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Vacancion transfer of ions in quantum crystals of solid helium is determined by scattering of long-wave 
vacancions by ions[1.2]. It is shown that the presence of an external electron field significantly affects of the 
cross section for vacancion scattering by ions. Discrete negative energy levels of bound states appear in the 
vacancion energy spectrum after a certain threshold value of the electric field strength is attained. The level 
system has a condensation point at zero energy. At low temperatures and in strong fields vacancion 
transfer of ions is determined precisely by such vacancies localized near the ions. The motion of an ion­
vacancy complex may be accompanied by spontaneous emission of photons. The dependence of ion 
mobility on the temperature and on the external field strength is determined. 

PACS numbers: 67.80. -s, 67.20.Er 

In ref, 1 we investigated the motion of charges and 
impurity atoms in solid-helium quantum crystals. We de­
termined there the dependence of the ion mobility on the 
temperature T and on the external electric field E with­
out resorting to model representations of the ion struc­
ture. It was shown that at not too low temperatures the 
ion transport is via inelastic scattering of long-wave 
vacancions by ions, a scattering accompanied by transi­
tion of the ions to neighboring sites of the crystal lattice. 
We used there the concepts of quantum theory of de­
localized point defects (defectons Y ,3l It has turned out 
that the character of the dependence of the mobility on 
the temperature and on the external field is determined 
by the relations between the following quantities: the tem­
perature T, the width t. of the delocalized-vacancion 
energy band, and the quantity eEa (e is the ion charge 
and a is the interatomic distance). 

A Significant fact in the determination of the vacan­
cion mobility of the ions is that the width t. of the va­
cancion band is large, of the order of several degrees, 
and that the following inequality holds at not too high 
pressures and temperatures: 

T«.!'1. (1) 
Unusual results were obtained in the region 

T«.eEa«.!'1, (2) 
where the ion drift velocity was practically independent 
of E. 

In this paper, on the basis of ideas developed 
earlier ,lll we study in greater detail the dependence 
of the vacancion mobility of the ions on the external 

. electric field. It is noted that a Significant dependence 
of the mobility on the field appears in the temperature 
dependence of the ion drift velocity, in the case of the 
vacancion motion mechanism, in the vicinity of the 
point T = 0 even in the weak fields (2). It is shown in 
this connection how the corresponding formulas of 
ref. 1 should be modified to make them suitable in the 
region (2) not only for finite temperatures but as T - O. 
We have also investigated. the ion mobility in strong 
fields 

eEa;;o!'1. (3) 

It is shown in the second part of the paper that, 
when a sufficiently strong electric field acts on the ion, 
a system of an infinite number of discrete negative 
energy levels appears in the energy spectrum of the 
vacancions, and this system corresponds to bound states 
of the vacancions in the vicinity of the ion, and has as its 
condensation point the zero-energy level. This makes 
possible a new motion mechanism that can turn out to be 
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significant in strong electric fields eAa » t. and at low 
temperatures. 

The calculations in the present paper are based on 
the following circumstance: The vacancion ion-trans­
port mechanism is determined by the inelastic scat­
tering of the vacancions by the ions. The condition (1) 
T « t. means that the vacancions are close to the 
bottom of the band, where their velocity is low, and the 
energy depends quadratically on the quasimomentum tik. 
The probability of the inelastic process is proportional 
to the square of the modulus of the vacancion wave func­
tion W in the "reaction zone (r ~ a). For slow particles 
(k - 0) this means in fact that the asymptotic form of 
the dependence of the scattering cross section a on k as 
k - 0 (but not of the constant in this dependence) is de­
termined by that part of the potential V(r) which falls off 
most slowly with distance as r- 00 (see, e.g., ref. 4). 
The potential V in which the vacancions move is determined 
by the crystal strain tensor uik. In the absence of an elec­
tric field, the crystal becomes deformed around the ion, 
as it does around any dilatation center (V ~ Uik ~ 1/ r3, [5l), 
and also as a result of the polarization produced in the 
medium by the ion charge (Uik ~ l/r4). 

