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The behavior of tightly bound pairs of point defects in quantum crystals is investigated. In crystals of solid 
helium with hexagonal symmetry, such complexes may be distinctive delocalized binary 
quasiparticles-bidefectons, moving as a whole through the crystal and characterized by a definite 
quasimomentum and energy spectrum. Among the entire class of such objects there are three-dimensional 
quasiparticles, moving in any direction, as well as one-and two-dimensional quasiparticles which only move 
along defmte axes or in certain planes of the crystal lattice. A classification of binary quasiparticles is given 
and the values of their energy spectra are obtained. The influence of these complexes on the diffusion of 
point defects and on the dissipative properties of quantum crystals is investigated. The vacancion 
mechanism for the transport of impurity particles, in which the vacancy-impurity complexes which are 
formed diffuse as a whole, without decaying, with a velocity characteristic for the diffusion of individual 
vacancions, is found to be particularly effective. The quantum analog of Zener relaxation is also discussed. 
The energy absorption lines are determined by resonance transitions of bidefectons between different 
branches of theiry energy spectrum. 

PACS numbers: 67.80.Mg, 67.80.Ez 

One of the most unusual properties of quantum crys­
tals with zero-point vibrations of large amplitude is that 
at sufficiently low temperatures the point defects of a 
crystal lattice are delocalized and transformed into 
quasiparticles-defectons-which move freely through 
the crystal. [IJ The diffusion properties of these quasi­
particles are determined by defecton-phonon scatter­
ing [1-5J and by the interaction of the defectons with each 
other. [6-8J The quantum theory of defects was experi­
mentally confirmed by investigations of the diffusion of 
Hes atoms in He 4.[S,7,9J 

The present article is devoted to an investigation of 
"bidefectons" -systems of two point defects tightly bound 
to each other, together constituting a single binary quaSi­
particle. It is shown that depending on the distance be­
tween the two defects and their mutual orientation, in 
regard to the nature of their motion such pairs may be 
three-dimensional as well as one- or two-dimensional 
quasiparticles that move freely along certain axes or, 
respectively, in certain planes of the crystal lattice. The 
question of the influence of "bidefectons" on the physical 
properties of quantum crystals of solid helium is also 
discussed. 

First of aJI let us describe what the bound state of 
two point defects in quantum crystals is. At low tem­
peratures the motion of defects in solid helium is ac­
complished by means of sub-barrier tunneling transi­
tions to neighboring sites. As a consequence of the 
possibility of such transitions, the energy levels corre­
sponding to localization of the particles on specific crys­
tal lattice sites become quite broadened. In order of 
magnitude the width of the broadening is equal to the 
exchange integral J or, what amounts to the same thing, 
the width ~ of the delocalized defecton band. Upon a 
deformation of the crystal, the energy levels correspond­
ing to localization of the defect on different lattice sites 
are shifted. If the relative displacement of the levels on 
neighboring sites exceeds the magnitude of the level 
broadening, a tunneling transition between such crystal 
lattice sites is impossible. 

Thus, a defecton may freely diffuse only in that region 
of space in which the change of its potential energy V(r), 
characterized by the deformation of the crystal, is 
bounded by the condition 
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IIW(r) I..:;;~. 

The exchange integral J is a very small quantity,cS,7,9,10J 
On the other hand, the elastic interaction energy of two 
pOint defects increases with decreasing distance between 
them like 

V(r)-Vo(a/r)', 

where a is the interatomic distance, and Vo is some con­
stant characterizing the scale of the interaction. The 
inequality 

V,>l (1) 

is usually satisfied with ample margin. This leads to the 
result that, if two defectons are close to each other, they 
can only diffuse through the crystal jOintly. [11, 12J 

Moreover, a defecton can tunnel from one crystal 
lattice site Nl to a neighboring site N2 (INI-N21 = a) only 
provided that [lJ 

I (N,-N,)VV(r) I..:;;~· 

As a consequence of the discreteness of the crystal 
lattice, only transitions to those lattice sites N2 for 
which 

V(N,) =V(N,) 

turn out to be possible for defectons located at a suffi­
ciently small distance from each other. 

