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A theory is proposed for a Fermi liquid of low density, such as a solution of ~e~ in superfluid He4, in an 
arbitrary magnetic field. The characteristics of the solution are determined by an expansion in the 
concentration x ' I 3  and are specified, in a field that is not too strong, by a single parameter, the s -  
scattering length. At almost total polarization of the spin system, the main contribution is already made 
by p-scattering. Values are obtained for the thermodynamic and hydrodynamic quantities and for the 
propagation velocity of the low-frequency oscillations (transverse spin waves, high-frequency first sound, 
and coupled spin-sound modes that exist in weak magnetic fields). The most noticeable are the 
magnetokinetic effects connected with the appreciable growth of the fennion mean free path and of the 
kinetic coefficients. 

PACS numbers: 67.60.F~ 

1. INTRODUCTION polarizations remain on their Fermi surfaces. If the 
particle interaction energy decreases rapidly enough 

The connection between the Fermi-liquid function of with increasing distance between them, then the scat- 
a system in an external magnetic field H and its value tering amplitude of the slow particles, and consequently 
in the absence of a field has been established only for the low-density Fermi-liquid function, a re  determined 
weak magnetic fields /3H% T,(B is the magnetic mo- by the s-scattering. 
ment of the fermions and T, is the degeneracy temper- 
ature), when the corrections to the f-function a re  small 
to the extent that the field is weak. A consistent calcu- 
lation of the Landau f-functionD in the absence of a 
magnetic field can be carried out in the case of a low- 
density Fermi system with the aid of an expansion in 
x'"(x <<I is  the concentration of the fermions). All the 
properties of such systems a re  then specified by a 
single interaction parameter-the s-scattering length a 
of the Fermi particles. n'71 

In this paper we propose a theory of an uncharged 
low-density Fermi liquid in an arbitrary magnetic field 
with account taken also of the possible presence of a 
superfluid background. The analysis is  based on the 
fact that for low-density Fermi systems the expansion 
in the interaction coincides formally with the expansion 
of all the quantities in powers of x"'. The interaction 
of the bare particles in the nonrelativistic approxima- 
tion does not depend on the spin, and the scattering am- 
plitude does not depend on the magnetic field. This 

Since the fermions a re  identical, only particles with 
oppositely directed spins interact in the s-scattering. 
In strong magnetic fields, when practically all the spins 
have the same orientation, the Fermi-liquid interaction 
is already determined by the p-scattering. This 
weakens considerably the interaction in strong fields 
and alters substantially the concentration dependences 
of all the thermodynamic quantities. For this reason, 
the values of the kinetic coefficients, such a s  viscosity, 
thermal conductivity, and others, increase strongly 
with increasing magnetic field (with increasing degree 
of polarization of the f e r m i o n ~ ) . ~ ]  

The most typical example of a low-density Fermi 
liquid is the degenerate solutioa of He3 in superfluid 
He4, in which an important role is  played also by the 
interaction of the fermions with the superfluid back- 
ground that moves with velocities v, .['] The calcula- 
tions that follow have therefore been performed for de- 
generate ~ e ~ - H e 1 1  solutions. 

makes i t  possible to relate, in f i rs t  approximation in 
In the next section of the paper we derive general re- the interaction, the f -function of the isotropic Fermi 

liquid with the amplitude of particle scattering in the lations that connect the density matrix, the energy 

absence of a field. spectrum, and the f -function of a Fermi  system in the 
magnetic field in the presence also of a superfluid back- 

In an isotropic Fermi liquid of spin-1/2 particles, the ground. We consider next the thermodynamic properties 
Fermi surfaces of quasiparticles with differently ori- of a partially a s  well a s  fully polarized Fermi liquid 
ented spins constitute two -Fermi spheres whose radii (Sec. 3), high-frequenc y spin and acoustic oscillations 
a re  determined by the degree of polarization of the spin (Sec. 4), and magnetokinetic phenomena (Sec. 5). In the 
system, i.e., by the value of the magnetic field. In the Conclusion we present numerical estimates, and dis- 
course of the interaction, the particles with the two cuss the limits of applicability of the theory and the ex- 
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perimental consequences of the results. Some prelimi- 
nary results were published before.lsl 