The presence of an electric field in the crystal pro­
duced additional stresses of the dipole type, due to de­
formation of the lattice by the ion acted upon by the force 
eE. The corresponding value of the potential V(r), as 
will be shown below, is proportional to l/r2. So slow a 
decrease of the potential causes[4l the function a(k) to 
differ in general from known expression a ~ l/k for in­
elastic scattering of slow particles, an expression used 
earlier in ref. 1. In weak electric fields (2), how-
ever, eEa « t., the difference between the true function 
a(k) and the relation a ~ l/k is negligible at not too 
small k. This causes the results of the first part of 
the present paper to differ from our results[ll for weak 
external fields only in a small vicinity of the point T = O. 
In the first part of the paper we present briefly cal­
culations of the scattering cross section a, together with 
the calculation of the ion drift velocity u. 

1. INTERACTION OF VACANCIONS WITH IONS IN 
THE PRESENCE OF AN ELECTRIC FIELD. 
ION MOBILITY 

The potential of the forces acting on the vacancies 
is[5 l 

V(.)=-KQ;,u;,,, (4) 

where I{"l is the coefficient of hydrostatic cempres- -
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sion, Qik is a tensor characterized by the lattice 
symmetry and determines the change of the crystal 
volume when vacancies are introduced in the crystal: 
QU '" a3 • The deformation due to the action of the 
force eE on a point defect (ion) is given by the Green's 
tensor Gik of the crystal, since we are in fact deal­
ing with the action of a /i-like force on the medium: 

1 {!JGII !JG .. } u,.=-eE, --+-- . 
2 ax. ax, (5) 

I. Lifshitz and Rozentsvelg[6] have described a pro­
cedure for constructing the Green's tensor for a crystal 
of any symmetry from the elastic tensor Aiklm' and 
have shown that for an arbitrary anisotropic medium 
Gik is a homogeneous function of the coordinates, in 
the form Gik '" r-l~ik(n), where the functions ~ik de­
pend only on the components ~ of the unit vector 
n'" r/r. Thus, V(r) is of the form 

a' 
V(r) =eEa--:;-g(n) , r- . 

(6) 

with the function g(n) expressed in terms of ~ik with the 
aid of formulas (4) and (5). 

The Schrodinger equation for the vacancion wave 
function \)((r) can be written in the form 

V2,¥+[ k'- e:a g(~) ] '¥=o. (7) 

A few words concerning the limits of validity of (7). 
It is clear that this equation is meaningful only at suf­
ficiently large distances from the ion where, first, 
the function V(r) (6), which tends slowly to zero with 
increasing r, is the principal part of the scattering 
potential, and second, I V(r) I «a. The last condition 
is necessary in order that the kinetic-energy operator 
depend quadratically on the quasimomentum operator 
tik = -malar, and is determined by the usual formula 
- ti2V2 12M (the effective mass M is connected with the 
width of the band by the relation M = ti2/2a2 a). As the 
vacancion moves away from the ion, the vacancion 
energy lies, subject to condition (1) (T « a), near the 
bottom of the band, where the spectrum is quadratic; 
to the contrary, in the region of space where I V(r) I '" a, 
the particle is not near the bottom of the band and the 
Schrodinger equation should contain, as the kinetic­
energy operator, not a Laplacian but another function 
of the operator K = -iV, which has a rather complicated 
form and takes into account the band character of the 
energy spectrum of the vacancions. [2,7,8) 

Since Eq. (7) is valid only when the distance r from 
the ion exceeds a certain value ro > a, to solve the scat­
tering problem we must know the boundar~ condition for 
the wave function \)( at r '" roo It is known 4) that this 
boundary condition can be formulated in quite general 
form, independent of the form of the potential at r 
< ro, only for slow particles for which kro « 1. In weak 
electric fields eEa « a, the inequality kro « 1 is satis­
fied if T « a, since the inequality I V(r) I « a is valid in 
such electric fields for the potential V(r) (6) all the way 
to interatomic distances. To the contrary, for a strong 
external field eEa 2 a, the use of the formulas de-
rived below imposes on the temperature a more stringent 
limitation than (1): 

7«. ... 'leEa. 

