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The properties of Fermi systems with pairing with nonzero momentum are investigated with a 'He solution in 
superfluid 'He in a magnetic field as an example. Linearized equations of the hydrodynamics of the system 
near a second-order phase transition are obtained. They differ from the system of equations of three-velocity 
hydrodynamics of the superfluid homogeneous 'He phase in a 'HeHe I1 solution in that they are essentially 
anisotropic and contain additional terms that characterize the elasticity of the structures. The spectrum of the 
possible long-wave hydrodynamic oscillations is determined. Additional modes of elastic rigid-body 
oscillations appear in the inhomogeneous phase. The dispersion law of the elastic and of the temperature 
oscillations is anisotropic. 

PACS numbers: 67.60.Fp, 62.10. + s 

1. INTRODUCTION 

The superfluid s t a t e  of 3 ~ e  in a 3He IIsolution differs  
considerably in i t s  propert ies  f r o m  the superfluid 
phases of pure 3 ~ e ,  which a r e  presently extensively 
investigated. Part icular ly distinguished is the  phase 
transition of 3 ~ e  in the solution in the presence of a n  
external  magnetic field, where,  depending on the field 
intensity, superfluid phases having ent i rely different 
propert ies  a r e  produced.' 

In the 3He-He I1 solution, the interaction of the 3He 
quasipart ic les ,  owing to the low 3 ~ e  density, reduces 
mainly to s - sca t te r ing ,  which h a s  in a solution, in con- 
t r a s t  to pure dense 3 ~ e ,  the charac te r  of a t t r a c t i ~ n . ~  
Therefore the t ransi t ion of 3 ~ e  in solution into the 
superfluid s t a t e  in the absence of a magnetic field 
should be described within the framework of the usual 
BCS theory, which in the c a s e  of  a solution provides 
not a model description of the t ransi t ion,  a s  for  s u p e r -  
conductors, but a n  exact  one. T h e  corresponding es t i -  
mates  of the t empera ture  of the superfluid t ransi t ion 
of 3 ~ e  in solution3 s e e m  quite promising and give 
grounds for  hoping to observe  a new type of superfluid 
system with two Bose condensates in the not too distant 
future. 

In magnetic fields that a r e  not too s t rong ,  the s u p e r -  
fluidity of 3 ~ e  in solution is due, just a s  in the absence 
of a field, to s-pair ing of the 3 ~ e - q u a s i p a r t i c l e s .  In a 
magnetic field, the F e r m i  momenta of 3 ~ e  quasipar  - 
t ic les  with different sp in  orientations a r e  not equal,  
and this hinders  the formation of pa i r s  with z e r o  mo- 
mentum. As a resul t ,  the t empera ture  of the  t rans i -  
tion of the 3 ~ e  in solution into the  superfluid s t a t e  de- 
c r e a s e s  with increasing field, and in a ce r ta in  range of 
fields the formation of Cooper pa i r s  with z e r o  momen- 
tum is not favored. P a i r s  with nonzero momentum a r e  
then produced, and this  leads to spat ial  inhomogeneity 
of the resultant low-temperature phase. In th i s  range 
of fields, the superfluid solution acqui res  a periodic 
spat ial  s t ruc ture .  In s t i l l  s t ronger  f ie lds ,  s -pairing 
of the fermions 3 ~ e  is not possible a t  a l l ,  and if  the 
fi-scattering of the 3 ~ e  quasipart ic les  in the solution, 
just a s  in pure 3 ~ e ,  has  the charac te r  of a t t ract ion,  
then the s t ruc ture  of the 3 ~ e  condensate in  the solution 
with the corresponding phase is s i m i l a r  to  the A-phase 

of superfluid pure 3 ~ e  i n  a s t rong  (compared with the 
gap)  magnetic field. Thus ,  a n  ex te rna l  magnetic field 
not only influences noticeably the proper t i es  of the 
normal  'He phase dissolved in the B e  11:~' but a l s o  al- 
t e r s  radically the  en t i re  picture of the t ransi t ion of the 
3 ~ e  in solution into the superfluid s ta te .  

