
/=enE= ( -c-' A - v <p) en. 

For the high-frequency limit vk» T one can show that 
the role of the vector potential is unimportant and the 
corrections to the sound speed are given by the usual 
polarization operator: 

S-Sn n m v 6+" e(e-w)-Ll' e de 
-;;;-= 12 M -;- f(E'-Ll l ) 'I. [Ll'- (e-W)']'" 2T w ' 

" 
t]=Ll+ (w-2Ll) S(w-2M; 

(26) 

in the limiting cases 

(27) 

Hence it is clear that in the high-frequency limit vk» T 
the temperature dependence of the longitudinal sound 
speed has a minimum for (Tc - T)ITc - (wIT)2 with a 
relative depth of the order swlvT. 

We are grateful to G. M. Eliashberg for discussions 
of the problems mentioned here. 
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Energy absorption and the size effect in solid helium 
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Owing to the quantum nature of the diffusion of point defects (defectons) in quantum crystals such as 
solid helium, energy is dissipated at the substitution defects even in the case of spatially homogeneous 
deformation. The absorption is due to diffusion flow of the defectons in momentum space in the absence of 
particle fluxes in coordinate space. Internal friction is connected with the deformation potential at low 
frequencies and with the inertial and activation components of the energy spectrum at high frequencies. 
The collision integral within the crystal is determined by quasielastic defect on-phonon scattering. It is 
found that the law of interaction between the vacancions and the crystal surface may be determined at low 
temperatures. The dissipation accompanying interaction between the defectons and the surface is 
determined. Diffusion-viscous flow in quantum crystals is discussed. 

PACS numbers: 67.80.Mg 

1. INTRODUCTION 

Internal friction is one of the characteristic manifes­
tations of the diffusion properties of point defects in 
crystals. It is customarily assumed that in the case of 
spatially-homogeneous deformation of the crystal there 
is no energy diSSipation at substitution defects, e. g. , 
vacancies. The reason is that in the case of uniform 
deformation all the crystal lattice sites remain equiva­
lent and no particle diffusion fluxes that lead to the ab­
sorption of energy are produced (the force acting on a 
point defect is proportional to the gradient of the defor­
mation). 

This reasoning is not applicable to quantum crystals 
of the type of solid helium with large zero-point vibra­
tion amplitudes. In such crystalsC1 ,21 the point defects 
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are localized and are transformed into quasiparticles­
defectons-which move practically freely through the 
crystal. The correct quantum numbers for defectons 
are the values of the quasi momenta and not of the coor­
dinates. When the crystal is deformed, the energy 
spectrum of the defectons is altered. As a result, even 
in the case of uniform deformation, diffusion fluxes of 
particles are produced in momentum space. Such a dif­
fusion leads to dissipation of the energy also in the ab­
sence of particle fluxes in configuration space. 

For this reason, it would be of great interest to in­
vestigate experimentally the internal friction at low-fre­
quency compression deformations (at high frequencies 
the spatial inhomogeneity of the vibrations, which is 
connected with the finite speed of sound, is apprecia-
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ble), since the very fact of observation of dissipation 
" by substitution point defects in the case of uniform de­

formations would demonstrate that the defects are of 
the quantum type. At the present time, experiments 
are being carried out on the dissipation via essentially 
inhomogeneous vibrations[3] (for the corresponding cal­
culations see[41) and absorption of hypersound[S1 (1. 5 
GHz). First indications that hypersound absorption (10 
MHz) has a relaxation character were also published 
recently. [61 It should be noted that in addition to the 
mechanism proposed in the present paper for dissipa­
tion under uniform deformation, a dissipation should 
also appear as a result of the presence of bound pairs 
of point defects-"bidefectons.,,[7] However, the ab­
sorption lines on the bidefectons should differ because 
of their resonant character. [71 

The complete system of equations determining the 
mechanical properties of quantum crystals includes the 
kinetic equation for the defectons and the equations of 
motion for a crystal with defectons. The equations of 
motion are sought in the usual manner in the form that 
ensures satisfaction of the momentum and energy con­
servation laws, and also positiveness of the dissipation 
function. As a result, the defecton part of the energy 
flux, of the momentum-flux tensor, and of the dissipa­
tion function are uniquely determined. In fact, the ex­
pressions for these quantities and for the equations of 
motion are analogous to the corresponding expressions 
of electron theory of metals. [81 The concentration of 
point defects in a crystal is lOW, and dragging effects 
can be neglected. Therefore the equations of motions 
will not be needed directly in the present paper and will 
not be derived. It is necessary only to have the explicit 
form of the expression for the dissipative function in 
terms of the kinetic characteristics of the defectons. 