2. EXCITATION ENERGY 

The excitation energy for a Fermi  syfikem of He3 
quasiparticles in superfluid He4 in a constant magnetic 
field H depends on the value of the spin projection on 
the spin direction, and in the absence of superfluid mo- 
tion can be represented in the form 

where p is  the excitation momentum, CY and p are  spin 
indices, aaB are  Pauli matrices, and the functions cob)  
and B(p) depend in the general case on H2. The equili- 
brium single-particle density matrix for a polarized 
Fermi system i s  of the form 

n z  ( p )  =Ilzn ( p )  6=e+'/2~ (PI a=@- (2.2 ) 

The values n(p)=n(:h and p(p)=ua0n(8q? (the summation 
over dummy indices is  used here and throughout) a re  
determined from the condition that a t  equilibrium the 
occupation numbers n i b )  of particles with momentum 
and spin projection * 1/2 on the 9n =H/H axis a re  given 
by a stepwise Fermi distribution function n,: 

The excitation energy i s  a functional of the distribution 
functionn 

where d r  = 2dy/ (2~f i )~ ,  and 6na0 is the deviation of the 
density matrix from the equilibrium value (2.2). The 
Fermi-liquid function f u 8 ,  ,(p,pl) can be written in the 
exchange approximation in the sum 

In analogy with "O', we can use (2.2)-(2.5) to determine 
the function B(p)  

Following onset of superfluid motion with velocity v,, 
in a reference frame in which there is no superfluid 
motion, the change of the energy can be represented in 
an approximdtion linear in v, by 

To determine the functions X ( p )  and Y @) we use an equ- 
ation ( ~ e e ~ " ~ ] )  obtained by Khalatnikov with the aid of 
Galilean transformations; this equation specifies the 
change of the energy in the reference frame in which the 
superfluid background is at  rest: 

The equilibrium density matrix (2.2), (2.3) is a func- 
tion of the variables c '= (cam i E f10 ,Nh =r, rBE '5% 
change of the density matrix following the onset of the 
superfluid motion is 

Substitution of (2.7) and (2.9) in (2.8) results in a system 
of integral equations for the functions X(p) and Y(p). 
This system can be easily solved for a isotropic Fermi 
liquid with equilibrium density matrix (2.2), (2.3), but 
the solutions a r e  quite unwieldy and will not be needed 
in direct form. All they need i s  the values of 6cuB(p) 
for the particles whose momenta p+ and p, lie on the 
Fermi spheres c+(p+) =p,, E - ( p -  ) = p3(p3 is the chemical 
potential of He3 in the solution). The quantities 2A' 
=X(p,) + 9nY@,) a re  determined from Eqs. (2.7)- (2.9): 

where the functions R' and Q' are  specified by linear 
combinations of the first  harmonics of the expansion of 
the Fermi-liquid function (2.5) in Legendre polynom- 
ials 

Inasmuch a s  a transition from the reference frame in 
which the superfluid background is at  res t  to the labora- 
tory frame causes the excitation momentum to be trans- 
formed like p =p' +m,v, (m, is the se t  mass of the HeS 
atom), the energy spectrum of the excitations in the 
laboratory frame is 

eSp ( p )  --em (p-m,v.) 6,,-B (p-m,v.) ~ ~ H + 6 e , ,  (p-m,v.) +'ltm,v.'6.r, 

where (p) is given by 

The final expressions for the 1.s. energy of the excita- 
tions and for  the equilibrium density matrix, in the ap- 
proximation linear in v, , are  

Here n($ is defined by formulas (2.2) and (2.3), ( 6 ~ ) ~ ~  
=MaO - m36,,, (6m)*=M, - nz,, and Ma, is the effective- 
mass spinor of a single bare quasiparticle with energy 
spectrum taO in immobile superfluid He4: 

and the eigenvalues 5 ,  and 
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have the meaning of the energy and effective mass of the 
bare quasi-particle with definite spin projection on the 
field direction. The eigenvalues of the effective-mass 
spinor (l/wdaB of the Fermi-liquid quasiparticle 

1 1 1  1 1 1 a ~ *  2 L+A) 6,%&+? (- - - )¶a** -=-- 
X )  2 ( m i  m- mi m-  m ,  P ,  a ~ *  

a r e  equal, in first  order in v,, to 

Formulas (2.14) a re  exact for isotropic Fermi  liquids 
in the absence of superfluid background with a quadratic 
dispersion law of bare particles. In this case M+ =M- 
should be taken to mean the true mass of the real par- 
ticles that make up the liquid. 