It is clear from symmetry considerations that this 
condition can be satisfied for certain pair configurations, 
but for other configurations-it cannot. In the first case 
such a double defect can move as a whole through the 
crystal, where the distance between its constituent par­
ticles does not vary during the time of motion; in the 
second case-both particles are completely localized. 
Thus, for example, particles C and D in Fig. 1 cannot 
move, but the pair of particles {AB} can freely move as 
a whole along the x axis by means of sequential tunneling 
transitions B - B1, A - AI, Bl - B2, ... , since the inter­
action energy obviously doesn't change in this connection 
V(A, B) = V(ABl) = V(Al. B1) = ... V(An' Bn)' 

Such a mode of motion of the complexes conSisting of 
two point defects is only possible in hexagonal or cubic 
face-centered crystals (the probability for tunneling 
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transitions of the defects to non-nearest neighbor sites 
of the crystal is exponentially small). The fact that, 
thanks to the hexagonal symmetry of He 4 crystals, a 
tunneling movement of pairs of strongly interacting de­
fects (1) located at an arbitrary distance from each other 
may occur, was noted by Andreev, [12J who showed that 
the only restriction on the size R of the complex, con­
sisting of two tightly bound defects and moving as a 
whole, is the condition 

R<Ro, Ro=a( Vol a)"·>a. 

Richards, Smith, and Toft [13J called attention to the fact 
that a pair of two point defects located at an interatomic 
distance from each other can move as a whole. 

Such objects, moving by means of sequential sub­
barrier transitions without energy changes, represent 
unusual binary quasiparticles-bidefectons, character­
ized by a definite quasimomentum Ilk and by an energy 
spectrum E(k). It is shown below that besides the two 
types already known (12, 13J a whole classl) (twelve types 
in all) of such quasiparticles exists, their classification 
is given, and expressions are obtained for their energy 
spectra. Pairs, differing by symmetry transformations 
of the crystal from those investigated in this work, are, 
of course, not described. An hexagonal close-packed 
lattice with translation vectors 

R,=a(1, 0, 0), R,=a('/" 3"'/2,0), 

R.=a (0, 0, 2"13"') 

and having two sublattices, separated by the vector 

p=a(O, ~'/a''', 2"'/3"'). 

is considered. The following notation has been intro­
duced: 

f (k) = [B(k) -e.jll, cp.=kR" cp=ka, 

where En denotes the pair's energy in the absence of 
tunneling. 

ONE-DIMENSIONAL DEFECTONS 

AI. The Simplest and at the same time the most 
common type of bidefectons are pairs analogous to the 
pair of particles {AB} shown in Fig. 1. To determine 
the energy spectrum of quasiparticles with a small 
probability for tunneling in the crystal lattice, it is 
sufficient to confine our attention to the tight-binding ap­
proximation in which the wave functions of the particle 
are linear combinations of the wave functions in trans­
lationally inequivalent states. In the present case there 
are two such basis states for the pair {AB}: as the 
basis states One can choose, for example, the position of 
the pairs {AB} and {AB1}' 
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FIG. I. Particles C and D are completely localized. By means of the 
sequential tunneling transitions B -+ BI> A -+ AI> Bl -+ B2, etc. the com­
plex {AB} may move along the x axis without a variation of the interac­
tion energy of the particles. 
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After the usual transformations of the Schr&linger 
equation, the following secular equation is obtained for 
the dependence of the energy 10 on the one-dimensional 
quasimomentum tik: 

Det{[e.-e(k) j<\.+a,,} =0. 

In the present case the transition matrix appearing in 
Eq. (2) is a second rank matrix of the form 

(2) 

The values of the exchange integrals JA and JB differ 
somewhat from their characteristic values for the indi­
vidual particles {A} and {B}; however, this renormal­
ization is unimportant. 