Let us turn to an investigation of Eq. (7). This equa­
tion is separable in the spherical coordinate system 
(r, e, cp). The equation for the radial part R(r) of the 
wave function w(r) = R(r)y(e,cp) takes the form 
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~~ (r' dR ) + [k' -~] R=O. (8) 
r' dr dr . r' 

The separation constants zn in (8) are eigenvalues of 
the angular part of the wave function 

[l'-eEag(O, <:p)/~lY(O, <:p,=zS(O, <:p), (9) 

where 1 is the angular-momentum operator. 

The solutions of (8) are cylindrical functions of order 
Pn'" (1/4 + zn)1/2. By using the known procedures[4] we 
can determine from the asymptotic forms of the wave 
function the dependence of the inelastic-scattering cross 
section on the wave vector k: 

To determine the cross section (J in this case it suffices 
to confine oneself, as always in the study of the scat­
tering of slow particles, to the smallest eigenvalue Zo 
of the equation for the angle-dependent part of the 
wave function 

The integration with respect to the vacancion 
variables is carried out in the same way as before. [1] 

As a result, the scattering cross section (J yields the 
ion drift velocity u: 

U= (!-.) p,_1, r(l+p.) 
u. ~ rei,) , (10) 

where Uo is the drift velocity calculated in ref. 1, and 
r(x) is the gamma function. 

We must now determine the constant zoo In weak 
electric fields this problem can be solved analytically, 
with condition (2) ensuring the possibility of apply­
ing perturbation theory to Eq. (9). The smallest 
eigenvalue of (9) is determined as a correction to 
the smallest eigenvalue of the operator of the 
squared angular momentum rz, i.e., to l(l + 1) = O. In 
first order of perturbation theory we have 

(I) eEa 2n It 

Zo =--4 .Jd<:p Jd6sineg(O,<:p). 
nLl 0 0 . 

(11) 

Owing to certain symmetry properties of the Green's 
tensor Gik, the integral (11) can vanish. This is pre­
cisely the situation for cubic and hexagonal crystals, 
and also in the isotropic-medium approximation. This 
is seen even from the fact that it follows for these sub­
stances, from the equation for the Green's tensor, that 
the latter is not altered by the inversion transforma­
tion r - - r (this can be verified also directly with 
the aid of the tensors Gik obtained by I. Lifshitz 
and Rozentsve"ig[6]). The fact that the Green's tensor 
is even, Gik(r) = Gik(-r), leads according to (4)-(6) 
to parity of the function g( e , cp) = - g( 7T - e, 7T + cp), and 
consequently to vanishing of the integral (11). 

Thus the quantity Zo is determined for all crystal­
line modifications of solids (bcc, fcc, and hcp) by the 
second perturbation-theory approximation 

1 eEa)' J ," " " zo=--(- ~-- Jd<:PJdOsineY,m(6.<:p)g(e,rp) , (12) 
4n ... ~ 1(1+1) . 

1.111 0) () 

where Y l m are orthonormal spherical functions cor­
responding to the total angular momentum l and to its 
projection m (it is taken into account in (11) and (12) 
that Yoo '" (47Tr1t2). 

By way of example we present the value of Zo for an 
iRotropic medium. In this case 
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1 
G,,= 

r 

l+v 
8,,8(1-1') 

where If is Young's modulus, v is the Poisson coeffi­
cient, and ni are the components of the unit tensor 
n = r/r.[9) In addition, for an isotropic medium we 
have Uik = Uooik. Consequently 

V (r) =£~ cos 8 a'/r', 
, I eEa 110 1+,' 
;=-------

12n ~ a' I-v . 