3. FERMI-LIQUID FUNCTION AND THERMODYNAMIC 
PROPERTIES 

The energy spectrum of a bare He3 quasiparticle in 
superfluid He4 is given by 

where the energy gap A - 2.8K, M =  2.3m3,p,= m4s0, m, 
is the mass of the He4 atom, so is the speed of sound in 
pure He4, and the dimensionless parameter v is quite 
small according to the experimental data. n2"31 From 
(2.13) and (3.1) we have 

A. Partially polarized Fermi systems 

It was noted in the Introduction that the properties of 
an incompletely polarized Fermi liquid of low density 
a re  determined only by a single parameter-the s-scat- 
tering length a of the quasiparticles. For the He3-He4 
solution we have ~ 2 1 . 5  x10-8 cm.IB3 

In first-order perturbation theory, the total energy of 
the system is equal toD'4*91 

Here E (,O) is the energy of pure He4. There i s  no need 
to take into account in (3.2) the term of (3.1) with v, in- 
asmuch as  in the case of s-scattering it is  significant 
only in higher orders of perturbation theory. For  the 
second-order perturbation-theory correction, the re- 
sults a re  quite cumbersome and a re  given in the Ap- 
pendix. 

The Fermi-liquid function is equal to  ( ~ f . ' ~ ] )  

6'E 2nah2 - - ( ~ . P S , ~ - O ~ , ~ W ) .  (3.3) fa6,uv(p' [ 6% ( p )  6n l (pP)  1 
Direct calculation of the energy (3.2) leads to the re- 
sult 

where N3 i s  the number of He3 atoms per unit volume 
of the solution, N,=p3,/(69pi3) is the total number of 
particles with different spin orientations per unit vol- 
ume. The expressions for the energy (3.4) and for the 
Fermi-liquid function (3.3) make it possible to deter- 
mine all the thermodynamic properties of the solution. 

The quantities N ,  are  calculated with the aid of the 
equation (aE/aN+ =0: 

and the chemical potential of He3 is equal to 

where i?,(H) a.re the numbers of particles with different 
spin orientation per unit volume of the ideal Fermi  gas, 
and po$) is the chemical potential of the fermions in 
the absence of interaction. Hereafter we shall some- 
t i m y  find i t  convenient to use in place of the variables 
N, N,, H the quantities 

Here Po is the limiting Fermi momentum in the absence 
of the field, T, is the degeneracy temperature of the 
completely polarized solution. In terms of these vari- 
ables, the equations that determine the concentrations 
3, for an ideal Fermi gas a r e  

and the chemical potential porn) is equal to 

With the aid of the expressions (3.5) and (3.7) for the 
chemical potential p3, confining ourselves to the terms 
linear in the concentration, weecan easily determine 
the velocity of second sound in the solution: 

where a =- (N,/m, s;)ah/aN4 = 1.28~'~' and N4 is the 
number of He4 per unit volume. Figure 1 shows a plot 
of the function s:@) in the principal approximation in the 
concentration: 

It is  easy also to obtain the chemical potential of He4 in 
the solution: 

and the magnetic susceptibility of the solution: 
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FIG. 1. Relative change of the square of the second-sound 
velocity is2&) /S~(O)]~ as a function of the magnetic field. 
s,=~~/~s,(o) at ~ 2 1 .  

where 

Analogously, we can obtain in the usual the 
values of the remaining thermodynamic quantities in 
magnetic fields. 

6. Fermi systems with high degree of polarization 

Although the Fermi-liquid function (3.3) is  formally 
independent of the field, the terms that describe the 
interaction in all the thermodynamic quantities obtained 
above tend to zero with increasing zero, owing to the 
decrease in the number of particles having spins oppos- 
ite to the field direction. The reason is that only inter- 
action of particles with opposite spins i s  effective in s- 
scattering. If the spin system is almost completely 
polarized, the properties of a low-density Fermi sys- 
tem a re  determined mainly by p-scattering. In this case 
an important role is  played only by interaction of quasi- 
particles on a Fermi surface of radius 

The amplitude of scattering of too slow bare particles 
with momenta p, and p,(pl =p, = p F )  in the c.m.s. is de- 
termined by the rotation angle cp relative to the mo- 
mentum p = (p, - p,)/2: 

4nAZ 3 bp2 
R B ~ ( ~ , ~ ' ) - - ( - c z + - c o s ~ ) ,  IM h2 (3.10) 

where p' = (p: - p:)/2 is  the relative momentum of the 
scatteredparticles (~5: =pL = p ,  ,pl = p). The constant b is 
of the order of the glass-kinetic volume of the atom, b 
-aS (the quantity b is the equivalent of B/24r inm1). 

