have ([Ho, A])o = Tr{e #HoHyA — e P"0o AHy} /Zy = 0 in thermal equilibrium.



[nex64] Reactive and absorptive parts of linear response.

In the framework of linear response theory for H = Hy — a(t) A, the rate of energy transfer between
the system and the radiation field is

2 (o) = /_O; dta(t)alt!) o Sanlt 1), 1)
where .
Raalt 1) = £0(t = 1) ([A®D). Ao 2)

is the Kubo formula for the response function (see [nln38J.)
(a) Evaluate this expression for a monochromatic perturbation,

1 . )
a(t) — 5am(ezwot + e—zwot) (3)
and express it in terms of the reactive part, x'4 4 (w), and the absorptive (dissipative) part, x4 4 (w),

of the generalized susceptibility x 44(w) as defined in [nln26].
(b) Show that the time-averaged energy transfer depends only on the absorptive part of y 44 (w):

d 1,

§<Ho> = iamWOXZlA(WO)' (4)

Solution:



Fluctuation-dissipation theorem ..

Three dynamical quantities in time domain:!

1
Xaa(t) = ﬁqA(t), A]_) response function (dissipative part),

> Xaa

> Duut) = %([A(t), AlL) — (A fluctuation function,

> Saalt) = (A(t)A) — (A)?  correlation function.

Relations:

~1 ]‘

alt) = 5 [8aa(t) + Saa (1)

N =

Saalt) — S'AA(—t)], b aa(t) =

Transformation properties under time reversal (for real t):
o Xia(—t) = —=Xaalt) = [Xaa(t)] " imaginary and antisymmetric,

. CT)AA(—t) = éAA(t) = [@AA(t)]* real and symmetric,

o Sua(—t) = Saalt —1hp) = [SAA(t)]* complex.?

To make the last symmetry relation more transparent we write

<A(_t>A> = Tr [e—,B'Hoe—zHot/hAezHot/ﬁA]
— Ty [67,37-[0627{0(tfzhﬂ)/hAefz'Ho(tfzhﬁ)/hA] _ <A(t i Zﬁh)A>

The imaginary part of the correlation function vanishes if

e if =0 i.e. at infinite temperature,

e if h =0 i.e. for classical systems.

Lusing [,]_ for commutators and [,], for anti-commutators.

2with symmetric real part and antisymmetric imaginary part.



Three dynamical quantities in frequency domain:

+oo
> Xaalw) = / dt et 4(t)  dissipation function,

[e.e]

+o00 ~
> Dau(w) = / dt e ® 4 4(t) spectral density,

e}

+oo
> Saalw) = / dte™'S,a(t)  structure function.

Symmetry properties:
o Yiu(—w)=—x%4(w) real and antisymmetric,
o ¥ u(—w)=Pu(w) real and symmetric,
o Saa(—w)= e‘ﬁmSAA(w) real and satisfying detailed balance.

Relations:

Woa(@) = = (1= ) S4a(w), Ban(w) =

5 (1+6_Bhw) SAA((,U).

N —

Fluctuation-dissipation relation (general quantum version):
1 "
® 44(w) = hcoth Qﬁhw Xaa(w).

Dissipation effects from an interaction with a weak external force as encoded
in x4 4(w) are determined by natural fluctuations existing in thermal equi-
librium as encoded in ®44(w).

Classical limit (no zero-point fluctuations):

A 2ksT
D ps(w)a = j Xaa(w).

Classical fluctuations of any frequency related to static susceptibility:

~ T dw
<(A — <A>)2> = ¢AA(t = 0) = lim gB_MtCI)AA(w)

=0 J_ o

—+oo d 1 “+00 "
= k;BT/ —ww_leﬁm(u)) = kT lim — deL(w)
fee T

/
00 W=0T w—w

= kpTx'ya(W =0) = kgTxaa(w =0) = kgTxaa.



Moment Expansion .

Correlation function and structure function:

Saa(t) = (A(t)A) — (A)? = /_ N g—:ewtsAAw) => M,

[e.9]

High-temperature limit 7" — oo:

Moy =0, My, = h_%(UA,’H],--- ,H]UA,H],--- JH)).

Classical limit A — 0: use gAA(t) = (A(t)A) = ({A(t), H} A).

M2k+1 =0, MQk = (_1)k<{{{{A7H}’H}7 vH}A>’

——
2k
Fluctuation function:
-~ o1 o (=)
aalt) = 510, AL — (42 = 3 L
k=0 '

Moy

= o (UA,H],H],-~ L HIALL).