We repor t  h e r e  a n  investigation of the propert ies  of 
the spatially inhomogeneous phase of the solution. The 
thermodynamic propert ies  of this  phase a r e  i n  many 
respec t s  s i m i l a r  to  the p roper t i es  of the predicted in- 
homogeneous phase of superconductors.6" J u s t  as in 
superconductors ,7 a spin-wave density is produced in 
the inhomogeneous phase of the solution at  a constant 
particle-number density. The velocity of the quasi- 
par t ic les  in  a ce r ta in  direction may turn out to be  
c lose  to  o r  equal to z e r o ,  and this  leads to  a s t rong  
anisotropy of the kinetic coefficients and to a slow de- 
c r e a s e  of the heat capacity with decreasing tempera-  
tu re .  

However, the re  a r e  a l so  substant ial  differences be- 
tween the propert ies  of a solution and a superconductor, 
s ince  the 3 ~ e  quasipart ic les  have no charge and the 
sys tem contains two Bose  condensates, 3 ~ e  and 'He. 
F o r  superconductors ,  the model of a spatially-inhomo- 
geneous phase is quite c r u d e ,  s i n c e  the possibility of 
the existence of a n  inhomogeneous superconducting 
phase is strongly influenced by the electronic  diamag- 
net ism, by spin-orbit interaction, and  by sca t te r ing  
from impuri t ies .  The s a m e  causes  have not made it  
possible to observe s o  f a r  a spatially inhomogeneous 
superconducting phase. No such  difficulties a r e  en- 
countered f o r  3 ~ e - 4 ~ e  solutions. This  makes  possible 
a quantitative theoret ical  and experimental  investiga- 
tion of a condensate wi tha  spa t ia l  s t ruc ture .  

In the next sect ion we present  the principal relat ions 
that descr ibe the inhomogeneous phase of the solution. 
In the third section we investigate the superfluid motion 
in a spatially inhomogeneous phase. The fourth section 
is devoted to the e las t i c  propert ies  of the s t ruc ture .  
In the l as t  par t  of the paper we discuss  low-frequency 
(hydrodynamic and elast ic)  oscillations in  the inhomo- 
geneous phase of the solution. We employ the previ- 
ously developedi0'" method of describing the propert ies  
of a solution without resort ing to any model represen-  
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tation concerning the structure of the interaction and, 
where possible, use the notation employed in the cited 
reviews. Some preliminary results  were published 
earl ier '  (see also Ref. 11). 

2. PRINCIPAL PROPERTIES OF INHOMOGENEOUS 
PHASE 

We a r e  interested in the region of very low tempera- 
tures ,  when the number of rotons and phonons is van- 
ishingly small ,  and the normal component of the solu- 
tion is a degenerate low-density Fermi  gas  of slow 3 ~ e  
quasiparticles immersed in a superfluid Bose back- 
ground of He II. Since the system i s  isotropic and the 
density of the 3 ~ e  is low, the BCS theory yields a rath- 
er exact and not a model-dependent, as in the case  of 
metals ,  description of the phase transition in the sys-  
tem of the ' ~ e  quasiparticles.3*10*'1 In a n  external  mag- 
netic field H, with the z axis in spin space chosen 
along the field direction, the anomalous temperature 
Green's function Pag and the energy gap aaB for  the 
'He quasiparticles (a and j3 a r e  spinor indices) have 
the following spin dependence: 

[aY is they  component of the Pauli matrices,  5 ,  = s T  
xt2s + 1) is the Matsubara frequency, T is the tem- 
perature], and the system of Gor'kov equations i s  dia- 
gonalized in spin space and assumes in the absence of 
superfluid motion the usual form (here  and elsewhere 
f i =  1): 

- 
A(r) -gT F(C.,r, r ) ,  g=4nIallM, 

s=-=  

where G ; )  =G*(cs, r l ,  rz )  a r e  the temperature (Matsu- 
bara) Green's functions for particles with different 
spin orientations, p 3  is the chemical potential of 3 ~ e  
in the solution, 8 =0.08 mK/kOe is the nuclear mag- 
netic moment of the 3 ~ e ,  M is the effective m a s s  of 
the 3 ~ e  impurity quasiparticles, a i s  the s -scattering 
length, and v"' =a/ar,. According to the experimental 
data (see,  e.g., Refs. 10 and l l ) ,  at  zero  pressure  we 
have a =-1.5 A and M =2.3m3 (m3 i s  the mass  of the 
3 ~ e  atom). The equation for the other anomalous 
Green's function F(b , ,  rl, r2) is obtained by conjugation 
from the second equation of (I). 