The energy spectrum of such binary defects consists 
of two branches: 

The tunneling probabilities for particles {A} and {B} 
may differ significantly from each other: for example, 
if {A} is a vacancy and {B} is an impurity atom, then 
JA »JB' In this case the motion of the complete com­
plex takes place at the velocity characteristic of the 
"slowest" particle {B} : 

de/dk""'f'/.a sin cp for 1,,>/ •. 

For identical particles 

e(k) =e.±/(2+2 cos q»"'. 

In what follows we shall assume for simpliCity that the 
defects forming the complex are identical. The results 
are easily generalized to the case of different particles 
{A} and {B}. 

In order for the complex {AB} to be a one-dimen­
sional quasiparticle freely moving along the x axis 
(Fig. 1), it is necessary that the defect {B} should be 
on one of the lattice sites which are located in a plane 
perpendicular to the x axis and passing through the mid­
dle of the segment AAl or A' A. 

A2. One-dimensional quasiparticles of the type under 
consideration are pairs {AB} in which the defect {B} is 
located in the same sublattice as {A}, on one of the fol­
lowing axes 

(r.-r,,)/a=('/z, -3"'/2, O)+t(1, 0,0), 
(rD-rA)/a= (0,3"',0) +t (-2'''/3''',0, 1). 

In the first case the bidefecton may move along the axis 
(0, 0, 1); in the second case it may move along the axis 
(1, 0, 1). In both cases four translationally inequivalent 
states exist for the pair. Consequently the secular equa­
tion (2) is a fourth-order equation, and the spectrum 
contains four branches: 

/",,3,.(k) =±[2± (2+cos cp) "'p. 

A3. In quasiparticles of this type, moving along the 
axis (1, 0, 0). the defect {B} is found on one of the sites 
of the same sublattice as the defect {A}, Situated on the 
axis 

(r.-rA)/a=(O., -3-''', 2"'/3"')+t(0, -2\ 1). 

In the case under consideration the complex can also 
exist in four translationally inequivalent states. The 
energy spectrum of the particles is determined from the 
algebraic equation 

I'(k) -2f(k) [3+2 cos cpj-4f(k) [Hcos cpj+2-2 cos cp=O. 
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A4. Complexes with five translationally inequivalent 
states exist. In such pairs, freely moving along the axis 
(1, 0, 0), the particle {B} is found-just as in the pre­
ceding case-on the axis 

(rB-rA)/a=(O, -3-"', 2"'/3"')+t(0, -2%. 1), 

but belongs to the other sublatiice. 

Two branches of the energy spectrum coincide with 
the spectrum of the type Ai particles: 

I,.,(k) =± (2+2 cos <p) 'I,. 

The three remaining branches are determined from the 
cubic equation 

t'(k) -2/(k) (3+cos <p) -4-4 cos <p=0. 

A5. Finally, three types of one-dimensional defectons 
having six translationally inequivalent states exist. In 
the first case the defect {B} is found on the axis 

(r,-rA) /a= (1/2, -3'''/2,0) +t (0, 2\ 1), 

and the quasiparticle may move along the axis (1, 0, 0). 
In the energy spectrum, besides the two branches which 
are identical to the spectrum of the type Ai particles: 

1",(k)=±(2+2 cos <p)"', 

four more branches exist 

Is. t. 5.' (k) =± [4+2 cos <p±4(1 +cos <p) '/'J"'. 

A6. Defect pairs of the following type can freely 
move along the axis (1, 0, 0). Particle {B} belongs to 
the same sublattice as {A}, and is located on the axis 

(rB-rA)/a=(1/2, 3-"'/2, 2"'/3"')+t(0, -2"',1). 

The six branches of the energy spectrum are given by 
the roots of the following cubic equation with respect to 
e(k): 

I'(k) [t'(k) -4-2 cos <p ]'=4 cos' <p, 

A 7. To the last type of one-dimensional quasiparti­
cles belong pairs, also moving along the axis (1, 0, 0), 
in which the particle {B} lies on the same axis as in the 
preceding case, but belongs to the other sublattice. Two 
degenerate branches, f1,2(k) = 0, exist in the spectrum, 
corresponding to localized states of the pair. The four 
remaining branches of the spectrum are determined as 

1,.t.5.,(k) =±[3+cos <p± (5+6 cos <p+cos' <p)"'l"'. 

