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" Theory of charge and impurity transfer in quantum crystals

The mobility of ions and impurity atoms in quantum crystals of solid helium is studied. The
quantum nature of the crystals makes it possible to elucidate the dependence of the mobility on
temperature and external field without making any model assumptions for the ion structure. At high
temperatures, the transfer results from elastic scattering of long-wave vacaneions by impurities and
ioms. At jow temperatures, the main mechanism of transfer is the proper tumneling of ions and
impurities, which may be accompanied by scattering or spontancous phonon emission. A peculiar
dependence of the mobility on the direction and magnitude of the external field is found. The

concentration dependence of the mobility is discussed.

The study of impurities in quantum crystals of solid
helium is of considerable interest because, at suffic-
iently low temperature, any point defect becomes a
quasiparticle that moves freely through the crystalt™®].
In fact, we are only concerned with impurities of the
other helium isotope and charges, since no other parti-
cles can be dissolved in helium in amounts sufficient to
allow an experimental observation. A large amount of
experimental work has been devoted to the study of
transfer of chargest®") and of isotopic impurities!®*!,
In the latter case some peculiarities were observed
which were brought about by the quantum nature of
point defects,

The structure and mobility of negative ions in solid
helium have been discussed theoretically in!"»*"! where,
in analogy to the familiar case of liquid, the negative
ion is simulated by an electron placed in a cavity of
macroscopic size. The cavity boundary, which lies on
the surface of the crystal lattice, serves according to
Shikint* ag an effective source and sink of vacancies,
and the visco-diffusive motion of the cavity is the
mechanism of ion mobility., As to the positive ions, no
satisfactory mechanism has been proposed so far to
explain their motion. The analogy with the well-known
case of liguid suggests that, owing to the striction
forces, a higher-density region develops in the crystal
around 2 positive ion (see!']), The boundary of this
region, however, does not lie on the surface of the
crystal and, therefore, cannot serve as a source of
vacancies, The visco-diffusive mechanism of motion
considered by Mineevt*®! is not possible in this case,
Nevertheless, the experimental datal™"! indicate that
the values of mobility for ions of both signs are close
to each other, and coincide in order of magnitude with
the mobility of isotope impurities in the temperature
region where the vacancion mechanism of motion is
dominant, Furthermore, the radius of a negative ion,
estimated in[****] does not exceed two or three atomic
dimensions. Under these conditions the discreteness of
the process of creation and destruction of vacancies by
ions can hardly be neglected, The macroscopic bound-
ary conditions on the ion surface, adopted int™), corre-
spond to neglect of precisely this factor.

An important feature disregarded int'* ! is the
large vacancion wavelength in solid helium. For not too
high pressure and at all temperatures, it appreciably
exceeds the interatomic separation and, therefore, the
size of the ions, This results from the large {of order
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sevelfal degrees) value of the vacancion energy-band
width; owing to which, for not too high temperature, the
vacancions are located close to the bottom of the band.

1t is precisely the last circumstance which enables
us to explain the nature of the vacancion mobility of
ions in its general form, without going into particulars
of their microscopic structure. As will be shown below,
the guestion of ion metion can be reduced to the well-
known quantum-mechanical problemn of inelastic scatter-
ing of slow particles. It then proves possible to evaluate
the dependence of the mobility of both negative and posi-
tive ions on the temperature and on the applied eleciric
tield.

At sufficiently low temperatures the ion transport is
due to tunneling transitions to the neighboring sites, for
with decreasing temperature the vacancy concentration
together with the vacancion mobility decreases exponen-~
tially.

At low temperature the ions turn into guasiparticles
that move essentially freely through the crystal, This
is connected with the fact that ions, as any object of
atomic size in a quantum crystal, should be regarded
as poiat defects, and the results ofl** can be applied to
theni. In this region, even for very small values of the
electric field, the mobility must strongly depend on the
field, This dependence is similar to that considered
in[*%) and is associated with the peculiar features of the
motion of quasiparticles with a narrow energy band un-
der the influence of a constant force, In particular,
there exists a field range in which the drift velocity de-
creases as the field increases,

Everything said about the motion of ions can, in
principle, be applied to any other point defect, in partic-
ular, to isotopie impurities. In this case, the part of
electric field is played by, say, the magnetic field
gradient (for He® impurities) or by nonuniform static
deformation of the crystal which gives rise to a con-
stant force acting on the point defects!*®], However, in
contrast to the case of ions, whose concentration is in
fact very small, the mobility of isotopic impurities may
be influenced by their mutual scattering. This problem
has been studied int****! and the diffusion coefficient
was found to be inversely proportional to the concentra-
tion of impurities. In the present work it is shown that,
under certain conditions, the diffusion coefficient must
be inversely proportional to concentration raised to the
power Vs
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1. VACANCION MOBILITY