In the next section of the paper we determine the ab­
sorption of energy in defecton-phonon collisions. In 
the last part of the paper we study the interaction of the 
vacancions with the surface of the crystal and calculate 
the corresponding value of the absorbed energy. We 
discuss also the diffusion-viscous flow of quantum crys­
tals. 

2. ENERG'Y ABSORPTION IN DEFECTON-PHONON 
COLLISIONS 

A. Kinetic equation 

The quasiparticle distribution function n(p, r) is de­
termined from the kinetic equation 

(1) 

with collision integral I(n). The Hamilton function of 
the defectons e(p, r) in an undeformed crystal depends 
only on the quasimomentum p: 

E=e,+e.(p}. (2) 

The change of the energy spectrum following the defor­
mation of the crystal, just as in the case of electrons in 
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a metal, [8-101 can be described by introducing the de­
formation potential Aik(P): 

where v = ae1/ap is the defecton velocity, u is the dis­
placement vector, K is the hydrostatic compression 
modulus, 0lk is a tensor characterizing the change of 
the lattice volume following introduction of a point de­
fect (OIl-a3, a is the interatomic distance), and m is 
the mass transported by the motion of the defectons. 
We have taken into account the fact that the activation 
energy eo is altered by the deformation by an amount 
-KO lk = au/axk • [ill The inertial term mv· u describes 
the action of the inertial force - mil on the defect. In 
order of magnitude we have 

(4) 

where ~ is the width of the energy gap of the defecton, 
mo is the mass of the helium atom, and c is the speed 
of sound. 

The collision integral I(n) is made to vanish by the 
equilibrium distribution function no (E - Jl - pil). The 
chemical potential Jl is reckoned from the values Jl = 0 
in the undeformed crystal with equilibrium distribution 
function n. =no(Eo + E1). Since the activation energy Eo of 
pOint defects is large in comparison with the tempera­
ture, £0» T, i. e., the defecton concentration is low, 
the equilibrium distribution function is of the Boltzmann 
type: 

n,=exp {-(e.+e.}IT}, n,(e-/L-pu}=exp {-(e-/L-pu}IT}. (5) 

The linearized kinetic equation (1) for the nonequilib­
rium part of the distribution function 

(6) 

takes the form 

OX ox 0 . 0 • 
-+v-+I(x}=- (e-/L-pu)-v- (/L+pu). ot or ot or 

By definition, the chemical potential satisfies the con­
dition 

J ndr = J n.(e-/L-p~)dr,., J n,dr{ 1 + ~ 

- [T J n,dr r J (e-E,-e.-p~)n.dr}, J Xn.dr=O, (7) 

where the integration is over the momentum space dr 
=d3p/(2rr1'£)3. For electrons in metals, this condition 
jOintly with the quasineutrality condition 

J ndr = J n.dr 

makes it possible to relate directly the chemical poten­
tial with the change of the energy due to the crystal de­
formation (3). For defectons there is no additional con­
dition, analogous to the quasineutrality condition, for 
the conservation of the number of particles at each point 
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of coordinate space. The chemical potential 11. and the 
distribution function X should be determined in a self­
consistent manner from the kinetic equation and from 
the condition (7) 

fXn.df=O. 

In our dynamic problem, as noted in the Introduction, 
there are no particle diffusion fluxes in coordinate space 
for spatially homogeneous deformations. We can then 
use for 11. the expression 

Ii-{ -KQ .. + f '-.. n.df / f n.df} :;:' 

and the kinetic equation takes the form 

The distribution function X obtained with the aid of this 
equation, as confirmed by subsequent calculations, does 
indeed satisfy the condition (7). 

