If follows from the foregoing results that, just as Cerenkov radiation of
an individual beam particle causes oscillations to build up, the radiation of
individual particles passing through an inhomogeneous medium or having non-
uniform motion leads to the development of collective instabilities of the beam.
The growth increment of the waves depends in this case both on the emissivities
of the individual particles (3e/32 or 3ve/d%t) and on the collective characteris-
tics of the beam (wb).

In conclusion, the author thanks Ya.B. Fainberg and V.I. Kurilko for in-
terest in the work and for useful discussions.
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The influence of acoustic fluctuations (phonons) on the hydrodynamic prop-
erties of a liquid was considered in [1]. An account of these fluctuations is
of particular importance in those cases when one deals with phenomena that
might exist in principle, but are absent in ordinary hydrodynamics. For ex-
ample, the thermomechanical effect, which arises only when phonons are taken
into account [1], does not exist in ordinary hydrodynamics.

The purpose of the present article is to call attention to the following
effect, which is possibly the most pronounced manifestation of phonons. We con-
sider two liquid layers separated by a stationary solid partition (Fig. 1).
Assume that Poiseulille flow takes place in region I. According to the equa-
tions of ordinary hydrodynamics, the liquid in region IT remains stationary.

The situation 1s altered 1f account 1s taken of the possibility of momentum
transfer from region I into region II by phonons passing through the solid
partition. This should be accompanied by dragging of the liquid in region II,
so that the velocity distribution should have the form shown in Fig. 1.

The drag velocity can be calculated on the basis of the equations of mo-
tion derived in [1]. We write first the kinetic equation for the phonons in
the liquid

Jx

X

€en

x

dz

T

<

dv

dz

»

(1)

an

where the function x determines the deviation of
the phonon distribution function from the equilib-
rium value ng in accord with the formula

a
n:nrx——z-l

° de
¢ 1s the phonon energy, ¢ the speed of sound, T
the phonon free-path time, v the velocity of the
liquid, and n a unit vector along the phonon mo-
mentum.

We assume that the coefficient W of penetra- )
tion of the phonons through the solid wall is Fig. 1
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small. This enables us, when solving Eq. (1) in region (I), to assume that the
reflection coefficient is equal to unity and write the boundary conditions for
the function x at z = 0 and -a in the form X(nz) = x(—nz). By substituting the

Poiseuille velocity profile v(z) = vi[1 - (1 + 2z/a)?] in the right-hand side
of (1) and its solution with the given boundary conditions, we can readily de-

termine the value o of the function x at z = 0:
8 a
Xo =~V ¢ n.n, -;- R T T (2)
al n exp(a/en 7 )- 1

We assume for simplicity that the thickness £ of layer II is much larger
than a. Then the velocity profile in the main part of the volume II is linear,

and 1t suffices to consider the case & = = for its complete determination (see
Fig. 1; the velocity vy coincides with the velocity at z = o if 4 = «),

At & = « the function X in region II satisfies Eq. (1) without the right-
hand side and the condition x(z = d, n, > 0) = XoW, from which we get x(nZ < 0)

= 0 and x(nz > 0) = xoW exp[(d - z)/anT]. Integrating now the equation of mo-
tion of the liquid (see [1])
d*v de do dn, dx

dz? (2a%c)® de % 9

with the conditions v(z = d) = 0 and |v(z = »)| < =, we obtain
3dedo
v, T v(e) = £preede —inxn:rx.ow, (3)
n (27he)? de

where n is the viscosity coefficient of the liquid.

The main contribution to the integral in (3) is made by the phonons whose
energy 1s such that the mean free path c¢tT is of the order of the liquid-layer
thickness a. If the partition thickness d does not greatly exceed a, then the
absorption of the phonons in the partition can be neglected in the calculation
of W, since sound absorption in a solid is much less than the absorption in a
liquid. The condition that W be small means then that the ratio of the acous-

tic impedances pc/De, of the liquid and the

t
oizy) . s0lid should be small (p and D are the densities
auf' va of the liquid and solid, respectively, and Cy is
y=as

the velocity of transverse sound in the solid).
The coefficient of phonon penetration through the
ot : separation boundary is then small and therefore
a phonon entering the solid is reflected many
times from both boundaries before an appreclable
fraction of the energy leaves the partition. It
is therefore clear that the coefficient W from
volume I into volume II is equal to (1 - R)/2,
where R is the coefficient of sound reflection
gont- from the solid-liquid boundary. Using the known
expressions for R [3] and for the absorption of
sound in a liquid [2], T = gh%cZvye?, where

.

i & s Yy = Un/3 + ¢ + |<(cp - cv)/cpcv, T is the second
viscosity, k is the thermal-conductivity coef-
Fig. 2 ficient, and cp and c, are the specific heats
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per unit mass, we obtain from (3)

1=4(i)_7(ﬂ=) oL, L), (1)

Vi 2 "4y

where

17yl (1 =y2) V(1 - xP) Ve

e +

[
° v 1 =200% (1 - )21 - y2r)/2

®(x, y) =

LA =D - )Y - xP) de

T ekt I

1yl y2(1=20) + 1602(1 - ) (y2r = 1)

Cq is the velocity of the longitudinal sound in the solid, and ¢ is the Riemann

function. A plot of &(x, y) obtained by numerical calculation is shown in Fig.
2.

In the derivation of the foregoing formula we used for the equilibrium dis-
tribution function ne its classical value T/e, since most liquids solidify upon
cooling long before quantum effects come into play. We note also that in order
for (4) to be valid it is necessary that there be no dispersion of sound in the
liquid up to frequencies corresponding to a mean free path equal to a. In other
words, the thickness a must be larger than pcd®/yw3, where wy is the frequency
above which appreciable dispersion sets in.

For the water-polystyrene (or Plexiglas) pair we obtailn from (4) that vyo/v,
is approximately equal to 10~7/va (a is in cm) at T = 353°K and 107%/Va at T =
293°K; for the mercury-silver pair we obtain approximately 10-%/va at T = 293°K.

The ratio of the total liquid fluxes through regions II and I differs from
v2/Vi, as can be readily seen, by the factor 3%/4a. On the other hand, if the
liquid in region II is at rest, then a pressure gradient 1s produced in this
reglon, and its ratio to the pressure gradient in region I is equal to

(3a2/48%)(va/vy).
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1. In connection with the progress in the development of high-power lasers
(e.g., lasers using molecular gases such as CO,, CO, etc.) the problem of opti-
cal breakdown of molecular gases has become quite vital. The solution of this
problem has a direct bearing on the determination of the limiting parameters of
lasers for the infrared band.
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