TWO-DIMENSIONAL DEFECTONS 

B1. The structure of defectons of the present type is 
shown in Fig. 2 a. The defect {A} is located in the plane 

Az AJ + At + + 
Q, ? ? Bt \ / A?'if AtQ;:_jjBt 
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FIG. 2. Two-dimensional quasiparticles: a) type B I, b) type B2. 
Particle {A} moves in the plane of the figure, and particle {B} moves in 
another plane parallel to it. The projections of the sites of the second sub­
lattice onto the plane of the figure (x, y, 0) are denoted by crosses. 
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of the figure, and the second defect {B} lies in any other 
plane parallel to it; the projection of the defect {B} onto 
the plane of the figure must coincide with one of the sites 
nearest to {A}. This complex may move in the plane of 
the figure. Thus, for example, the pair {AB} may change 
into the state {A3B1} through the states {AlB}, {A1Bl}, 
and {A2Br}. 

The spectrum of such two-dimensional quasiparticles 
WIIS investigated in the article by Andreev. [12J The six 
branches of the energy spectrum are determined by the 
roots of the following cubic equation with respect to 
e(k): 

t"(k) {t'(k) -4 [ cos' <p; + cos' <p; + cos' <p,~<p,] r 
= 256cos'~cos'~cos' <p,-<p, 

2 2 2' 

B2. These particles are shown in Fig. 2 b. The pro­
jections of the sites of the second sublattice onto the 
plane of the figure are denoted by crosses. The defecton 
{B} belongs to the second sublattice and must not be 
located on a site nearest to {A}. One may select the 
positions of the pairs {AB}, {AlB}, and {A2B} as trans­
lationally inequivalent basis states. The quasiparticle 
moves freely in parallel to the plane of the figure. The 
energy spectrum is determined from the cubic equation 

1'(k)-4/(k) {cos'~+cos'~+cos' <p,-<p,} 
2 2 2 

= 4{1 + cos <Pi + cos <p, + cos(<p,-<p,)}. 

B3. The defect {B} is found on the site r B - r A 
= a(1/2, 3312/2, 0). The complex {AB} may move in the 
plane of the axes (1, 0, 0) and (0, 0, 1). There are eight 
translationally inequivalent states. Consequently the 
transition matrix aik, which determines the energy spec­
trum (2), is an Hermitian matrix of rank eight. 

B4. The pairs {AB} with rB - r A = a(3/2, _31/2/2, 0) 
belong to the last type of two-dimensional defectons. The 
spectrum is determined from the secular equation (2) of 
sixth order. The complex moves in the plane 
(x/2, 3t1~/2, z). 

THREE-DIMENSIONAL DEFECTONS 

The only case in which a tightly bound pair of point 
defects constitutes a single three-dimensional binary 
quasiparticle is that in which the two defects are located 
on neighboring sites of the crystallatiice. Such a pair 
has twelve translationally inequivalent positions. 

In the case under consideration the state of the com­
plex and its energy spectrum to a large extent depend on 
the kind of particles forming the pair, since they are 
located at an interatomic distance from each other, 
where the exchange interaction between them is substan­
tial. Pairs consisting of two He 3 atoms or of a He 3 atom 
and a vacancy in a crystal of He 4 are of the greatest in­
terest. 