Since Iffi 1k » Alk [Eq. (4)], we can always neglect the 
term proportional to Ajk in the first term of the right­
hand side of (8). For the same reason the dissipation 
under the conditions of the Gorski! effect (in the case of 
inhomogeneous deformations, occurring for example in 
flexural vibrations), it is due to the term v/Iffik/a2uk/ 
ax; ax!" [41 In this paper we are interested in the dissi­
pations produced in homogeneous compression and ten­
sion deformations, in which the gradients of the defor­
mation tensors are produced only as a result of the 
finite propagation velocity of the vibrations. In this 
case the right-hand terms of the kinetic equation (8), 
which contain the second derivatives of the displacement 
vector u with respect to time and with respect to the 
coordinates (inertial and activation components) are of 
the same order. 

The entire frequency interval can be broken up into 
three sections. For low frequencies w limited by 

IJ)L/c«.e/moc', (9) 

we can regard the deformation (unilateral compression 
along the z axis) as completely homogeneous 

and the kinetic equation takes the form 

ox + I (x) =~IJ)A cos IJ)t, at 

(10) 

where L is the characteristic linear dimension of the 
sample, a is the Debye temperature, t is the vibration 
amplitude, and A is the quantity in the square brackets 
in the right-hand side of (8). 

For higher frequenciesl): 

8/moc'<IJ)L/c<1; (11) 
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the dissipation is responsible for the activation and 
inertial terms, and the displacement vector still is of 
the form (10) 

Ox ax 
-+ v.-+ I(x)=-~v.lJ)·z!lnsin IJ)t, at OZ 

where IDl=Iffiu/C2 -m. For short-wave oscillations 

IJ)Llc~1, (12) 

it is necessary to take into account explicitly in the ex­
pression for the displacement vector the spatial disper­
sion 

t;c IJ)Z 
u.=-sin-sinrot, 

IJ) c 

and the right-hand side of the kinetic equation should be 
expressed in the form 

IJ)Z 
-~V.!lnCIJ) sin-sin IJ)t. 

c 

B. Collision integral 

The volume part of the dissipative function in a crys­
tal with a small number of defects is connected mainly 
with the defecton-phonon interaction. The correspond­
ing collision integral is of the form 

I(n)=-f dW{nf(Hf')-n'f' (Hi)}, (13) 

where f = f(q) is the phonon distribution function in terms 
of their momentum q, n' =n(p'), f' =f(q'), dW is the prob­
ability of particle scattering wherein their momenta p 
and q change into p' =p + A and q' =q - A, respectively. 
The scattering conserves the energy and momentum 
conservation laws: 

p+q=p'+q', e(p)-e(p')=c(q'-q). (14) 

The defecton velocity v = ae1/ap- Aa/If is small in 
comparison with the speed of sound v/ c - A/a« 1, and 
the phonon momentum q - T / c is small in comparison 
with the defecton momentu m p -If/a. Consequently the 
scattering alters little the defecton momentum I A I/p 
« 1 and the energy (but not the momentum) of the pho­
non (5/q = I q' - q I /q« 1, the collisions being quasi-elas­
tic. Accordingly, the collision integral (13) can be cal­
culated in standard fashion[141 and should take the form 
of the divergence of a certain vector in momentum 
space. The probability of the scattering process can be 
written in the form 

dW=(2tcMa)-'q'dqdlldede'd3Aw(p+ ~ ,q+: ;e,e';A,Il), 

where e =q/ q, e' =q' / q', and w is an even function of 
the momentum transfer A and the energy transfer (5. 

Neglecting the dragging effects, we assume an equi­
librium phonon distribution function: 

j(q) = {e"IT _i}-i. (15) 
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We expand the integrand of (13) in powers of the small 
parameters.6, and 0 accurate to terms of second order, 
and integrate by parts the terms that contain 8(q4w)/8q. 
The integration with respect to d 3.6, and dO, with allow­
ance for the corresponding number of 0 functions that 
reflect the conservation laws (14), is elementary. After 
substituting the distribution functions (6) and (15), the 
collision integral takes the form 

D .. 0 ( OX) l(n)=-- n.- , 
Top, op. 

81~,8) ( T )'S w(q-+O) 
D .. = (21I)' e de de' (e:-e,) (e.'-e')-q-'-' 

(16) 

In the calculation of w, the defect can be regarded here 
as localized. The function w contains the square of the 
matrix element of the phonon interaction with a point 
defect, proportional to q at a small phonon momentum. 