As stated above, at not too low temperatures the ion
transport is due to the vacancion mechanism, A
vacancy, while moving, can appear at a lattice site
neighboring to an ion. The vacant site will thereupon be
occupied by either a host atom or the ion, and the
vacancy will then move away from the site of the ion
delocalization. In a quanium-mechanical description of
the interaction between delocalized vacancicns and ions,
these processes correspond to the scattering of de-
localized particles by a localized object. The scattering
will be either elastic or inelastic, depending on whether
the ion remains localized at the initial lattice site or is
shifted by an interatomic-distance. In the course of in-
elastic scattering, the vacancion energy is changed by
eE -ap, where e is the ion charge, E is the applied
electric field, and ap is.the vector connecting the
lattice site with its n-th nearest neighbor.

The average ion drift velocity u can be expressed in -

terms of the effective cross sections op(k) of such in-
elastic processes by the relation

u= 2 a | f(‘z%s 0. (k) v (k) {n (&) —n (e+eEa,) }, {1

where k is the wave vector of the incident vacancion,
v(k) is its velocity, and n(e} is the equilibrium vacan-
cion distribution function over energies ¢ = ¢{k}. Here
and in what follows, the summation over n extends over
those nearest neighbors ap for which eE-ap > 0. The
displacements of ions by (—ap) are accounted for in (1}
as inverse processes,

The expression (1) can be rewritten in the form:
de .
us= Zaﬂ IW{E(B) —n(s+eEan)}j a,{k)ds, (2)

where the last integral is then taken over a surface of
constant energy and is independent of n, owing to the
symmetry of the crystal lattice.

It was stated in the Introduction that practically all
vacancions are located close to the bottom of the energy
band, where their spectrum is quadratic and the
velocity of their motion is small. According to a well-
known result of quantum mechanics, the inelastic-
scattering cross section for slow particles is inversely
proportional to their velocity, Hence

Ic“ A5 =dsthe (e—e0) ™,

where €, is the energy corresponding to the bottom of
the vacancion band, and the constant « is connected
with the bandwidth A and the effective mass M by the
relation A ~ 6/VA ~ aM“? (a being the interatomic
separation), .

A Boltzmann distribution function n{e ) can be as-
sumed, since ¢, is of the order of the Debye tempera-
ture ® and, hence, much exceeds the temperature T.

As a result we obtain
= () o) Rt e ()] @

In a weak electric field eEa << T the drift velocity
is proportional to the field

u,—eBakEy,

where the mobility tensor Big, by virtue of (3}, is equal
to
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A rather peculiar situation arises in strong electric
fields eEa » T. For practically every direction of E
the velocity u reaches saturation and does not depend

on |E|:
a [Ty
“HEL e

It is essential, however, that oanly those n for which
eE ap > 0 are to be summed over. Therefore, as the
direction of the field varies, the direction of u changes
practically in a step-like manner when E passes
through a plane perpendicular to one of the vectors ap.
The angular width of the transition region is of order
T/eEa << 1. In guch a transition region not only does
the direction of u vary but its magnitude as well, As an
example, the figure illustrates the dependence of both
the magnitude and the direction of velocity on the orien-
tation of E for a two-dimensional square lattice having
two perpendicular fundamental translation vectors of
equal length a, and a. In this case the maximum
value'of the drift velocity, ugyax, according to (5), is
given by

V2 (T
Hmax= ‘47 (";—‘:'*) 2=*'Ta,l.

It has been assumed above that }eE-ap| < A, For
those ap: for which eE.a, — A the expressions (3) and
(5) should be refined. A vacancy can participate in
transport processes only if e(k) - 6o = A — | eE-ag|.
A simple calculation shows that those terms in (3) and
(5) which correspond to vectors ap such that
A — eB-ap « T must be multiplied by a small factor

4 1A—c¢Ea, 1"
31/?[ T ] ’

For stronger fields, eEa > A, the vacancion ion
transport is impossible if | eE-ay| = A for all ap. As
E is rotated, electric current appears whenever the
condition | eE-ap| < A is met for one of the vectors
an. If we increase the angle between E and ap (i.e.,
decrease | eE-ayl), the current will increase accord-
ing to (6) until the saturation (5) is reached. As |eE-ap|
decreases further, the current does not depend on E
and is given by (5), Starting from |eE-ap| ~ T the