Taking into account the identity of the fermions, the 
vertex part, in first  order, i s  equal to 

r (p ,  p') =Re[f (T) -f (x-cy) 1=24nbpZM-' cos q .  

Por the self-energy part E we use the ~ a l i t s k i ?  equa- 
tionb3 

where q = (p - p')/2. The pole of the single-particle 
Green's function G(p)  

determines the spectrum of the excitations 

the chemical potential 

(3.12) 

and the effective mass of the excitations 

The Fermi-liquid function f (6) (6 i s  the angle between 
the vectors p, and p,) is determined by the forward- 
scattering amplitude r(p, p) ] : 

Expressions (3.12) and (3.13) determine all the thermo- 
dynamic properties of polarized solutions. Thus, for 
the total energy we have 

The propagation velocities of the hydrodynamic os- 
cillations a re  determined formally by the same equa- 
tions a s  in the absence of a field,"' with account taken 
of relations (3.12)-(3.14). The small terms proportional 
to NS," in the expressions for the velocities of the f i rs t  
and second soundscQ1 increase somewhat in this case, 
and the second-sound velocity s, increases by approxi- 
mately 21i3 times and takes the form1) 

The expression for s,(X)(3.8) a s  X- 1 coincides with the 
term principal in the concentration in (3.15). 

4. SPIN WAVES 

Since the Fermi-liquid interaction of the impurity 
quasiparticles is small and a < 0, it follows that spin 
waves can exist in the degenerate solution, but propa- 
gation of waves of the zero-sound types is impo~s ib le .@~ 
With decreasing temperature, the relaxation time T of 
the impurity excitations increases strongly, and the 
f i rs t  sound in a solution with CUT >>l is  described not by 
the hydrodynamics equations, but by a collisionless kin- 
etic equation. The high-frequency first  sound constitutes 
oscillations of He4, in which the impurity quasiparticles 
also participate because of the interaction of the HeS 
atoms with the superfluid background. 
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The high-frequency oscillations of the solution a r e  
described by the collisionless kinetic equation for the 
single-particle density matrix 

The equation A+ can be obtained from (4.8) by making the 
an,, i - , I a&,, formal substitutions w - - w and k - - k. The integral 
-+-[c,nlS8+-(-vnl8+vna,- at h 

2 8~ equation (4.8) is equivalent to the following dispersion 
1 an,@ a n ,  equation that determines the spectrum of the transverse 

--(vOaI-+-velI) 2 =o, 
ap ap @.I) spin waves: 

by the continuity equation 1 + - { w + ( ~ ) + w - ( u ) + E  ape 
nh Rk 

w+ (u )  

1 +- uZ--~-' ' (%N, -k f 7% j h d ~ )  +div (m.N,v, t T I  pnaa d l .  ) =O (4.9) 
at 

(4.2) 
and by the superfluid-motion equation 

where [E^ ,n^ ]  ,B is  the commuter of the spin matrices and 
E ,  is  the total equilibrium energy of the system. The 
deviation enaB of the density matrix from the equilibrium 
value is given in first-order perturbation theory by the 

pv 6m an, an- an, an- 
H,,=RJ~~'+ -- [ ( F + F ) 6 * + ( F - F ) ~ = 8 a ] f 6 n * *  

According to (2.1), (2.41, and (2.12) the energy E,B of 
the excitations is 

where account is taken of the fact that, in f i rs t  order in 
the interaction, the f -function (3.3) does not depend on 
the momentum. We seek the small perturbations of 
v,A,v,, 6N4 in the form exp(zot - 2  k *r). When (4.4) and 
(4.5) are  taken into account, the linearized kinetic equa- 
tion (4.1) breaks up into a scalar component 

and a vector component 
o brn at. 

i(w-kv)-(kv)!1~16- [kv - - y r . + ~ 6 . 4 1 , + r ~  ,If $A', d l ' ]  

(4.7) 
whert 

v=deo/dp, 6,-(10) [6(e+) *6(e+)] ,  Gm-111-m,. 