Near the phase transition, when the energy gap A i s  
smal l ,  Eqs. (1) a r e  solved by expansion in powers of 
A. The expression for P in the approximation linear in 
A i s  then the equation for A: 

where G*(O) - * ( O )  12 -G (Ls,r,,  rz) a r e  the usual tempera- 
ture Green's functions of an ideal Fe rmi  gas  for par- 
ticles with different spin orientations, with Fourier  
components 

d'p 
GI?*= j m ~ v * e l ~ l r a - r ; ' ,  G,*= [it,. - 2 2111 

and G'O'=~'o'(-~,).  As a result  of a Fourier  transfor- 
mation, Eq. (2) is reduced to the form 

A, is the Fourier  component of the o rde r  parameter  
A(r). 

The appearance of a nontrivial solution of Eq. (3) 
[the vanishing of II(Q)] means instability of the normal 
phase with respect to formation of cooper pairs  with 
momentum Q. In the absence of a magnetic field, the 
highest is the instability temperature T,,, for  pa i rs  with 
ze ro  momentum. The expression for  the temperature 
T, of the superfluid transition and the corresponding 
numerical est imates were  analyzed in detail in Refs. 3 ,  
10, and 11. With decreasing density of the 3 ~ e  in the 
solution, the value of T,, decreases exponentially, with 
T,, 2 1 mK in solutions with maximum concentrations. 

In the presence of a magnetic field, pairing with non- 
ze ro  momentum Q may turn out to be more  profitable. 
The rea l  instability of the solution i s  connected with 
production of pairs  with a momentum Q for which the 
instability temperature,  specified by Eq. ( 3 ) ,  is a max- 
imum. Thus,  the temperature of the absolute instabi- 
lity of the normal phase T,,, and the momentum Q(H) 
of the produced pairs  a r e  given by the equations8 

Il (Q] -0, 5II/cX)-O. (4) 

An analysis of Eqs. (4) has shown1'*'" that in weak 
fields 

the transition goes over into the usual BCS phase, and 
in the field range 

a spatially inhomogeneous structure i s  produced. The 
temperature of the absolute instability of the normal 
phase with respect to the onset of such a structure de- 
c reases  with increasing field, from T,, =0.56Tco a t  
pH = 1.06T,, to zero  a t  pH = 1 .33T,, [plots of TcH(H) 
and Q(H) can be found, e.g., in Refs. 1 and 111. 

In the spatially inhomogeneous phase, the equilibrium 
energy gap A has an explicit dependence on the coordi- 
nates: 

A(r) =z Arnevq-', 
"8 (5) 

where al l  the vectors Q, given by Eqs. (4)  a r e  equal in 
magnitude: ( Q , I  = Q .  The characterist ic  sca le  of the 
inhomogeneity is Q-I / [ , ,  where 5,-v,/T,, i s  the co- 
herence length, which exceeds substantially the aver-  
age distance between the 3 ~ e  particles [u, =pF/ 
M i s  the Fe rmi  velocity, a, is the atomic dimension, x - i s  the density of 3 ~ e  in the solution]. 

Unfortunately, the exact form of the A(r) dependence 
(5) has not yet been established. Nor do we know the 
curve of the f irst-order transition from the inhomo- 
geneous phase into the ordinary superfluid BCS phase. 
What was investigated in detail was the thermodynam- 
ics of an inhomogeneous phase with an  order  param- 
e t e r  (5) that contains only one 
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A (r) =Aoe'Qr. (6) 

More interesting, however, a r e  the symmetrical pha- 
ses  A(r) = A(-r), for which the expansion (5) takes the 
form 

It i s  most p r~bab le , ' .~  that the inhomogeneous phase has 
a layered 

A (r) =2Ao cos Qr 

o r  a cubic 

A (r) -2A0(cos Qx+cos Qy+cos Qz) 

structure,  for which the parameter A. at equilibrium 
can always be chosen to be real. 

Hereafter, where possible, we shall not specify con- 
cretely the form of the order parameter. A detailed 
investigation is possible then only if the phase transi- 
tion i s  of second order o r  close to it. In this case ,  
near the transition, when the order parameter, A(r) i s  
small, we can obtain expressions for al l  the quantities 
in the form of an expansion in powers of A, similar  to 
the Ginzburg-Landau expansion. 