2k
Dissipation function:

1

V() = o (AW A) = Y My 0

(2k 4+ 1)1
M2k+1 - <UA’HLH]= 7H]A]>

2k+1

2ﬁ2k+1

Moment expansion not guaranteed to converge.
Convergence problem may be circumnavigated by recursion method.



[nex65] Spectral representation of dynamical quantities.

Consider a quantum Hamiltonian system with known eigenvalues and eigenvectors,
Hn) =E,|n), n=0,1,...,

in thermal equilibrium at temperature 7. Express (a) the structure function Ssa(w), (b) the
spectral density ® 44(w), (c) the dissipation function x’j 4 (w), and (d) the generalized susceptibility
Xaa(w +i€), all defined in [nln39], in terms of the temperature parameter 5 = 1/kpT, the energy
levels E,,, and the matrix elements (n|A|m). For simplicity assume that (A) = Z~1Tr[e ## A] = 0.
The last result reads

Xaa(w+ie) = %Z (e_’BEm — e_BE“)

m,n

[(n]Alm)[*
hw— (B — Ep) + e’

Solution:



[nex66]| Linear response of classical relaxator.

The classical relaxator is defined by the equation of motion,

1
4+ —x=a(t), (1)
70
where 7y represents a relaxation time and a(t) a weak periodic perturbation. The (linear) response
function is extracted from the relation

t

(1)) — {x)o = / 0t St — )a(t'), 2)

— 00

where z(t) is the solution of (1).
(a) Solve (1) formally as in [nexb3] and compare the result with (2) to show that the response
function must be

Xaa(t) = e /700(t). (3)
(b) Calculate the generalized susceptibility X, (w) via Fourier analysis of (1) as in [nex119]. Show
that the Fourier transform of (3) yields the same result, namely

70

Xaz (W) (4)

1 dwn
(c) Extract from x,.(w) its reactive part x/.,(w) and its dissipative part x_(w) as prescribed in
[nIn30] and verify their symmtry properties.

(d) Use the (classical) fluctuation-dissipation theorem from [nln39] to infer the spectral density
&, (w) from the dissipation function x7.(w).

(e) Retrieve from the generalized susceptibility (4) the response function (3) via inverse Fourier
transform carried out as a contour integral.

(f) Retrieve X%, (w) from X7 (w) and vice versa via a numerical principal-value integration of the
Kramers-Kronig relations as stated in [nln37]. Use 7 = 1 and consider the interval —2 < w < 2.
Plot the curves obtained via integration for comparison with the analytic expressions. Integrate
over the intervals —o0o < w’ <w —eand w+ € < w' < +oo with 0 < e <« 1.

Solution:



Dielectric Relaxation in Liquid Water .

e H,0 molecules have permanent electric dipole moment (polar molecules.)

e Alignment of dipole moments with external electric field E is energeti-
cally favorable.

e Alignment tendency is counteracted by thermal fluctuations.

e Turning E on/off initiates relaxation process toward equilibrium.

e P(t): instantaneous electric polarization (average dipole moment)
e Yo: static dielectric susceptibility
e 7. characteristic relaxation time

e F(t): oscillating electric field
d 1
o %P(t) = ——[P(t) — xoE(t)]: dielectric relaxation process
70

e (P) = xokE: static (linear) response

e xpp(w) = ﬁxm (w): link to classical relaxator [nex66
To
o (P(t)P) — (P)? = kgTxoe /™: correlation fct. (from fluc.-diss. rel.)

1
o (P?) = gnpg = kgTxo: zero-field limit

e n: number density of molecules

e po: permanent molecular electric dipole moment

2
np,
* Xo(T) = SkBOT:

T-dependence of dielectric susceptibility



[nex67] Linear response of classical oscillator.

The classical oscillator is defined by the equation of motion,
mi + i + mwiz = a(t), (1)

where v is the attenuation coefficient, mw3 the spring constant, and a(t) a weak periodic pertur-
bation. The (linear) response function is defined by the relation

¢

(@) =)o = [ dt'Rualt = O)alt), &)

— 00

where z(t) is the solution of (1).
(a) Calculate the generalized susceptibility x..(w) as well as its reactive part x%,(w) and its
dissipative part x7 . (w).
(b) Use the (classical) fluctuation-dissipation theorem to infer the spectral density ®,,(w) from
the dissipation function X7, (w).

Solution:



Dynamic Structure Factor .