A. Transverse magnons 

We choose a s  the z axis the direction of the magnetic 
field 3lt. The equation (4.7) for the components of the 
vector A which a r e  perpendicular to the field direction 
determines the spectrum of the transverse spin waves. 
Thus, for the circular components A, =A, * L A ,  we have 

where 

with BH = p H -  g (N+ - N -  ). The condition that there be no 
Landau damping in this case takes the form l irl > x + .  In 
the region of small wave vectors u >> X+ , the energy 
spectrum (4.9) is  quadratic in k: 

and is similar, accurate to terms that a r e  small in the 
concentration, to $e spectrum obtained by Abrikosov 
and Dzyaloshinskii, for a ferromagnetic Fermi  liq- 
uid in the absence of a field, while in weak fields X<<1 
it goes over into the corresponding result of Silin.n51 

In the short-wave region kv >> ICN, - N , ) / f i ,  the solu- 
tion of (4.9) is  exponentially close, in terms of the 
parameter - nE/p+la 1 n , to the asymptotic solution: 
w - 2BH/ti = kv,. The region of existence of this solution 
is  bounded with respect to frequency and to the wave 
vector of the magnons by the condition of applicability of 
+e quasiclassical kinetic equation (4.1). 

B. Spin-sound oscillations 

Transverse spin waves, a s  shown above, a re  not con- 
nected with the oscillations of the superfluid back- 
ground. Equation (4.7) for the z-component of the vector 
A and (4.6) determine the propagation velocities of the 
coupled spin wave and the high-frequency sound wave. 
We note that in second-order of perturbation theory (see 
the Appendix) the coupling of the spin and sound modes 
in a magnetic field i s  caused also by the presence of a 
term linear in the spin operators r p ( ~ , ~ 6 ~  + ~ , , , 6 , ~ )  in 
the Fermi-liquid function. 

We confine ourselves to the approximation linear in the 
concentration. To this end it suffices to retain in the 
energy E ,  only the term that does not depend on the mo- 
mentum: €,,=A. With this same accuracy we have 
a ~ / a ~ ,  =O. We solve Eqs. (4.2) and (4.3) with respect 
to v, and bN, substitute the obtained expressions in (4.6) 
and (4.7), which a re  then reduced by the standard pro- 
cedure to an algebraic system of linear equations: 

where 
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si = @,/m:)ay4/aN4 is the square of the velocity of 
fourth sound in the solution, and p, is the density of the 
superfluid component. Calculating the determinant of 
this system, we obtain a transcendental dispersion equa- 
tion for the propagation velocity of the coupled spin- 
sound oscillations: 

In Eq. (4.11) we have 

and we recognize that (3.3) yields p =- 6. The disper- 
sion equation (4.11) always has a root of the order of 
the speed of sound so in pure He4 and this determines 
the propagation velocity s, of the high-frequency sound 
wave in the solution. At s-so>>v+ we have W , = X , ~ U ~ , /  

3s2 and in the approximation linear in the concentration 
the propagation velocity of the high-frequency first  
sound is determined by the equation 

Substituting the chemical potential p4 [Eq. (3.9)] in the 
expressions for the functions Q(s) and R ( s )  we obtain 
ultimately (cf. lg' le ): 

where A = (N i/rn4s:) .a2(- ~ ) / a N t  = 2.26. This mode 
constitutes oscillations of the density of the impurity 
atoms He3 and the associated oscillations of the projec- 
tion of the magnetic moment on the direction of the ex- 
ternal field. The dependence of the wave-propragation 
velocity s, in the magnetic field ar ises  in higher orders 
in the fermion concentration. 

It is  easy to verify that in strong magnetic fields, 
when u+ >>u-, Eq. (4.11) has no real  root different from 
s =s,. On the other hand, in very weak magnetic fields 

Eq. (4.11) certainly has a solution close to the propa- 
gation velocity of the spin waves in the solution in the 
absence of the field So, given with logarithmic accuracy 
by so =vo[l  +e-2/Z]. In this case Eq. (4.11) can be ex- 
panded in powers of the small parameter y = P H ~ - ~ / ~ / ~ T ,  
and takes the form 

where the function wo is determined by the expression 
for w, from (4.9) at X, =1, u =s/u,. Equation (4.12) de- 
termines the dependence of the velocity of the longi- 

tudinal spin wave S, on the magnetic field: 

With increasing magnetic field, when a certain critical 
value H, is reached, the propagation velocity of the 
spin wave becomes complex (the real  part of the velocity 
is smaller here than the Fermi  velocity u,, and the ap- 
pearing imaginary part turns out to be of the same or- 
der a s  the real  part), and the wave experiences a strong 
Landau damping due to decay of the magnon into a par- 
ticle and a hole. 