(6)

iy

L | |
T Ea e iz 7

Dependence of the absolute value of the velocity and of the direction
(@ is the angle between u and a, ) on the angle ¢ between the vectors E
and a;.
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current will decrease again according to formula (3),
and will vanish at E-ap = 0,

It should be noted that in the case of the hexagonal
close-packed lattice, the summation over nearest
neighbors in all the above expressions must be carried
out for both sublattices separately. In weak electric
fields eEa « T, both sublattices enter the sum with the
same weight, In strong fields, eEa >» T, the sublattices
are not equivalent, because the ion transition probabili-
ties from one sublattice to another and back are differ-
ent, The statistical weight with which each sublattice is
to be summed over is inversely proportional to the
probability of ion transition to the other sublattice. In
very strong electric fields, eEa » A, certain orienta-
tions of E may even give rise to a situation when one-
way ion transitions between the nonequivalent sites will
be allowed and the inverse processes forbidden. In this
case all the ions will become concentrated in one sub-
lattice. ‘

The following reservation must be stipulated for all
the results, Although, as pointed oul above, the linear
dimensions of ions are of the order of the interatomic
separation, the ‘‘number of particles’ in the corre=
sponding complexes can, in general, be large, In this
case, the vacancy-ion interaction process is similar to
neutron scattering by heavy nuclei. Owing to the large
number of interacting particles, the inelastic reaction
proceeds in both cases via creation of a long-living
compound ““nucleus’’ and has a resonant nature, The
cross section of such reactions is described by the
well-known Breit-Wigner formula. The constant « in
(3) in this case will be a function of temperature deter-
mined by the energy dependence of the scattering cross
section:

o= (ﬂ;?i ' fde. exp{m%} j'cr,‘ (k)dsS.
However, if the temperature T (and, hence, the energy
of the scattered vacancies) is less than the resonance
values of the energy, the cross sections are inversely
proporticnal to the velocity, and we are back at the
ahove expressions for the ion mobility.

On the other hand, if the ion structure is simple
(e.g., the negative ion can be a charged vacancy-type
formation), the above formulae are valid at any temper-
ature, ’

It should be borne in mind that phonon processes
were nol accounted for in the above. The latter will be
of considerable importance in strong fields eEa 2 A in
those cases when the probability of the vacancion ion
transport is small. The field dependence of the mobility
will become smoothed out by processes associated with
vacahcy scattering by ions with simultaneous emission
or absorption of phonons of energy of order eEa.

2. PROPER MOBILITY

Aswas pointed out inthe Introduction, at lowtempera-
tures the ions are delocalized and should be regarded
as quasiparticles having a finite bandwidth Aj that de-
termines the probability Aj/f of ion tunneling to a
neighboring site. As the temperature is lowered the
probability of vacancion processes decreases exponen-—
tially, and if the condition

A alA ( 1") *
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is fulfilled, then the main mechanism of ion transport
is the ion tunneling proper. If furthermore

T » ®(Ai/®)1/9, then the diffusion coefficient equals
Aia®/H, and the ion motion represents a quantum diffu-
sion of localized defects[*], In the opposite extreme
case, T <« @(A;/©}?, the ions represent essentiaily
freely moving quasiparticles, It is this region that we
shall consider in detail, because it involves a peculiar
external field dependence of the mobility even in very
weak electric lields eEa « a4,

The bandwidth A is most likely to be small so that
we can assume Aj « T in the whole accessible tem-
perature range. The band occupation is then practically
uniform, and the dependence of the distribution f on
quasimomentum p at equilibrium is given by

where f, 15 a constant determined by the number of
ions per unit volume, and ¢(p) is the ion energy spec-
trum. Since the phonon momenta q are small com-
pared to | p| ~ B/a, the kinetic equation for ions is of
the Fokker-Planck form,

af @B f B

where d is the diffusion coefficient in momentum space:
¢ _(TY (et
-~ (6) (&)
and 7 is the ion-phonon relaxation time,

By making a Fourier series expansion of both the
distribution function and the energy spectrum

f{p}= Z‘fae‘-'""“, e(p)= Z‘B‘girdﬁ!

a

{where f.q = [}, €5 = €5, and the summation is over
all lattice translation vectors), we obtain from (7}
a’d €a
L O ey P

The average ion drift velocity is equal to

4 in*ale,|®
T de kB
For the case of narrow bands, the dominant har-
monics are those corresponding to nearest neighbors.
Combining terms with a;, and -ap in the sum, where
eE-a, > 0, we get

2A %8 efi(Ba,) z.’a, (8)
T &t (ad) e (Ba,)? )