The diffusion tensor in momentum space Dik' as ex­
pected, [ll is proportional to T 9: 

where Q 1k is a certain dimensionless positive-definite 
matrix, the calculation of which calls for the solution 
of the exact microscopic problem of the defecton-pho­
non interaction (seeC15l). A collision integral similar 
to (16) was used previouslyC16,17l in the study of defecton 
diffusion. The kinetic equation with such a collision in­
tegral takes the form of a Fokker-Planck equation. 

C. Energy dissipation 

The energy absorption is determined by the dissipa­
tion function of the system R. It can be shown that just 
as in the known case of ultra-sound absorption in met­
als, [8,19,18l the dissipation function is equal to 

R=-S drxl(n). 

It is convenient to continue the calculations separately 
for particles with narrow energy bands A« T and par­
ticles with broad bands A »T. The first inequality is 
valid for impurltons (A -10-4. K) and for vacancions at 
high pressures. For vacancions at not too high pres­
sures, on the other hand, A is apparently of the order 
of several degrees and we can use the condition A» T. 
We calculate below not the dissipation function R, but 
the corresponding energy H absorbed during one period 
of the oscillations in a unit volume. With the aid of (16) 
we can express H in the following quadratic form: 

D .. '"I" ax ax 
H=- S dt S drn,--.. 

T 0 op, up. 
(17) 

For defectons with narrow bands A« T we can neglect 
in the kinetic equation and in the collision integral the 
terms vic-Ale in comparison with 
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At A« T, the band is uniformly filled and it is neces­
sary to replace ne [Eq. (5)] in the integrand of (17) by 
exp {- BolT}. Expanding the distribution function X, the 
velocity v z and the deformation potential A in Fourier 
series in terms of the lattice translation vectors (we 
assume for simplicity that the lattice contains one atom 
per unit cell): 

we obtain for low frequencies [(9), (10)] 

1 {e'.' } x. = -~{J)A. • + C.c. 
2 iro+D,.a,a.//i 

and, neglecting the terms containing the higher orders 
of the defecton velocity, we obtain for higher frequen­
cies [Eq. (11)] 

X =- -.:... ~!IJlro'v. - C.c. . { e'·' } 
• 2i iro+D .. a,a.!/i' 

For narrow bands the only terms significant in the 
sums are the harmonics corresponding to the nearest 
neighbors, for which the quantity 

is an invariant independent of a in cubic crystals. Since 
Xa = X~a and v is an odd function of p, the absorbed en­
ergy H for the frequencies (9) and (11) is respectively 
equal to 

roL e 
H = ;~ exp { - ; } ~ 1+::T.,IA.I', -c-< moe" (lSa) 

n~' {EO}" ,~ roT. 1 I' H=--exp -- !IJlroL .l...l--- v. , ~<~<1, 
moc2 c 3VT T • 1+ro'T.' 

(lSb) 
where V is the volume of the unit cell. 

The absorbed energy for short-wave oscillations (12) 
is determined by a formula similar to (lSb) 

n~' {EO}, '1: roT. 1 I' H=--exp --!IJle --,-, v. , 
2VT T • 1+ro T. 

roL 
->1. 

c 
(lSc) 

We note that, for example, in a primitive cubic lattice 
the quantities A a are equal to 

1 (an)' {o!:J. 1 } A.=--- a-+-!:J. , 
4 a' oa 2 

and the diffusion tensor is diagonal Dlk=DoOik (n is a 
unit vector in the deformation direction). 