Since the He3 atom has spin 1/2, the complex consist­
ing of two such impurity atoms may have total spin 0 or 
1. The energy levels E(O) and E(l) of pairs in these states 
(in the absence of tunneling through the lattice of the 
matrix) differ by the value of the exchange integral (J33) 
of the He3-He3 atoms. Owing to the possibility of tunnel­
ing transitions and exchange between the He3 and He 4 

atoms (the exchange integral J34 « J33), twelve branches 
of the energy spectrum E(S) (k) of the binary quasiparti­
cles correspond to each e1nergy level E(O) and E(l). The 
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values of the elements aik of the transition matrix are 
different for the cases S = 0 or S = 1, for when the total 
spin is equal to zero the coordinate part of the wave 
function is symmetric with respect to interchange of the 
particles, and at S = 1 it is antisymmetric. Examples of 
numerical solutions of Eq. (2) for different directions of 
the vector k are shown in Fig. 3. 

The velocity of motion adak of such pairs is actually 
equal to the velocity of individual He3 impuritons and is 
determined by the quantity J 3 4. In a magnetic field each 
of the branches of the spectrum for quasiparticles with 
spin S = 1 is split into three lines. 

The shape of the spectrum for vacancy-impurity com­
plexes depends substantially on the relationship between 
the vacancy-matrix atom exchange integral Jv4 and the 
vacancy-impurity atom exchange integral Jv3' Since 
JS4 « Jv4, Jv3' Hes-He4 exchange processes are ex­
tremely unlikely in comparison with v-Hes and v-He 4 

exchange processes. The movement of the complex 
{v, He3 } takes place by means of the interchange of 
positions between the vacancy and the helium atoms, 
without direct interchanges in the pOSitions of the He3 

and He 4 atoms. 

Provided that Jv3 »Jv4, the spectrum of the {v, He~ 
pairs if similar to that cited above for the {HeS, HeS } 

pairs and consists of two classes of branches having a 
characteristic scale Jv4 at a distance Jv3 from each 
other. When the ratio Jv3 / Jv4 is decreased these two 
bands converge and in the limit Jv3 « J v4 they go over 
into a system of twelve slightly separated branches. 

In order of magnitude, the average velocity of the 
quasiparticles {v, HeS } coincides with the smallest of 
the values of the average velocity of individual vacancions 
in crystals of pure Hes and He 4 and exceeds by far the 
velocity of motion of individual impuritons (compare 
with what was said apropos of type Ai quasiparticles) of 
Hes in He 4 crystals. A suitable vacancion mechanism for 
the transport of ions was investigated earlier [11J by the 
author. 

-~r--___ __ 
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FIG. 3. The energy spectrum of three-dimensional quasipartic1es for 
two directions of the vector k. Degenerate branches are indicated by 
arrows. The lower bands correspond tospin S = 0, and the upper-to 
spin S = I. The vector k is parallel to a) the vector RI + R2 + R3, b) the 
vector R I . 
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In connection with the formation of binary quasiparti­
cles involving the participation of vacancions, it is per­
tinent to note the following property. The width of the 
vacancions' energy band is quite large, on the order of a 
degree. Therefore, it may turn out (this depends on the 
ratio between the magnitude of the characteristic inter­
action energy V 0 of the point defects and the value of the 
exchange integral Jv) that the vacancies participate in 
tightly bound pairs only at elevated pressures. In any 
case the maximum size of the bidefectons involving the 
participation of vacancies is much smaller than the 
maximum radius of pairs of impurity particles. 

INFLUENCE OF BIDEFECTONS ON THE PROPERTIES 
OF A CRYSTAL 

It is necessary to discuss the question of how binary 
defectons influence the properties of helium crystals. 
The treatment of a collection of point defects in quantum 
crystals as a collection of individual defectons can only 
be valid in the gas approximation, in which the concen­
tration c of defects is assumed to be small: 

cN<1, 

where N is the number of lattice sites in a sphere of 
radius Ro = Noa (Ro is the maximum distance between the 
two defects, at which they can form a tightly bound pair). 

To a considerable degree the role of the bi -defectons 
in various physical processes is determined by their 
concentration. In the gas approximation, the concentra­
tion of pairs is of second-order smallness with respect 
to the particle density c. 

Thus, 

(3) 

where NO' (No) denotes the number of type O' binary 
quasiparticles in which a defect located at a fixed lattice 
site may participate, and cO' denotes the concentration of 
the corresponding pairs. 