Inelastic scattering of particles (electrons, neutrons, photons,...) involves
momentum transfer, Aq = hky — hk;, and energy transfer, hw = E; — Ej,
between scattered particles and collective excitations in the system.

Scattering cross section is proportional to dynamic structure factor:

d*o

dwdS?

X SAA<q7 w)

Target system: Ho|A) = E\|N).
Interaction with scattering radiation: A(q,t) = /d3r e TV (1, t)ete T

Scattering events produce transitions |[A) — |\') in target system.
Transition rates: T(q,w) = [(A|A(Q)|N)[?0(hw — Ex + Ex)dq—k,, +kr+Q-

2
Dynamic structure factor: Saa(q,w) = % Z e T (q,w).

AN

Electron scattering (Coulomb interaction with target charge density):

e +o0
Vi = LRD S saw = [ et planp-a.0)

a |I‘ - R| 00
Nuclear neutron scattering (contact interaction with target particle density):
+oo

V(r,t) =ad(r — R)n(R,t) = Su(q,w)= / dt e {n(q, t)n(—q,0)).

[e.e]

Magnetic neutron scattering (interaction with target magnetisation):

V(r,t) = S,(r)V(r — R)M, (R, )

“+00

j&mm=/<mW%@mmﬂm»

—00

Light scattering (interaction with inhomogeneities in dielectric function):

—+00

rt) = Se(qw)= / dt ¢ (e(q, t)e(—q, 0)).

—00



Scattering from Free Atoms ..

Consider a dilute gas of atoms with mass M. Interaction between gas atoms
limited to (rare) collisions.

2
2M
Contact interaction between gas atom at position R(t) and scattering radia-
tion (see [nIn89]) defines dynamical variable relevant for scattering process:

Hamiltonian: H = (dominated by kinetic energy).

A(q,t) = /d3r e 15 (r — R(t)) = et RO, (1)

Equation of motion (setting i = 1):!

0A 1 1
_— = —_— zq~R 2 _ — _— . 2
o [A,H] 5 [e" 9 p?] A2 (29-p+¢°). (2)
Formal solution:
. t(2q-p+¢%)
A — R(0) ¢ )

Correlation function: Saa(q,t) = (Af(q,t)A(q,0)).

= gAA(q, t) = e_”q2/2M< exp ( —tq - p/M)>
— eth2/2Ml/d3p efﬁpQ/QMefth-p/M

7
_ ethQ/ZM%/d% exp <(\/Bp ‘;]Z\ZQ/\/B)2> o1t /2MB
. g
2(82/8 4+t
~ exp <_q(2/+2)> , (4)

Third line: Gaussian integral is unaffected by a constant shift in p.

Note symmetry property from [nln39): Saa(q, —t) = Saa(q,t —15).

'Use [R,p] =1, [A,p] = —qA, [A,p*] = [Apl-P+p-[APp] = —4Aq-p — p - q4,
Aq-p—p-qA=—-A¢ = [Ap’]=—-A(2q-p+¢°).



Dynamic structure factor via Fourier transform:

+oo

Saa(q,w) i/ dt e**Spa(q,t)

—00

e Scattering is isotropic, only dependent on magnitude of q.

e Maximum intensity occurs when energy transfer w and momentum
transfer q reflect energy momentum relation, w = ¢*/2M, of free, non-
relativistic gas particle.

e Lineshape broadens with increasing temperature and/or decreasing mass
of gas atoms.

e Note detailed-balance condition from [nln39:

SAA(qa —W) = 6_BWSAA(q7 w)‘

e In the limit M — oo at fixed temperature, the atoms slow down and
come to rest. The scattering becomes elastic in nature, still isotropic
and with zero energy transfer:

Saa(q,w) M=o 270 (w).



Scattering from Atoms Bound to Lattice ..

Consider array of atoms harmonically bound to sites of rigid lattice. We set
h =1 and atomic mass M = 1:

1 1
Hamiltonian: ‘H = 3 (p* + wiu?) = wo (aTa + 5) .

1

Displacement of atom from equilibrium position:! u(t) = (ae™™" + aTe’WOt).

DO
z‘
[=)

Dynamical variable: A(q,t) = e"“®).
Correlation function: Sya(q,t) = (Af(q,0)A(g, —t)).

