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The conditions for the existence of undamped high-frequency oscillations
in normal He® in a magnetic field are determined. The critical field in

which a transverse zero-sound wave is suppressed is found by calculation
to be H. =4 kOe.

PACS numbers: 67.50.Dg

The influence of the magnetic field H on the properties of superfluid He® in
realistically attainable fields is negligible to the extent of the smallness of the ratio
BH/ T (B is the magnetic moment of the He® atom, 7  is the degeneracy tempera-
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ture). However, the condition for the existence of weakly damped zero-sound and spin
oscillations @ > kv, (@ and k are the frequency and the wave vector, v, is the Fermi
velocity in the absence of a magnetic field) may turn out to be sensitive to the field
even in weak fields, if, for example, the propagation velocity of the oscillations is close
to the Fermi velocity. Thus,™ in the solution He*~Hell, the condition for the propaga-
tion of a longitudinal spin wave, ® > kv.(v. and v. are the velocities on the Fermi
surfaces for quasiparticles polarized parallel and antiparallel to the field) is violated in
a weak field SH/ T <1, and this leads to a strong Landau damping connected with
the decay of the magnon into a quasiparticle and a hole.

In the present study we investigated the conditions for the appearance and van-
ishing of zero-sound and spin waves in normal He® in a magnetic field. The system of
equations describing the high-frequency oscillations of a Fermi liquid in a magnetic
field consists of the thoroughly studied'** equation of motion for the magnetic-mo-
ment component perpendicular to H and of two coupled equations for the longitudinal
magnetization and the scalar distribution function. We are interested in the last two
equations in the approximation linear in H (cf.®”)).

(= kv)A =8, kv( [¢A%dT” + [H$ 1 dT) = 8_kv [y dI?= 0,
)]
{o-kvlv - 8 kv(fyv dl"+ [H A dT") = 5 _kv [{A"d]" = 0.

Here v+ Ao (o are Pauli matrices) is the nonequilibrium increment to the single-
particle density matrix, A=A,, v is the quasiparticle velocity,
8  =316(e.—p)+8(e-—p) 1, €, is the Fermi energy of quasiparticles with different
spin orientations, x4 is the chemical potential, and dI"=2dp/(27#). Equation (1)
makes allowance for the fact that in weak fields, accurate to terms quadratic in H, the
Fermi-liquid function is given by

327 (,0") = ¢ (0) + £(6)5F + ¢(6)t5 + ) H, (2)

where 8 is the angle between the vectors p and p’, while the functions #, £, and ¢ are
determined by their values in the absence of a field. With the same accuracy we have
8.=6(e,—p), and &_ is linear in H. By expanding the f~function in Legendre polynomi-
als we reduce the equations in (1) in standard fashion™ to a system of linear equations
for the quantities v,,, and 4 ,,,
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Here |m |<k,n; FE=(v +/V0) F ZE=@ /v)Z,,and F,Z P, are the usu-
al harmonics of the functions #,{,4 (2) in the absence of a field. The function £2 in (3)
is defined by
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+ 0 (k=]mD! 1 dx 4 pm .
Q (Si)'Q(;;'i)o Q7.(s) = m I3 s—-:;Pn (x) P (x)
-1

P7(x) are associated Legendre polynomials.

The propagation velocity of the high-frequency oscillations of He® in a magnetic
field u(H) is determined from the condition that the determinant of the system (3)
vanish: D (s,,5.)=0. The vanishing or the appearance of some mode occurs in such a
field H . near which the solution of this dispersion equation takes the form s.—1,
s—v./v.=14+h_, with h  =(BH ./T;)/(1+2Z:;)<¢1. The dispersion equation
D(1,1+h .)=0 determines in fact the critical magnetic field H .

Since the harmonics F,,Z , ,® «x 2 are presently unknown, it cannot be defi-
nitely concluded that solutions of Eqgs. (3) exist for oscillations with azimuthal number
m>2.

The case m =0 is of no interest, since the velocity of the longitudinal zero sound is
much larger than the Fermi velocity in the absence of a field.

Of greatest interest is the recently observed transverse (m=1) zero sound,'*”
whose propagation velocity u, in the absence of a field is apparently close to the Fermi
velocity (u, —vo)/Us=a,<1. The function £2' has a logarithmic singularity in the first
derivative as s—1. Neglecting the terms linear in the field of order
h=(BH/T )/(1+Z;)<1 in comparison with terms of order #1In A, we must put
Ft=F,, Z{f=Z,,and H® =0, in (3), and in the difference 2 '+(s ,)—02'(1) it
suffices to retain the principal term of order 4 Ink (account is taken of the fact that
(v . —vo)/vo=—4h/2). The dispersion equation takes the form

Dis, s )=D(L, 1)+ A(a*lnat+a"lna”) =0,

+ 5
where A4 is a certain constant, and the quantities a (4 )<1 determine the difference
between the propagation velocity u,(#) of zero sound in the field and v ,:

at(h) 2 R/2 = [ul(h) -vO]/vo, at= $4= 1.

Inasmuch as in the absence of a field the dispersion equation is, with the same accura-
cy, of the form

D(l+a, l+ao) =D(L1) +24a, Ina_=0,

it follows that the zero-sound velocity u,(4 ) in the field is easily expressed in terms its
value #,(0) at H=0

2a0 Ina = atlhat + ¢ In =7, 4

and the critical field H _, determined from the conditions a*=0 and a”=A#, is specified
by the equation

2a0 lnao-hclnhc. &)
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Equations (4) and (5), the accuracy of which is characterized by the inequality
ilne_{>>1

take into account all the harmonics of the function F. The measurment of H , is thus a
method of directly determining the velocity of the transverse zero sound in the absence
of a field u,(0), and can yield information on the higher-order harmonics of F. If, as
usual, we confine ourselves only to F, and F,,"** then

F1 -6 + 3F, /(1+F, /5)
3F1+ 9F2/(1+F2/5)

a lna =
0

and it is possible to use (5) to determine F,. For the critical field H, at"” F,=6.04,
Z,=—0.67, T r=1.64 K, and F,=0 we obtain from (5) the estimate H , =4 kOe. The
fact that the signal depends substantially on the magnetic field can help in the experi-
mental separation of the contribution of the transverse zero sound, since a weak field
has practically no effect on the propagation of ordinary Fermi quasiparticles in He’.

We are grateful to A.F. Andreev and I.A. Fomin for a valuable discussion.
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