Since the concentration of the complexes which the 
I impurity atoms participate in is small, but their velocity 
of motion agrees in order of magnitude with the velocity 
of the individual impuritons, in investigations of the dif­
fusion of impurities one can neglect the presence of prac­
tically all kinds of binary particles. The only exceptions 
(but very important ones) are pairs of impurity atoms 
and vacancies located on neighboring sites of the crystal 
lattice. As was indicated above, the velocity of motion of 
such pairs considerably exceeds the velocity of ordinary 
impuritons. The movement of impurity atoms with the 
aid of bound pairs {i, v} is an unusual vacancion mech­
anism of diffusion. Such a mechanism may prove to be 
the most effective method for the transport of impurity 
particles in quantum crystals at not too low tempera­
tures T, when the vacancy concentration Cv is not very 
small. 

The concentration of vacancy-impurity complexes is 
given by 

Cli. v,=12c,c. exp{ (E-E')/T}. 

The presence of the exponential factor takes account of 
the difference between the energy E' of pair formation 
and the activation energy E of vacancies far from an 
impurity. The diffusion coefficient of the impurity atoms, 
determined by the motion of the pairs {i, v}, is given by 

D-~~l 
Ci Ii ' 
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f 
where ~v is the width of the vacancion energy bando At 
comparatively high temperatures the mean free path 1 
of the pairs is determined by their interaction with 
phonons and increases with a reduction of the tempera­
ture. In this connection, if the possibility of disintegra­
tion of the complex associated with phonon scattering is 
not taken into account, the quantity l-in the same way as 
for ordinary defectons [IJ -is determined by the relation­
ship 

l- ll"a (_~)' 
e T ' 

where e is the Debye temperature. 
At lower temperatures it may turn out that the con­

centration of pairs {i, v} is still appreciable, but owing 
to the reduction in the number of phonons their scattering 
primarily takes place on impurity particles (ci »C{i, v})o 
In this case the mean free path of the pairs is inversely 
proportional to their cross section a for scattering by 
impurity atoms and to the impurity concentration ci: 

D __ C(j,1I} 6. va' 
c, liac, 

Perhaps the experimentally observed [14J dependence of 
the diffusion coefficient on the impurity atom concentra­
tion associated with the vacancion mechanism for the 
transport of impurities is due to the influence of pre­
cisely such a method for the movement of the impurity 
particles. 

The motion of impurity atoms through a He 4 crystal 
may be realized simultaneously with the aid of the mech­
anism under consideration as well as with the aid of the 
general vacancion mechanism for the transport of im­
purity particles investigated earlier. [8J If the width of 

. the vacancion band is large, ~v »Vo, then-as noted at 
the end of the first part of the present article-bound 
pairs {i, v} do not exist and the transport of He3 atoms 
is accomplished in accordance with the theory [8J. With 
an increase of the pressure the width ~v of the band de­
creases, and provided that V 0 » ~v »T both vacancion 
mechanisms act in parallel. The influence of the trans­
port mechanism [8J is strong only if the characteristic 
wavelength of the vacancions is sufficiently large, which 
corresponds to the follOWing condition on the tempera­
ture: 

N::ll, (ll,/V,) 'I,. 

In this connection the contribution of the pairs {i, v} to 
the diffusion process is predominant at small concentra­
tions of the impurity particles (compare with [8J ) 

a' (ll ) ,. { E-E' } c,~~ -j exp -T-

The difference between the energy E' and the activation 
energy E of the vacancies leads to an indirect effect of 
the concentration on the exponential factor in the de­
pendence of the diffusion coefficient on the temperature. 

The role of the complexes is also important in another 
circle of phenomena which are associated with energy 
dissipation in quantum crystals, for example, with in­
ternal friction. As is well known, the scattering of elas­
tic energy by individual vacancies and by substitutional 
impurities takes place only upon a spatially inhomogene-
0us deformation of the crystal. The corresponding com­
putation of the energy absorption coefficient under the 
conditions of the Gorskil effect was carried out 
earlier. [ISJ However, the recently published results of 
measurements of the internal friction in quantum crys-
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tals [16 ,17J indicate that the dissipation processes are 
possibly more complex. 