For particles with broad bands, the condition A» T 
means that the particles are located near the bottom of 

th . t . ad t' [4l the band, where e1r spec rum 1S qu ra 1C : 

E.(p)=p'/2M, M""2/i'/a'!:J., (19) 

and the quantity A depends on the momentum in the form 
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iJM a A,----. 
iJa M 

The solutions of the kinetic equation for the frequencies 
(9) and (11), with the same accuracy as above, are 

t !11! { p,z 
x=- 2i bro l M e'··iro+DIMT c.c. }, 

where D =D"". In this case the relaxation time T. is 
proportional to T-3 

11r:,=2D,.IMT. (20) 

As a result of integration of (17) we obtain for the ab­
sorbed energy the expressions 

H ~t' {80}( T) '/, ro't, A' ~<.!- (21) 
= 2a'n'h exp - T ~ 1 +ro''t.' " c moc' ' a 

H=~exp{-..':!..}(~)'" ro't, !!]I' ro'L' ~<~<1. 
6a'n" T ~ '/,+ro''t,' M 'moc' c 

(21b) 
For short-wave oscillations (12) we get 

roL 
->1. (21c) 

c 

Formulas (18) and (21) describe the energy absorp­
tion in helium crystals following compression deforma­
tion in a wide range of frequencies and temperatures. 
We emphasize once more that only at low frequencies 
(9) can the deformation be regarded as purely uniform 
in investigations of the internal friction (18a) and (21a). 
At high frequencies, the main contribution to the absorp­
tion is made by the spatial dispersion of the oscillations. 
The dissipation is then connected with the action of the 
inertia force on the defect and with a change of the ac­
tivation energy upon deformation. 

3. INTERACTION OF VACANCIONS WITH A 
CRYSTAL SURFACE 

With decreasing temperature, the defecton mean free 
path, which is determined by the defecton-phonon scat­
tering, increases rapidly like T-9 (or T-8 at a» T (20». 
At the same time, there is a well-developed experimen­
tal procedure for growing practically idean single crys­
tal of helium, in which the particle mean free path can 
reach the dimensions of the sample. Under these con­
ditions, the main dissipative mechanism is the scatter­
ing of the defectons by the surface of the sample or by 
the boundaries of the individual crystallites in a poly­
crystal, and a unique size effect can arise. In this sec­
tion we consider only thermally activated vacancies with 
·a diagonal tensor n1k = -no1k , n >0. 

Localized vacancies that diffuse in ordinary crystals 
are always in a state of thermodynamic equilibrium 
with the lattice. The vacancies can either absorb or be 
produced on the surface of the crystal and on the bound­
aries of the crystallites. Consequently, the concentra­
tion of the localized vacancies in ordinary crystals near 
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the surface is always in equilibrium and is determined 
by the vacancy-formation energy nO' •• (0' •• = O'ikn/nk are 
the normal stresses on the surface, and n is a vector 
normal to the surface). The vacancy concentration at 
the surface is equal to 

C=C.exp (-Qa.,./T) , (22) 

Co is the concentration at the unloaded surface. The 
energy of vacancy production na •• is equal to the activa­
tion term in the particle energy (3) 

iJu, 1 
-KQ" --= -Qa .. 6" 

iJx. 3 

only in the case of hydrostatic uniform compression, 
when the stress tensor is diagonal O'lka: 0/1,. 

Delocalized vacancions in quantum crystals move by 
tunneling and not by activation jumps. As they move, 
they need not necessarily be in equilibrium with the lat­
tice. Thermalization takes place at distances on the or­
der of the mean free path, which increases rapidly with 
decreasing temperature. The distribution function of 
the vacancions moving away from the surface, which is 
determined by the distribution of the emitted and re­
flected particles, may turn out to be in disequilibrium. 
It will be shown below that at low temperatures the re­
flection coefficient of the vacancions from the surface 
is close to unity, and the absorption and emission coef­
ficients are small, i. e., the accommodation of the va­
cancions by the surface is insignificant. 

The interaction of vacancions with the wall is conve­
niently described in terms of scattering theory, just as 
in the case of interaction of vacancions with other point 
defects. [17,19] Thus, at low temperatures the vacancion 
spectrum is close to quadratic (19), and from among all 
the reaction channels there is separated a channel cor­
responding to the conservation of the projection of the 
quasimomentum of the particle on the surface and to a 
reversal of the sign of the component normal to the sur­
face. The probability of such an elastic scattering, 
i. e., specular reflection, will be designated P(P). In 
the course of reflection, owing to random roughnesses 
of the surface, there is a probability Q(P) of losing the 
information concerning the direction of the quasimomen­
tum of the incident particles. The inelastic processes 
correspond also to absorption of particles by the sur­
face, and the absorption probability is equal to the emis­
sion probability S(P). The emitted particles have an 
equilibrium distribution function e-et7', and the expres­
sion for the energy includes the vacancion formation en­
ergy nann. 