The region of the existence of the longitudinal spin 
waves is  bounded, according to (4.11) by the condition 

At S ,  -u+ we have 

m4 
@ ( s ) = - -  (sou) ' -=  3Na DO<O. 

Ni P O U O  

Therefore the condition (4.13) is  equivalent to 

Reaching the critical field H, is  equivalent to obtaining 
equality in (4.14). Near the critical field, when the de- 
nominator of (4.1 3) vanishes, the spin-wave velocity 
satisfies the inequality S, - V +  <<u+ - u-, and it is  seen 
from (4.14) that in such fields the quantity (v+- u-)/uo 
i s  still exponentially small  

From this we determine, with logarithmic accuracy, the 
critical field 

corresponding to the numerical equation 

where x is  the molar concentration of the HeS. 

5. MAGNETIC KINETIC PHENOMENA 

With increasing magnetic field, the mean free path 
of the quasi-particles with spins directed along H in- 
creases,  inasmuch as  the effective scattering for such 
particles is  from particles with spins directed counter 
to the field, whose number decreases with increasing 
H. The corresponding magnetokinetic effects manifest 
themselves particularly noticeably in the determination 
of the kinetic coefficients, whose values are  proportion- 
a l  to the particle mean free path. 

A. Partially polarized solution 

To determine the kinetic coefficients it is  necessary to 
solve the collision kinetic equation for the density ma- 
trix. In the left-hand side of the kinetic equation (4.1), 
a s  always in the case of weakly inhomogeneous systems, 
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it is necessary to substitute the local-equilibrium den- 
sity matrix and the equation must be linearized in the 
small values of the gradients. If the z axis is chosen 
along the magnetic field, the equilibrium density matrix 
and the Hamiltonian of the excitations (2.1)-(2.3) and 
(2.12) a re  diagonal in spin space. We therefore obtain 
in place of four equations for naB two equations for the 
diagonal components of the density matrix: 

an* ae, an* -+ Vn*---Ve,=It(p). 
a t  ap  ap  

The diagonal elements of the density matrix n* and the 
excitation energies E *  determine the distribution func- 
tion and the energy of particles with definite spin pro- 
jections on the field direction. In the principal approxi- 
mation in the concentration, the collision integrals in 
(5.1) take the usual form: 

where w = (2~ti)~(a/i'b@ i s  the probability of scattering of 
particles with momenta p i  and pi, into the states p; and 
P:#. 

The procedure of determining the kinetic coefficients 
differs from the standard procedures in that the single 
kinetic equation for the particles on the Fermi  surface 
( pl =Po is replaced by two kinetic equations (5 .I) that a re  
connected via the collision integrals (5.2) for distribu- 
tion functions of the n* particles situated in Fermi 
spheres having different radii p,. The connection be- 
tween Eqs. (5.1) for the occupation numbers n+ and n- 
means that in the kinetic processes there are,  gener- 
ally speaking, four relaxation times and the effects of 
dragging of particles with spin different spin orienta- 
tions can become substantial. In first-order approxima- 
tion, however, when the scattering probability does not 
depend on the angles, there a re  no dragging effects. 

After cumbersome calculations analogous to those 
given inm"'] we obtain for the viscosity and thermal- 
conductivity coefficients the expressions 

Figure 2 shows plots of the functions q(%)/q(O) and 
x i%)/x (0), obtained from formulas (5.3). In strong 
magnetic fields %-1 the viscosity and thermal-conducti- 
vity coefficients (5.3) increase without limit: 

FIG. 2. Relative change of the kmetic coefficients as a func- 
tion of the magnetic field: 1-visocity ql%//q(O), 2-thermal 
conductivity U @6\/X(O). 

B. Fully polarized solutions 

The limiting values of the kinetic coefficients a re  
reached in a fully polarized solution at %*l. In this 
case only one of the equations in (5.1) is  left, and to 
determine the kinetic coefficients we can use the ex- 
act expressionns1: 

where w (6, cp) is  the particle collision probability and i s  
connected with the amplitude of the p-scattering (3.10) 
(cf. L8'): 

( .  -.) denotes averaging over the angles, and the coef- 
ficients C, and H,, for the function w (5.4) turn out 
in this case to be equal to C ,  = O .  79. H,, =0.55. Ulti- 
mately we get 

i.e., their concentration dependences a re  significantly 
altered and they differ from their values q(0) and n(0) 
[ ~ q .  (5.3)] in the absence of a field by a large factor of 
the order of 