As a result we obtain for Zo 

Z,=_1/66'. (13) 

In strong fields (3), the determination of zo, i.e., of 
the smallest eigenvalue of the operator [2 + eEag( 0, <p)/ A, 
can be solved by a variational method. In this case it 
is convenient to carry out the minimization with respect 
to the coefficients of the expansion An of the trial func­
tion in the eigenfunctions of the operator F, which are 
Legendre polynomials. Thus, for an isotropic medium 
we have 

. ~ { . .)' nAnAn_1 z,=mm..::.. n(at-I An'-~--'-'---'---~ 
'.<"J n «2n-l) (2n+1))'i, 

_" (n+l)AnA n+1 }/ ~ A ' 
£ «2n+l) (2n+3) r ~" . 

(14) 

An analysis of (14) shows that Zo is a negative function 
of ~2 and tends monotonically to (-00) as ~2 - 00 (zo(~) 
= zo(- m. The plot of zo(~) obtained by numerical calcu­
lation is shown in the figure. In practice, up to ~ = 2, 
formula (13) determines Zo with perfectly satisfactory 
accuracy. 

In conclusion, a few words concerning Eq. (10). It is 
obvious that this equation is valid only when Zo ~ -1/4. 
The mobility of the ions in stronger fields, at Zo <: - 1/4, 
is discussed in the next part of the paper. The 
boundary value Zo = -1/4 corresponds, according to a 
numerical colcation, to an electric field given by 

1 eEa >1, l+v 
~"T'd' I-v"" 1.28. 

In weak electric fields eEa « A we have according to 
(11) and (12) 1 zol « 1. The last factor in (10) then 
determines a small correction, linear in zo, to Uo 

f(1 +p,) /f(,/,) =1 +zof' ('/,)/f('/,) =1 +0.037zo. 

At not too low temperatures, T/ AI» exp{-1/1 zol}, 
in weak fields, the factor (T/ A)Po - 1 2 also gives 
rise to a small correction to Uo: 

(T/~)p'-"'=1+Z" In(T/~). 

At lower temperatures this factor differs Significantly 
from unity, and the value of u [Eq. (10)] differs ap-

-J 
Za 
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Plot of zo(~) for an isotropic 
medium, obtained by numerical cal­
culation. The function zel.~) is 
even: zel.~) = zel. -~). 
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preciably from uo even in the weak electric field (2). 
Since Zo is always negative, the inequality 1 u 1 > 1 Uo 1 
is satisfied, and in strong fields we have 1 U 1 »1 Uo 1 as 
T- O. 

2. BOUND STATES OF VACANCIONS IN THE 
VICINITY OF IONS 

At Zo <: -1/4, the formulas for the scattering cross 
section and for the ion drift velocity (10), derived in 
the preceding section of the paper, become meaning­
less. The physical meaning is the following: The S 
vacancions (1 = 0) located far from the ion are effec­
tively attracted to the latter in an electric field (zo <: 0), 
and the corresponding potential tends to zero with in­
creasing r like Azoa2/r2. In such an attraction field 
there can exist discrete negative energy levels corres­
ponding to bound states of vancions near the ion. At 
Zo >_1/4/4 ) the number of such levels can be only 
finite, and their contribution to the partition functions 
should not be large, so that the question of the very 
existence of these levels is resolved by starting from 
the form of the potential at small r; if as r - 0 the 
vacancies are, say, repelled from the ion, then there 
are no negative energy levels. 

The situation is different at Zo < - 1/4. In this case 
the energy spectrum of the vacancions changes strongly 
and an infinite system of discrete negative energy 
levels €n <: 0 is produced and has the level € = 0 as its 
condensation pOint. Such a spectrum of bound states of 
vacancions exists at Zo <: - 1/4 regardless of the be­
havior crystal deformation potential at short dis-
tances from the ion, although the energies €n of the 
discrete-spectrum states are of course strongly de­
pendent on the form of the potential as r - O. However, 
the requirement that the wave functions of states 
with different energies €n be orthogonal makes it pos­
sible to express all values of €n near the limiting 
value € = 0 in terms of only one constant, without 
making any assumptions about the form of the potential 
V(r) near the ion. 