The transition from the normal phase of the 'He-He I1 
solution into the inhomogeneous phase can be observed 
when the temperature is lowered o r ,  at constant tem- 
perature, when the magnetic field is decreased. In the 
case of a second-order transition, the quantities A, 
(5) a re  proportional respectively to (T, - T ) " ~  o r  (H, 
- H ) ' / ~ .  The order of the phase transition depends both 
on the field intensity and on the type of structure (5) of 
the produced inhomogeneous phase .' '1'9'11"2 

As a result of the isotropy of the normal phase of the 
solution, Eqs. (4) specify only the magnitude and not 
the orientation of the vectors Q,. The orientation of 
the structure i s  determined in this case mainly by the 
boundary conditions on the helium surface. By analy- 
s i s  of the kernel in the consistency equation,13 analogous 
to that carried out for superconductors3 and superfluid 
3 ~ e , ' 4  it can be shown that in the case of specular re-  
flection from the boundary, the most favored orienta- 
tion will be the one at  which the surface is parallel to 
one Q£ the symmetry planes of the equilibrium order  
parameter A(r) (5). 

3. SUPERf LUlD MOTION 

We a r e  interested in the spectrum of the low-frequen- 
cy long-wave oscillations of the system. The corre-  
sponding macroscopic equations of motion should in- 
clude only slowly varying quantities averaged over the 
small-scale motion a t  the dimensions of the inhomo- 
geneity of the structure. The macroscopic dynamic 
variables a r e  usually introduced with the aid of wave- 
function transformations that do not change the energy. 
In our case these a r e  the transformations of the phases 
of the wave functions of the condensates 3 ~ e  and 
4 ~ e  (@"'), which specify two superfluid velocities: 

where m, i s  the mass of the 4 ~ e  atom. The third hy- 

drodynamic variable-the velocity v'") of the normal 
motion-can be introduced with the aid of a Galileo 
transformation. In the absence of a magnetic field (and 
in weak fields) these three velocities comprise the en- 
t i r e  set of macroscopic variables of three-velocity 
hydrodynamics of the homogeneous superfluid ' ~ e  
phase in the 3He-He I1 s o l ~ t i o n . ' ~ - ~ ~  For inhomo- 
geneous phase it i s  necessary to introduce additional 
macroscopic variables connected with the fact that the 
translations and rotations a r e  not trivial for the order 
parameter (5). The reaction of the system to inhomo- 
geneous displacements due to elasticity of the structure 
i s  investigated in the next section of the paper. On the 
other hand local violations of the rotational symmetry, 
which lead to various kinds of flexural oscillations, add 
a s  usual to the dispersion law terms with a higher pow- 
e r  of the small  wave vector than in the phonon modes 
of the hydrodynamic and elastic oscillations (see below). 
We therefore do not consider the violation of the rota- 
tional symmetry in the present paper. Nor do we touch 
upon the equations that describe the spin dynamics of 
the system. 

To describe the low-frequency oscillations of the 
system it suffices to have the hydrodynamic equations 
in the linear approximation. In our  case this circum- 
stance is most important, since the absence of non- 
linearity greatly facilitates, for the inhomogeneous 
phase, the averaging of the rapidly oscillating quanti- 
t ies,  and makes it possible to study the reaction of the 
system to deviations from equilibrium for all the de- 
grees of freedom, independently of one another. 

The linearized equations of hydrodynamics can be 
easily reconstructed with the aid of the usual proce- 
dure ,I0 P I 1  el8 if we know the connection between the mass 
fluxes and the motion velocities. The hydrodynamic 
mass  fluxes a r e  linear in the velocities, s o  that we can 
calculate the proportionality coefficients (the superfluid 
and normal densities) in succession for the cases when 
only one of the three velocities is not equal to zero. 

We assume first that v ' ~ '  # O  and v ( ~ ) = v ' " ) = O .  If the 
order  parameter (5) acquires a time-independent and 
slowly varying (in space) phase 9(3) 

then the stationarity condition is specified by the con- 
sistency equation (Z), which reduces, a s  a result of the 
substitutions 

and after simple transformations, with account taken 
of (4) and of the hy drody,namic-motion condition k -K Q , 
to the expressions 

o r ,  equivalently, to the vanishing of the derivatives of 
the superfluid velocity v ' ~ '  along the directions of Q,: 

Derivatives along the directions perpendicular to Q, 
appear only in the f irst  orders in k. This indicates 
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where that the inhomogeneous rotations of the s t ruc ture  intro- 
duce only smal l  corrections to the dispersion of the 
oscillations. 