6. CONCLUSION 

The influence of the magnetic field on the greater part  
of the considered phenomena is nelgigible in weak fields 
(at %<<I the contribution of the magnetic field is pro- 
portional to %?), becomes substantial only a t  a high de- 
gree of polarization of the solution. Polarization of the 
solution leads to an effective weakening of the interac- 
tion by a factor (X << 1 i s  the fermion concentra- 
tion), since the s-scattering and p-scattering amplitudes 
of slow particles differ by the large factor x ' ~ ' ~ .  The 
interaction is due to the p-scattering only when the ratio 
of the number of particles with spins antiparallel and 
parallel to the field is  less than # I 3  << 1. For  degener- 
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ate systems T<-  T, this is equivalent to the following 
condition on the field (%> 1) 

At sufficiently low temperatures, the conditions of full 
polarization of the solution %-I corresponds to the 
numerical equality ~ [ k ~ e ]  =2.6 X104 x2l3. At a concen- 
tration x-lom4 the field i s  Hz50 kOe, and the degener- 
acy temperature is TF*8 mK. The kinetic coefficients 
(5.5) then exceed their values in the absence of a field 
by a factor ~ ~ / ~ = 1 0 ~ .  Thus, the viscosity at x in- 
crease as a result of the magnetization from the value 
~(0)-107(TF/T)2 [poise] to the value q(~>l)-10'2(TF/T)2 
[poise]. Thus, the increase of the field leads to a unique 
magnetic effect-an appreciable increase of the particle 
mean free path I and of the relaxation time 7. In the 
absence of a field 1(%= 0) - (a2%)-' (T,/T)2 - ( a h )  (T,/T)~. 
In apolarized solution the mean free path l(%> 1) - 1(0)/&~ - (U/X~~)(T,/TY reaches avalue I -lO(T,/T)a cm (.% - 

and consequently a Knudsen regime i s  realized 
by the fermions and various size effects can be ob- 
served. 

So appreciable an increase of the relaxation time 
means that the region of existance of the weakly damp- 
ed high-frequency modes wr>>l is noticeably increased, 
a fact corresponding to the condition w >>5(10%'~)~~2,  
where T is the temperature in mK. By virtue of the in- 
verse condition, the undamped hydrodynamic oscilla- 
tions of a strongly polarized solution a re  in fact quasi- 
static. 

The employed approach is valid also in the case of 
finite temperatures, T#  0, for nondegenerate low-den- 
sity system (it is known that in first-order perturbation 
theory the Fermi quasiparticles a re  undamped at any 
ratio of T and T,). Thus, the transition to the case of a 
completely polarized solution goes through a system 
state wherein the subsystem of the particles with spins 
parallel to the field is degenerate, and the number of 
particles with spins oriented against the field is small, 
and these particles have a Boltzmann distribution. 

Many of the results can be used also for other types 
of Fermi-liquid of low density, in which the interaction 
between the bare particles decreases rapidly enough 
with increasing distance. This condition is satisfied for 
electrons when the interaction is determined by a 
screened Coulomb potential. For charged fermions, 
however, the Lorentz force plays a major role. There- 
fore the results of this paper are  directly applicable to 
electrons when the non-equilibrium population of the 
spin states is not due to the presence of an external 
magnetic field and arises, for example, as a result of 
injection of spins having a definite orientation. 

An example of a completely polarized Fermi liquid 
of low density is provided by the vacancions in the 
ferromagnetic phase in crystalline He3. The fermion 
concentration in such a phase is x -6x10m3, and the 
Fermi energy is T, - 0.3 K. The quasiparticle mean 
free path is determined by the collisions of the vacan- 
cions with one another and at a - cm it turns out to 
be quite appreciable-of the order of I -100/p cm (T is 

the temperature in mK). 

We are grateful to A. A. Andreev for constant interest 
and support, and to 1. M. Lifshitz and M. I. Kaganov for 
a valuable discussion. 