This is done mathematically as follows: Far 
from the ion, the radial part of the wave function of the 
vacancions is determined by Eq. (8), which takes in 
the case of negative energy eigenvalues €n = - A(Kna)2 
the form 

1 d' 
-;: dr' (rRn)+[ -x,,-zo/r']Rn=O. (15) 

This equation has a solution, finite as r - 00, in the form 
of a spherical Hankel function of imaginary order 
ill = i(-1/4 - zo)1I2 (we recall that Zo <: -1/4) 

R,,=h ,,_, (ix"r) 

with asymptotic behavior 

1 [ " 1 -.-exp -xnr+-:,(p-il2) . 
lxnr .... 

( .2in ) 'I, e,n{' [( r) ] 
-:-=-,-----c--:-----,- sin pin x" - - ID" , 

x"r If(1+irl) Ish(rln) 2 
f(1+ip)=lf(1+irl) lexp(ID,). 

xnr -~ 0; (16) 

The wave functions corresponding to various values of 
Kn should be orthogonal to one another. For shallow 
levels, Kna « 1, the main contribution to all the 
spatial integrals is made by the region of large r ~ l/Kn. 
When writing down the orthogonality condition it is 
therefore possible to neglect the contribution from the 
region r ~ a, and to use as the radial wave function 
the solution (16) of Eq. (15). 

A. E. Me'i'erovich 740 



With the aid of (15), the condition of the orthogonality 
of the wave function of the nth energy level Rn to the 
function of mth level Rm can be expressed in the form 

, 2 SOO ,_ [ d (rRn) ,d (rRm) ] ~ _ 
(Xn-Xm) RnRmr dr- rRm---rj'n-- -0. 

o dr dr 0 

As a result, formulas (16) lead to the following quanti­
zation condition for shallow levels of the discrete energy 
spectrum 

(17) 

where Ko is a certain constant. 

The questions of the existence of levels with lower 
energy and of the determination of Ko remain open. It 
should be noted that in very strong electric fields 
there can exist bound states that differ from those 
described above and are analogous to those investi­
gated earlier.[B] Indeed, assume that at the initial in­
stant of time the vacancion is located at a point ro such 
that I V(ro) I >~. The total vacancion energy, which 
is the sum of the potential and kinetic energies, is 
conserved, while the kinetic energy, owing to the band 
character of the vacancion energy spectrum, can vary 
only within the limits of the band, Le., by an amount not 
larger than ~. Therefore the vacancion motion is 
localized inside the region I VCr) - V(ro)l :s ~, and since 
the potential energy VCr) - 0 as r - <Xl, this region of 
space is bounded. In quantum mechanics, classi-
cally finite motion corresponds to energy levels of a 
discrete bound-state spectrum. A detailed analysis of 
such spectra, however, is beyond the scope of the 
present paper. 

Thus, without resorting to model representations 
concerning the crystal structure near the ion, it is 
possible to describe the system of shallow 
(I Enl « ~) energy levels (17). Nonetheless, with the 
aid of the spectrum (17) we can hope to obtain a 
rather complete description of the system conSisting of 
an ion and vacancies, for as r - 0, for any realistic 
boundary condition corresponding to repulsion of the 
vacancion from the ion at short distances, there cannot 
be many levels deeper than (17), and we therefore 
neglect their contributions in all the partition functions. 

Let us determine first the number, per unit volume, 
of the vacancies that are in a state bound to the ion. 
This number is 

where W is the activation energy of the vacancies, and 
Pn = l/Kn is the dimension of the nth bound state. 
Going over from summation to integration over the 
spectrum (17), we get 

~, _,.. T ( T ) ,- (3 '" '" 'a' ) 
~ 2na; e 'I 1 -2' - -r-- , 

where y(3/2,x) is the incomplete gamma function. 