The 3 ~ e  mass  flux is expressed in the usual manner 
in t e rms  of the Green's function G* of the 3 ~ e  quasi- 
particles: 

where N3 is the number of the 3 ~ e  atoms in a unit 
volume of the solution, and C(,, denotes summation 
over the values of the projection of the spin of the 
quasiparticles (of the s ta tes  G' and G'). The expansion 
in A for  the Green's function takes according to (1) the 
form 

G,,*-G,:'*'- jdzr s d 'r~  G*") ,a A(~,)C;:" A ' ( I , ) G ~ " .  (14) 

Upon substitution of (11) and (14) in (13), the superfluid 
flux linearized in the sma l l  gradients ,  for  an equili- 
brium order  parameter  (5), turns out t o  be 

d'k 
j (, -i 2 2' A ~ A , , ' ~ ~ ~ ~ ~ - Q J  x 2 - 

m.. (*I .--c' (2%)' 

where account is taken of the fact that the presence of 
the last te rm in (13) ensures  the absence of a super-  
fluid flux in the normal phase a t  A=O. In (15) we have 
retained the t e rms  proportional to the second deriva- 
tives of since, owing to the rapidly oscillating fac- 
t o r s  exp(ir (Q, -Qn)}, such quantities can in  principle 
make contributions to div j of the s ame  o rde r  a s  the 
t e rms  linear in k. 

It is simpler  to calculate div j directly, a l l  the more  
s ince  i t  is precisely such quantities which enter  in the 
hydrodynamic equations. An expression for  div j is 
obtained from (15) by differentiating with respect  to r 
and integrating with respect to the momenta. The te rm 
linear in k then vanishes. As a result  of long transfor-  
mations, the expressions for  div j takes the form 

A plot of p(H), obtained by numerical calculation using 
the data of Ref. 1 on T,(H) and Q(H), is shown in the 
figure. Assuming that the motion specified by the con- 
sistency equations (12) is stationary, the expression 
for  div j, a s  expected, vanishes. 

The value of div j (16) is already proportional to the 
second derivative of a slowly varying quantity-the 
phase of the wave function of the condensate. 
Therefore averaging this expression over sma l l  di- 
mensions of the o rde r  of 1/Q entails no difficulty. The 
final form of the  averaged expression for  div j a t  v ' ~ '  
#O and v '~ '=v ' "=o  i s  

I A,Iz a (QmvnaJ) div j(')=pQJ -- 
A*' a(Q,r) ' 

where the superfluid density p'd' is 

The superscript  of the flux jt3' in (18) shows that in 
this  case  we a r e  dealing with the 3 ~ e  mass  flux. The 
total m a s s  flux in the solution differs from j'3' by a fac- 
t o r  M/m3. Thus, the 4 ~ e  mass  flux a t  v ' ~ ' # O  
- v ( n )  - - 0 i s  - 

The mass  fluxes in the remaining cases  can be deter- 
mined, with practically no calculations whatever, by 
following the method developed by Andreev and Bash- 
kinf8 for  the homogeneous superfluid phase of the solu- 
tion. The onset of superfluid motion with velocity v4 
(v '~ '=v ' "=o)  leads to the appearance in the Hamilton- 
ian of the 3 ~ e  quasiparticles of a n  additional 12' 

(6 is the momentum of the 3 ~ e  quasiparticles), mean- 
ing that additional t e r m s  proportional to gradients of 

appear in (1). On the other hand, a change of the 
3 ~ e  quasiparticle wave functions, @ - Q exp (i+'3'/2) 
would lead to  the appearance of analogous quantities 
apart  from the substitution (1 - m , / ~ ) @ ' "  - (m3 /~ )+ '3 ' .  
As a result ,  the response of the system of 3 ~ e  quasi- 
particles t o  the onset  of v'" is described by an  expres-  
sion s imi lar  to (18): 

M lAmIz a(Q.,,v(')) 
div jta) = (; -i ) pts) xTx. ". 