The presence of pairs of point defects leads to en­
ergy dissipation even for a homogeneous deformation of 
the crystal. The absorption maxima are related to 
processes involving reorientation of different types of 
pairs. Reorientations of the pairs in ordinary crystals 
correspond in quantum crystals to resonance transitions 
of the bidefectons between the branches of their energy 
spectrum. In the present case the subject of discussion 
is actually the quantum analog of Zener relaxation. Not­
withstanding the fact that, at high frequencies energy 
scattering also takes place on individual defects, the 
lines of dissipation on bidefectons should be clearly 
distinguishable due to their clearly expressed resonance 
character. We shall discuss this question in somewhat 
more detail. 

The absorption peaks are smeared out at not too low 
temperatures due to relaxation processes. The shape of 
the absorption line is characterized by the usual Debye 
maximum of the form 

00,/ (1 +00',') 

at a frequency WT ~ 1, and differs from the line shape in 
ordinary crystals only by having a different temperature 
dependence of the relaxation time T. 

The time required to establish the equilibrium dis­
tribution function of the bidefectons is determined by the 
collisions with phonons. In the present case relaxation 
processes involving different relaxation times Tare 
possible. In the first place, an equilibrium distribution 
of the particles with respect to the different branches of 
their energy spectrum must be established for each type 
of bidefecton. Such an equilibrium is established by in­
elastic scattering of the phonons, in which their energy 
changes by an amount of order J during a time interval [ 4J 

The equilibrium distribution of the complexes with 
respect to their energies may also be established by 
means of collisions with phonons involving the trans­
formation of different kinds of pairs into each other. 

(4) 

The branch systems of the energy spectrum for the dif­
ferent kinds of pairs are separated from one another by 
gaps of the order of magnitude of the characteristic in­
teraction energy of two pOint defects at close spacing, 
Vo »J. The inequality Vo »T is usually valid over a 
wide range of temperatures and, since we are interested 
in the region of rather low frequencies, Vo »nw ~ J, 
such relaxation processes can be neglected. However, 
for certain kinds of defects [10J and for a large distance 
between them, the interaction energy V of the elements 
of a pair may turn out to be small, T »V »J. In this 
case the relaxation time is determined by annihilation 
and creation processes for different kinds of bidefectons 
and also increases with decreasing temperature accord­
ing to formula (4). Just as for all defectons, the momen­
tum relaxation time is proportional to T-9• 

The case of low temperatures, n/r «: J, nw, is phys­
ically more interesting. In this connection sharp reson­
ance absorption peaks should be observed for each kind 
of bidefectons at the frequencies of transitions between 
different branches of their energy spectrum. Complexes 
having different values of the quasimomentum k partici­
pate in the transitions; just as for any quasiparticles in 
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a crystal the absorption maxima correspond to extremal 
points of the energy spectrum, near which the density of 
states is largest. At these pOints the absorbed power 
(neglecting relaxation processes) tends to infinity. The 
peaks differ from 0 -shaped peaks to the extent that the 
density of states differs from zero for the nonextremal 
frequencies. Outside the immediate neighborhood of the 
resonance point, the shape of the peak is practically in­
dependent of the relaxation processes. The width of the 
resonance peaks is determined by the width of the bi­
defecton band, and in order of magnitude it is equal to 
the exchange integral J. 

If relaxation processes are neglected, i.e., the colli­
sion integral in the kinetic equation, the amount of power 
W absorbed per unit volume under the influence of the 
perturbing potential (homogeneous deformation) H cos wt 
is calculated with the aid of the well known formula of 
perturbation theory: 

1 hOl' d'k d'k' , 
W.=-Itc.-J--~ 1: IH7.,I'[Il(e-e'-1i0l)+1l(e-E'+h0l)]. 