The law governing the interaction of the vacancions 
with the surface can be expressed in the form of a 
boundary condition that connects the distribution func­
tions n. and n_ of the particles arriving at the surface 
and leaving the surface: 

where the angle brackets denote averaging over the di­
rections of the quasimomentum at constant energy. 
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At low temperatures, it becomes possible to deter­
mine the absorption coefficient S(P) in general form, 
without using model representations concerning the 
structure of the surface and concerning the form of the 
interaction potential. The condition T« ~ means that 
the vacancions are near the bottom of the band (19), 
where their velocity is low and the wavelength is large 
pa/Ii« 1. It is known that the problem of scattering of 
slow particles in quantum mechanics admits of a solu­
tion at any scattering potential that tends sufficiently 
rapidly to zero at infinity. The absorption and emission 
of vacancions is due to processes that develop over 
atomic distances, and do not depend on the macroscopic 
roughnesses of the surface. It is easy to show that the 
probability of inelastic processes of this scale, in the 
case of scattering by a one-dimensional potential, is 
low[20J: 

S(p) =ap.a/li<1, (24) 

where O! is a certain constant of the order of unity and 
Pn is the vacancion-momentum component normal to the 
surface. 

The deviation of the specularity coefficient P(P) from 
unity for a surface with macroscopic roughnesses is de­
termined not by the absorption and emission of the par­
ticles (24), but by the fact that the direction of the nor­
mal at each point of the surface is in practice a random 
quantity. For long-wave particles P .. 1 - Q can be ex­
press_ed in terms of the statistical properties of the sur­
face. [20J For a suffiCiently smooth surface and low tem­
peratures, the specularity coefficient P is always close 
to unity (Q« 1). 

The energy absorbed in elastic collisions of a single 
crystal with a large mean free path of the particles de­
pends essentially on the actual geometry of the sample . 

. For an infinite plate of thickness L and perpendicular to 
the direction of the deformation (10), the boundary con­
dition (23) becomes 

aE(1-0) 
)(._=P(p»)(.++Q(p)<)(.+)-~S(p) (Ho) (1-20) sinCllt. (25) 

Here E is Young's modulus, (j is the Poisson coefficient, 
and X determines the deviation of the distribution func­
tion from ne (5): 

n=n. (H)(./T). 

In the kinetic equation, at not too high frequencies 
wL/ c« 6(T ~)-1/2, we can neglect the right-hand side 
and, at sufficiently low temperatures we can neglect the 
collision integral 

(26) 

The solution of the kinetic equation (26) with the bound­
ary condition (25), accurate to small terms proportional 
to Q(P)S(p), takes the form 

. __ S() QE(1-0) sin CIlt-P (p) sin (CIlt+CIlt) 
x-- ~ p (Ho) (1-20) HP'-2PcosCllt) 
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where we have introduced the vacancy on time of flight 
through the plate ,9(P) =L/v6 • 

The energy absorbed by the surface is determined by 
the difference between the energy fluxes of the particles 
reaching the surface and moving away from it. The en­
ergy absorbed during one period of the oscillations, nor­

. mal iz ed to unit volume of the sample, is given, when 
(24) is taken into account, by 

2aT [ ~QE(1-0)]' { e. } 
H = na',\' (Ha) (1-20) exp - T 

X ~ Je-z' (HP) (i-cos I1Z )z'd:c , 
11 1 +P'-2P cos I1z 

(27) 

where x =P6/(2MT)1/2, TJ= wLIi/(a2T~)1/2 is the ratio of 
the time of flight of the vacancion with thermal velocity 
through the plate to the period of the oscillations. 