The 4 ~ e  m a s s  flux is easily determined in this ca se  
f rom a comparison of the total momentum (mass  flux) 

and from the definition of the 3 ~ e  quasiparticle current  
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(i is the  energy of  the 3 ~ e  quasipart ic les ,  and n, is the 
particle-number opera tor ) .  When account is taken of 
(21) and (22), these express ions  yield the following 
value of the ' ~ e  m a s s  flux: 

div j"'-di~(j-j'~') = (p,-YNs+msN,)divv"' 

where p, is the density of 4 ~ e .  

The reaction of the  sys tem t o  the normal  motion can 
be  easi ly  ascertained with the a id  of the Galilean-in- 
var iance relat ions.  Inasmuch a s  a t  v ' " ' = v ' ~ '  - -v  '" the 
m a s s  fluxes of 3 ~ e  and 4 ~ e  a r e  respectively equal to 
mfljv'"' and p4v'"', we obtain, taking (18)-(23) into a c -  
count, the following expressions:  

Y' M 
div j"'= (41-m,) N3 dir  vr"'- - - - 

Formulas  (18)-(25) specify completely the connection 
between the velocities of the macroscopic motion and 
the m a s s  fluxes, and by the s a m e  token determine the 
equations of the hydrodynamics of  the inhomogeneous 
superfluid phase of the solution ( s e e  Sec.  5). 

4. ELASTICITY OF STRUCTURE 

F o r  the inhomogeneous phase,  we c a n  introduce one 
other  dynamic variable  u ( r ,  t )  , connected with the in- 
var iance of the o r d e r  parameter  (5),  in  contrast  to the 
Harniltonian, to  displacements r - r + u. Correspond- 
ingly, a n  additional low-frequency mode can  appear ,  
character izing the e las t i c  oscillations in the sys tem.  
Rigid-body elast ic  modes of this kind exis t  a l so  in 
other  sys tems  with inhomogeneous c o n d e n s a t i ~ n , ' ~ ' ~ ~  
but the spectrum of the oscillations in a solution can be 
exactly and consistently studied. The displacement u,  
obviously, i s  meaningful only for those direct ions for  
which the t ransformation A(r) - A ( r  + u) of the o r d e r  
parameter  is not an identity transformation. Thils, 
f o r  the layered phase (8) we can introduce only one 
component, pa ra l le l  to  Q, of the displacement vec tor  u. 

The displacement u is not a completely independent 
new variable. The quantity ; defines the t rans forma-  
tion r - r + ut and is the genera l  (Galilean) velocity of 
the motion. The flow veioclty can be expressed  in t r i -  
vial  fashion, with the a id  of the flux-invariance re la -  
tions, in  t e r m s  of the velocity of the normal  motion. 
In our  c a s e ,  however, we a r e  interested in  the region 
near  the superfluid t ransi t ion,  when the difference be- 
tween the total and normal  densities of 3 ~ e  is s m a l l ,  
and at  the s a m e  accuracy with which the relations ob- 
tained above for  the superfluid and normal  densities 
a r e  valid, we have for  the hydmdynamlc equations 

f o r  a l l  directions fo r  which u is defined. 

We a r e  interested in the reaction of the sys tem to a 
time-constant weakly inhomogeneous deformation (k 
<< 8 )  

The wave-function t ransformation @(r )  - 9  [r + u(r)]  
adds to the right-hand s i d e  of the equations ( I ) ,  l inear-  
ized in the gradients ,  the s m a l l  quantities 

Since the displacement e n t e r s  in these  expressions only 
in a combination of the form [v:"u,(~~)]v~"v~", all the 
answers ,  a s  expected, will  contain the symmetr ica l  
s t r a i n  tensor  u,, = (au, lar ,  + au,/ar,)/2. F o r  the lin- 
e a r i z e d  dynamics equations of the sys tem,  the r e -  
sponses  to  s m a l l  deviations from equilibrium a r e  cal-  
culated f o r  a l l  the degrees  of f reedom independently 
of one another. This  means  that the reaction of the 
sys tem to a n  inhomogeneous deformation can be ca l -  
culated a t  a fixed phase of the wave function of the con- 
densate. 

The s tat ionari ty  condition is specified by the consis-  
tency equation 

which reduces a t  k << Q ,  a f t e r  prolonged t rans forma-  
t ions,  to  the form [cf. (12)] 

H e r e ,  just a s  in (12), the contribution of the inhomo- 
geneous rotations, i.e., f rom the deformations along 
directions perpendicular to Q,, a r i s e s  only in  the f i r s t  
o r d e r s  in k .  