2 T (21t) , (21t)'.,>. (5) 

In this expression the indices O! and v determine, respec­
tively, the type of quasiparticles and the label on the 
branches of their energy spectrum, E = Ev(k), E' = Ev'(k'). 
Furthermore, it is considered that, due to the smallness 
of the defecton exchange integral J ~ T, the following 
relationship is valid for the equilibrium distribution 
function n(E) of the particles with respect to their ener­
gies: 

n(e)-n(e') =c.(e'-e)/T. 

For the determination of the matrix element Hkk:' we 
note that the wave function +"v of each of the states v is 
a linear combination of the wave functions ~n of the 
baSis (translationally inequivalent) states of the pair 

'l' .=e/k, 1:Z.,n (k) cIt" (6) . 
where each of the sets of coefficients Zv = {zv n} is an 
eigenvector of the matrix (2). The vectors z v are ortho­
normalized 

One can easily determine the matrix element of the per­
turbation operator with the aid of the wave functions (6) 

(7) 

where An denotes the change in the energy of a pair of 
point defects having the n-th orientation under the action 
of the corresponding tensile stress. The quantities ~Jl 
are determined from the usual theory of elasticity.[lBJ 

Formulas (5) and (7) and the spectra obtained in the 
first part of this article describe Zener relaxation in 
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FIG. 4. The complex of three particles 
{A, B, C} may pass through the positions 
{A, B)C}, {AB)C)}, {AB2C)} into the position 
{A)B2C)} without a change in the energy of 
its constituent defects. The complex consti­
tutes a one-dimensional quasiparticle, freely 
traveling along the axis AA). 
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quantum crystals. As an example, we present the value 
of the absorption coefficient for quasiparticles of type 
Al. Complexes of this type give the greatest contribution 
to the dissipation since their concentration exceeds the 
concentration of complexes of any other kind. Only the 
concentration of type A1 pairs is proportional to the 
square of the interaction radius Ro = Noa (see formula 
(3) ): 

The value of the absorbed power is given by 

CA. ')..' 1100' 
8na' T J(1-h'0l'/161')'h 

W.u 

WA ,(1I0l>4J) =0, 

where A = A1 - A2 is the relative change of the pair's 
energy in the two basis states (the states {AB} and 
{AB1} for the pair of point defects shown in Fig. 1) 
under the influence of the perturbing field. 

Transitions between the bands EiO)(k) and ET(k) are 
impossible for three-dimensional binary quasiparticles 
in the absence of an electromagnetic field because of 
spin selection rules. In connection with the effect on a 
He' crystal of a spatially inhomogeneous magnetic field 
which is oscillating in time, the energy absorption should 
take place with a maximum at the frequency nw ~ J33. 

In conclusion the following fact should be mentioned. 
Besides the completely localized pairs and the pairs 
which move freely through the crystal, tightly bound 
pairs exist which, although they are not able to move, 
are still able to reorientate themselves. Such com­
plexes, corresponding to objects having several energy 
levels, do not partiCipate in the diffusion motion, but do 
contribute to the scattering of energy in the crystal. 

Delocalized quasiparticles-defectons consisting of 
more than two point defects-may also exist in the crys­
tal. For example, the complex of three defects {ABC}, 
as shown in Fig. 4, may freely travel along the x axis. 
However, the concentration of such complexes is inSig­
nificantly small. 

The author wishes to thank A. F. Andreev for his con­
stant attention and supervision of the work and also 
thanks I. M. Lifshitz, A. I. Shal'nikov, and V. B. Shikin 
for a helpful discussion. 

)It was recently noted CW. J. Mullin, R. A. Guyer, and H. A. Goldberg) 
that the anisotropy of the interaction energy of the defects with re­
spect to the two lattices of an hexagonal close-packed crystal may 
tum out to be large in comparison with the width tJ. of the band. Fot 
those point defects for which this property holds, the types of bi­
defections differ somewhat from those described in this article. How­
ever, this case is easily investigated by the method used in this work, 
and moreover the basic physical results are retained without changes. 
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