Comparison of the number of bound vacancions with 
the volume concentration of the positive-energy va-
cancions 

1 3 T '1· 
N=-r (_) e-W1T (_) • 

4n'a' 2 Ll. 

shows that at high temperatures T » ~(Koa)2 the 
contribution of the bound particles to all the partition 
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functions is small, as expected. Let us dwell in greater 
detail on a case of greater physical interest, T 
« ~(Koa)2, in which the ion mobility is determined 
precisely by the bound vacancions. In this case the ion 
mobility can be calculated in the following manner: 
The probability of an inelastic process that causes an 
ion to tunnel to the location of the vacancion bound to it 
and to be displaced thereby through a vector a, and 
wherein the vacancion acquires an energy eEa and goes 
over into a state belonging to the continuous positive­
energy spectrum, is proportional to the square of the 
modulus of the vacancion wave function >lin in the "re­
action zone," i.e., in the region r '" a. It is obvious 
that 

Proceeding from summation over n to integration, 
we obtain in this motion mechanism for the ion drift 
velocity 

u=uo2,t!,q ('j" -Ll.x,'a'jT) (f ('(,,) (18) 

where, as above, Uo is the previously calculated[l] drift 
velocity. We see that at low temperatures T « ~(Koa)2 
the ion drift velocity u is exponentially larger than Uo: 
at x » 1 the function . 

1 (3/" -x) = S z'I'e' dz , 
increases like xlrleX and we have asymptotically 

u""uAn'I'~(x,a) (MT)'I'rxp {Ll.(x,a)'IT}. (19) 

Such a motion mechanism, however, is impossible 
in very strong fields. The vacancion energy, owing 
to the band character of the energy spectrum, cannot 
change by an amount larger than the width ~ of the band. 
Therefore, owing to the energy conservation law, the 
ion cannot, when it changes places with the vacancy, be 
displaced through a vector a such that eE • a > ~, since 
the vacancy cannot absorb the energy eE • a released 
in this case. Thus, in electric fields having a magnitude 
and orientation such that leA ·akl >~, another vacan­
cion ion transport mechanism is realized for all the 
lattice translation vectors ak; in this mechanism 
the tunneling of the ion to the vacancy that forms with 
the ion a bound state is accompanied by spontaneous 
emission of phonons of frequency eak • E/n. 

The rate at which the phonons are spontaneously 
produced is proportional to the cube of the frequency 
and to the square of the overlap integral of the 
wave functions of the initial and final states of the 
ion-vacancy complex. The latter quantity is propor­
tional to the square of some effective width of the band 
of this complex, and for the n-th bound state this 
width is 

!l,,~!l(alpn)'. 

As a result, the ion drift velocity is defined as 

u~ (eEa)'Ll. 2a e-WIT~ exp(-~) (~)', 
El fiEl ~ T pn 

where e is the Debye temperature, 

After changing from summation over the states of 
the discrete spectrum (17) to integration, we obtain for 
the drift velocity at T « ~(Koa)2 the asymptotic value 

,,~ ( e!a ) '11 t~ (: ) '[ ~(x;a)2]' exp {-(W-Lho'a') ~ }. 

We note that in this ion transport mechanism the 
vacancy remains in the same energy state, and the 
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vacancy-ion complex moves as a unit without disinte­
grating. 

In principle, analogous ion-transport processes are 
possible, accompanied by scattering rather than sponta­
neous emission of phonons. But the probability of such 
processes in fields eEa » T is much lower than for 
spontaneous emission of phonons, and is proportional 
to T4. 

In conclusion, a few words concerning the possible 
experimental consequences of Eqs. (18)-(20) for the 
ion drift velocity. According to the indicated formulas, 
the drift velocity u depends exponentially on the tem­
perature, but in contrast to the equations previously 
obtained for the mobility in ref. 1 and in the first part 
of thELPxesent paper (it should be recalled that Uo 

- e-WI T), the argument of the exponential differs 
from - wiT in our case. In addition, since the constant 
Ko is determined by the crystal-deformation field near 
the ion, the value of Ko, and hence of the arguments of 
the exponentials in the function u(T ,E), can be different 
for positive and negative ions. 

I am grateful to A. F. Andreev for constant interest 
and guidance, to I. M. Lifshitz for calling my attention 
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to the important role of the bound states, and to A. I. 
Shal'nikov for a useful discussion. 
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