If the time of flight is short in comparison with the 
period of the oscillations, and the reflection coefficient 
P is not too close to unity, TJ« 1-P, then the energy 
absorbed per unit volume is proportional to the plate 
thickness L: 

_~[ t;aE(1-0) ]' ex {-~} J~e-z'z'd:c 
H - na',\' (Ha) (1-20) p T 11 (1-P)' . (28) 

In the opposite limiting case of large flight times TJ 
» 1 the absorption does not depend on the reflection co­
efficient: 

H = aT [ t;aE(1-a) ]' exp{-eolT} . 
2n"'a',\' (Ho) (1-20) 11 

(29) 

For poly crystalline samples the expressions for the ab­
sorbed energy (27)-(29) should be averaged over the di­
mensions L of the crystallites. We note that the wall 
between the blocks constitutes a set of parallel disloca­
tions, and the characteristic dimension of the inhomo­
geneity of the wall, which is equal to the distance be-

. tween the dislocations, is expressed in terms of the 
block disorientation angle cp by the relation a/cpo 

The "classical" boundary condition (22), i. e., com­
plete accommodation of the vacancions to the surface, 
corresponds to the following relation between the reflec­
tion coefficients in the boundary condition (23): 

P=Q=O, 8=1. 

The value obtained in this case for the absorbed energy 
at low temperatures is greatly overestimated and is 
characterized by a different temperature dependence in 
comparison with expression (27)-(29). 

The foregOing approach to the interaction of vacanc­
ions with the surface should be used also in another 
extensive group of problems, connected with diffusion­
viscous flow of crystalline bodies. In this case the dif­
fusion equations and the classical boundary condition 
(22) (see[21,22J) should also be replaced by the kinetic 
equation and by the boundary condition (23). Just as in 
the case of internal friction, many of the considered ef-
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fects turn out in this case to be proportional to the ab­
sorption coefficient. 

Let us consider, for example, the motion of a macro­
scopic foreign inclusion frozen into solid helium, which 
is a problem of practical interest. (23,24l If an external 
force F is applied to such an inclusion, in the form of 
a sphere or radius ro, then the stresses produced in the 
surrounding helium are (n =r/r) 

Just as above, we neglect the collision integral in the 
kinetic equation. The distribution function of the va­
cancions arriving at the sphere can be easily expressed 
with the aid of the known integrals of motion in terms of 
the distribution function of the particles at infinity ne (5): 

The boundary condition (23) at r =ro leads to the follow­
ing value of the distribution function of the outgoing par­
ticles: 

The normal component of the velocity of the surface 
element of the sphere is determined by the normal com­
ponent of the vacancy flux on the surface of the sphere: 

()e 
v'=apn. 

As a result, the sphere as a unit has a velccity 

aFQ(Ha) {80 } aa ( T ) 'I, Q 
U = 6n'I'To'T(1-a) exp -T T {; -;j' 

This expression has a simple physical meaning: the ex­
cess vacancion concentrations on the surface of the 
sphere is of the order of 

aFQ(Ha) exp{-~}(.!...)', 
To'T(1-a) T a 

and the vacancion velocity is 

In this case, just as in the study of internal friction, 
the use of the condition of total accommodation of the 
vacancions S = 1 leads to a significant overestimate of 
the transport velocity of the sphere at low temperatures. 

I am grateful to A. F. Andreev for constant interest 
and valuable advice during the work, to I. M. Lifshitz 
and A. I. Shal'nikov for a discussion of the results, to 
K. O. Keshishev and V. L. Tsymbalenko for a discus­
sion of the experimental aspects of the problem. 

Note added in proof (20 July 1976). Data on the damp­
ing of ultrasound (5-10 MHz) in He4 at T = 1. 7 OK in a 
molar volume 20.5 cm3 were recently published by Y. 
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Hiki and F. Tsukuoka (Phys. Lett. 56A, 484, 1976). 
For vacancions under these conditions we have eo-l0 OK 
and a- T (K. O. Keshishev, Zh. Eksp. Teor. Fiz., in 
press), and the experimental value of the absorbed en­
ergy agrees fully with the damping decrement calculated 
for the vacancions (18c), (21c) at ID1- mo. An estimate 
b - 4 is obtained for the relaxation time T- (Ii/e) (e/bT)9 • 

IlThe ratio @/moc2 , which is similar to the known de Boer 
parameterll21 is small in ordinary crystals: this quantity 
characterizes the role of the quantum effects and shows the 
degree to which the considered crystal is of the quantum 
type. [131 In solid helium at large molar volumes, ®/moc2 is 
close to unity and the frequency region (11) is quite narrow. 
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