APPENDIX 

A number of Fermi-liquid effects do not arise in first- 
order perturbation theory. For example, the effective 
mass (2.14) differs from the bare mass in second order 
in the interaction. The second-order correction to the 
ground-state energy per unit volume (3.2) is equal toDm4] 

To determine the Fermi-liquid function f ,B,  ,,(p, p') in ' 

second-order perturbation theory we vary (A.l) with 
respect to n(,O),(p) and n(,01( po): 

As a result of integration, the f -function (A.2) takes 
the form (2.5), where 

I p 1 ( p ,  p') =-C(IIC+I,-+I,++I,-+I,++I,-), 
S ' Z ' ( ~ ,  P') =C(f ,++l ,-) ,  E(p, P') =O, 

(A.3) 
p(p,  P ' )  -c(Iz+-I?-), cp(P', P )  =C(I,+-Is-) 

and the following notation has been introduced: 

2aatt 
I ,*(p,p')=Iz*(p' ,p) ,  C = y ,  r-Ip+plI, q=Ip-p'l, 

(A.4) 
and for p, we can use their ideal-gas values k,P0(3.7). 
At H=O expressions (A.3) and (A.4) coincide with those 
given inM3. In concrete calculations, the only import- 
ant values of the Fermi-liquid function a re  those on 
Fermi surfaces with radii p+ and p,. 

In the presence of a Bose background, the next-order 
correction cannot be obtained in similar fashion, since 
the correction to the f -function due to the effective re- 
tardation, fA)a (Po/pc): is of the same order of small- 
ness as the third-order perturbation theory term in s- 
scattering and the principal term corresponding top-  
scattering (3.13). For this reason, the p scattering 
for fermions with a Bose background can be taken into 
account only for systems with sufficiently high degree 
of polarization. 

The contribution of the retardation t o p  scattering, 
f(fJ a (P , /P~)~ ,  greatly exceeds the second-order co- 
rection f $)a (P,/P, p to (3.13). 
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Phonon spectrum and local vibrations in strongly 
anisotropic crystals 
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The polarization of vibrations and behavior of the vibration plane in layer and chain crystals are 
investigated throughout the continuous spectral band. It is shown that there are at least four critical 
points. The density of flexural vibrations exhibits a standard square-root kink only is very narrow regions 
next to critical points located close to the lower limit of the spectrum. Outside these regions the behavior 
of the vibration density is quite different. The influence of anisotropy on the properties of local vibrations 
is considered. It is established that the threshold of appearance of local vibrations is considerably less than 
in an isotropic crystal and that the shape of the localization region is extremely anisotropic. 

PACS numbers: 63.20.P~ 

1. INTRODUCTION 

In 1952, I.M. Lifshitzcl] f i r s t  drew attention to the 
existence-in strongly anisotropic crystals  with layer 

o r  chain structures-of "flexural9' vibrations resem- 
bling flexural waves in noninteracting atomic layers  o r  
chains. He pointed out a considerable qualitative dif- 
ference between long-wavelength flexural vibrations and 
vibrations polarized in the plane of a layer or along a 

phonon spectrum may be very considerable. F o r  ex- 
ample, the formation of a sharp  peak on the curve re- 
presenting the density of flexural vibrations near  the 
lower l imit  of the spectrum is reported by K o s e v i ~ h . ~ ~ ~  
However, the parameters  of this  peak have not yet been 
investigated. Moreover, the problem of the number, 
nature, and positions of the Van Hove cri t ical  points 
throughout the vibration spectrum of these  crystals  has  
not been tackled. 

chain. This difference is manifested in a number of 
There  is a lso  considerable interest  in the properties 

properties of a crystal  and, in particular, it gives rise 
of local vibrations in strongly anisotropic crystals .  

to an  unusual temperature dependence of the specific 
The existence of local vibrations near  point defects in 

heat at low temperatures. 
crystals  was firstpointed outbv I. M. Lifshitz in 1 9 4 7 . ~ ~ ~  

The recent years  have seen concentration of attention ~ h e s e  vibrations appear near"various imperfections of 
on the conducting properties of strongly anisotropic 
crystals .  Less  work has been done on the phonon spec- 
tra of these crystals. This accounts for  the absence, up 
until now, of a complete description of the properties of 
the density of vibrations in such crystals. Only some 
characterist ic  features of the behavior of this  density 
are known fo r  layer crystals  at low frequenciesc2' and 
these indicate that the influence of anisotropy on the 

the lattice and have been investigated quite thoroughly 
for  isotropic ~ r y s t a l s . ~ ~ ' ~ ]  However, up to now the 
problem of the influence of a strong anisotropy on the 
properties of local vibrations has not been considered. 
We may expect local vibrations in strongly anisotropic 
crystals  to have properties different f rom those in iso- 
tropic crystals .  In fact, since planar layers  and l inear 
chains of atoms with a strong interaction are physically 
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