Use Baker-Hausdorff expansion:? e“e? = exp <A + B+ = [A B] + ) :

S Gaalq,t) = (a0 — (gral(—0 ) e (]2

— o P{u(=t)=ul?/2) @ [uu(-t)—u(-t)u]/2 _ —a*[(u?)—(uu(-t))] (1)
U 1
Boson distribution: (a'a) = ng = el (aa")y =14 ng
Ly s ¢ Buwo 2 (42 2W
Debye-Waller factor: W = ~¢?(u?) = “— coth—, = e ) = ¢ 2W,
2 4(4}0 2
14+2np
1 T wot T\ ,—wwot
(uu(—t)) = — [(a a)e™" + (aa"ye " }
2&)0
1 ﬁCU(] —wot+PBwo /2 wot—LPwo/2
= 1o cosech 5 [e +e ] (2)
e/ N ¢ B 4B 2
3 Y s+1/s — nIn th : h : —wwot+Lwo i
Use® e nzzoos (y) with y S cosech—=, s = e
—oW Puo 1
SAA(q, Z —cosechT exp 557%00 —wnwet ). (3)

San(q,w) = oPw/2-2W Z <2—w0c0sech67> d(w — nwy) (4)

n=—oo

'We consider component of displacement parallel to q = k¢ — k; only.
2Use also (e4) = ¢{4*)/2 for linear combinations of boson operators.
31,,(y) are modified Bessel functions of the first kind. Note that I_,,(y) = L, (y).



Scattering from Harmonic Crystal .

Atoms of mass M are harmonically coupled via a bilinear form in displace-
ment coordinates. Spatial Fourier transform produces normal modes: nonin-
teracting collective excitations (phonons) representing oscillating patterns of
specific wave vectors k and excitation energies determined by a characteristic
dispersion relation e(k).

2
_ Dy 1 _ t
H= l oM + B %;U-z Dy -up = Zk:E(k)akak

Correlation function:!
S’(q7 t) — <€*Zq'ulelqul/(*t)>
= exp (—fa-w® - §fa- w0 + a- ulla-w(-o))

1 1
Debye-Waller factor from §<[q cwy)?) = §<[q cup(—t)]?) = W.

Expansion into m-phonon processes:

exp ((fa- wlla-w(=0))) = 3~ ((a- wlia- w(-)) "
Dynamic structure factor:
S(q,w) = eQW% Z ' (Bi—Ry) /+oo dte™" exp <<[q -wl[q - ulr(—t)]>).

w —0
m = 0: Bragg scattering

S(q,w)o o< eV §(w) Z dq,c; G @ reciprocal lattice vector.
G

m = 1: 1-phonon contributions?

Staeoh oc e LA (14 mn(ldo — ) + nnl@de + la) ).
phonon emission phonon absorption

Harmonicity leaves phonon peaks sharp. Thermal fluctuations only affect
intensity via Debye-Waller factor.

1Use (eAeB) = e{A*+2AB+B%)/2 for operators A, B that are linear in uy, p;.

2Calculate  {[q - uo][q - ur(—t)]) with ur oc >, (2Me(k))V/?(ax + aL)eZk'Re(k)
and ay(t) = axe ¥,



Magnetic Resonance or Scattering .

Magnetic probe: Hi(t) = —M - h(t). We set h = 1 throughout.

Linear response: (M, (r,t)) — (M, )eq = Z / dgr’/dt Xt =1t — " )h, (', 1).

Response function: X, (r,t) = 10(t)([M,(r,t), M,(0,0)]) = 0(t)[S{, (), S{]).
+oo

Generalized susceptibility: x,.,(q,w Z ar / te" X, (r,t).

Correlation function: S, (r,t) = (SLe(D)ST).

o0

Dynamic structure factor: S, (q,w Z e'ar / dt e“"tgm,(r, t).

22X (W)

Relation from [nln39]: S,.(q,w) = Ty
—e w

Experimental techniques:

e Ferromagnetic resonance, EPR.
— Long wavelengths (long compared to lattice spacing) probed.

— Relevant quantitity: xj,(q =~ 0,w).

e Inelastic neutron scattering.
— Interaction with magnetic dipole moment of neutron.

— Momentum transfer q and energy transfer w of neutrons well
matched with energy-momentum relations €(q) of typical collec-

tive magnetic excitations.
2

dwdS

— Scattering cross section: x S (q,w).

e Nuclear magnetic resonance, NMR.

— Localized probe (nuclear magnetic moment) interacts with elec-
tronic magnetism in immediate vicinity.

. : . 1
— Spin-lattice relaxation rate: T x Z S (d, w).

— Nuclear Larmor frequency wy is very small compared to typical
electronic magnetic excitations.
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