Here Aj = | €a,,| is of the order of the bandwidth. In
weak electric fields, the drift velocity is proportional
to the field

u":EBmEh,
where the mobility tensor is equal to

_ 2RA° Tpilan
" o

n

In strong fields the driit velocity drops as the field in-
creases

_ 208 ¢ a,’a,
W= - Ea,
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This has a simple physical meaning. If a constant force
eE is applied to a quasiparticle with a spectrum e(p),
then, owing to the finite bandwidth A, the particle is
bound by such a potential and becomes localized! ™), As
a consequence, the particle oscillates at a frequency

w ~ eEa/h in a region of size Ay/eE. If wrgy > 1,
where Ty ~ E%a%d, there is practically no particle dif-
fusion, Since r¢p < T™° and increases rapidly with de-
creasing temperature, the nonlinear field dependence
of the veloeity, described by (8), is appreciable at suf-
ficiently low temperatures even in very weak fields.

We have been discussing the case eEa << Aj. In the
opposite extreme case, eEa » Aj, the main mechanism
of ion transport is tunneling combined with simultaneous
phonon scattering, whic¢h guarantees energy balance as
the ion makes a transition to a neighboring site, If eFa
« T, the appropriate drift velecity is given byt'®

ela t T\*Afe
o ~5- () 70 @)
For eEa > T the drift velocity due to phonon scat-
tering is proportional to the cube of electric field and
the fourth power of temperature. However, in this case
the ion transitions are much more likely to occur along
the field with simultaneous spontaneous emission of a
phonon of energy eEa. As usual, the provability of
spontaneous emission is proportional to the cube of the
emitted phonon frequency and the square of the ion-
wave-function overlap integral for neighboring siles,
i.e., the square of the bandwidth Aj. The drift velocity
is therefore, equal to
eEa \’Ala
v (T) e

(10)

The change-over from formula (9) to (10) occurs at the
field values eEa ~ T%®%

3, CONCENTRATION DEPENDENCE OF MOBILITY

The formulae cbtained in the first two sections of the
present work are also applicable to the case of isotopic
impurities if their concentration is small. As the con-
‘centration increases, the interaction between impurity
atoms becomes appreciable!™® ™), If the temperature is
sulficiently low, and the concentration x is so small
that the average separation between impurities,

— /3 - : N .

T ~ a/x"3 much exceeds the impuriton interaction
radius R, then the diffusion coefficient D is equal
to[l(},ll]

D~Aa' iR, (11)

The interaction radius R is connected with the inter-
action energy U(r) between two impurity atoms by the
relation U(R)~ Aj. Uf{r}~ Us(a/T)*, where Us is some
characteristic interaction energy, R can be determined
from the expression R ~ a(Us/ai)"%, i.e., if the band
is sufficiently narrow, R exceeds greatly the inter-
atoric separation('™],

In this case, (11) can be rewritten in the following
form:

(12)

Ad® AT
D~ — .
Az (U., )

The condition for validity of (12) is given by the in-
equality x << A3/ Up =< 1,

Consider a higher concentration domain
ATz (A T,) "
In this case, the difference between interaction energies
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at neighboring sites asU/sr is still small compared fo
Ai and the motion of an impurity in the field of other
particles is quasiclassical, A given impurity atom
moves practically along an equipotential frajectory, be-
cause its ‘kinetic’’ energy can not change by a guantity
larger than Aj. Since the potential is due to randormly
distributed impurities, such an equipotential trajectory
is a random curve with a typical radius of curvature on
the order of the average distance T between the impuri-
ties. The diffusion coefficient is given by the usual gas-
kinetic formula D ~ vI, the velocity v being of order
Aia/f and the mean free path | ~ T:

D~Ag b (13)

The relaxation time T; for the region corresponding
to (11) and (12) has been found inl'" to be
1 ﬁ.’lT’A

7. R (14)

where By is the nuclear magneton, For concentrations
Aj/ U< x << {A1/Ug)¥* a similar consideration leads
to the’ formula

.~ . 1 ﬁJ,YQr
-T_z - Aal

zh, {15)

Experimental datat® " reveal an inversely propor-
tional concentration dependence of the diffusion coeffic-
ient at x S 1072 and of the relaxation time T: at
x £ 107°, However, the value of R calculated on the
pasis of (11) and (14) turns out to be of the order of the
interatomic separation, whereas the bandwidth A is
surprisingly small, Aj ~ 1077 K. Despite this smaliness,
the laws (13) and (15) are not observed, This circum-
stance is hard to interpret at present.

In conclusion, we thank I, M. Lifshitz and A. L
Shal’nikov for useful discussions,
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