The substitution r --r r e v e r s e s  the directions of the 
m a s s  fluxes, while the s t r a i n  tensor  u,, does not r e -  
v e r s e  sign. Therefore ,  if the group of t ransforma- 
tions that leave the o r d e r  p a r a m e t e r  (5) invariant con- 
ta ins  an inversion, then, in  the l inear  approximation, 
the inhomogeneous deformation does not cause  a m a s s  
flux proportional to  a,,. This  s tatement ,  which can be 
easi ly  verified by direct  calculation, is valid f o r  a l l  
the symmetr ica l  phases (7)  that a r e  of principal physl- 
ca l  in te res t .  F o r  the asymmetr ica l  phase (6),  the 
m a s s  flux proportional to u, ,  differs f rom zero.  The 
corresponding expression for  the cur ren t  can be easi ly  
obtained by noting that when the superfluid velocity v ' ~ '  
and the s t r a i n  u,, is introduced, the only change in the 
t ransformations of the o r d e r  parameter  fo r  this phase 
a r e  different is the  replacement  +'3' - Q .  u. Therefore 
the  expression for  the m a s s  flux under inhomogeneous 
deformation of the s t r u c t u r e  (6)  coincides with (18) 
when is replaced by Q .  u and there  is no summa-  
tion over  the harmonics of the o r d e r  parameter .  

F o r  symmetr ica l  phases,  only the appearance of the 
additional momentum flux n,, i s  connected with the in- 
homogeneous deformation. The expression f o r  n,, can 
be obtained with the aid of cumbersome calculations 
with the Green ' s  function (14), in the s a m e  manner  the 
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mass  flux was determined in the preceding section. 
However, the s ame  expression for the average flux 
Ill, can be obtained practically without calculations by 
starting from the following simple considerations. 

The energy of the system near the transition i s  a bi- 
linear form of the order  parameter  and contains quan- 
tities of the type Ah*.  I ts  derivatives with respect to 
the superfluid velocity and with respect to the s t ra in  
tensor specify respectively the mass  flux and the mo- 
mentum flux. On the other hand, variation of the quan- 
tity AA* with respect  to the superfluid velocity and to 
the strain tensor differs only in that the phase @ i s  r e -  
placed by quantities of the form Q .  u. Therefore the 
energy increment due to the inhomogeneous deforma- 
tion 

is expressed in t e rms  of the currents  jm that a r e  the 
response of the system to the change of the phases a, 
of the harmonics of the order  parameter (5). The val- 
ues of j'"' a r e  given here  by the integrals (15) with em 
=Qm. u (in the approximation linear in k). A simple 
investigation of these integrals shows that in the ex- 
pression for  the elastic moduli, in each of the order -  
parameter-harmonic te rm proportional to exp{i(Qm 
-Q,). r}, only the diagonal components along the vec- 
t o r s  Qm+Q,  differ from zero.  The calculation of the 
remaining integrals, naturally, leads to an  expression 
s imi lar  to (18) for  the averaged value of the quantity 

an,, A at(Qmu) 
x = z ~ z T ( ~ m ) i -  a (Qmr) L 

m 

The quantity ni, (28), which is proportional to Q', i s  
quite small. This means that the propagation velocity 
of the elastic oscillations is exponentially sma l l  in 
t e rms  of the concentration of the solution. However, 
only the spin-averaged elast ic  moduli a r e  s o  small .  
The elast ic  moduli that a r e  anti-symmetrized with r e -  
spect to the spins contain, in comparison with (28), 
the large factor flF/Q. 

5. LOW-FREQUENCY OSCILLATIONS 

The spectrum of the long-wave acoustic oscillations 
is determined by the linearized hydrodynamics equa- 
tions. The hydrodynamics equations for the inhomo- 
geneous superfluid phase a r e  derived in the  usual 
manner from t h e  conservation laws, with account taken 
of the relations obtained above between the fluxes and 
the dynamic variables. An analysis of the conserva- 
tion laws,  s imi lar  to that ca r r i ed  out in Refs. 15 and 
18 for the homogeneous superfluid phase of the solu- 
tion, leads to the folbwing system of linearized equa- 
tions for the averaged hydrodynamic quantities: 

where 

an,, a p  -- - - + - - Q z ~  (em).a2(~~.),a (re.)'. 
ark ar,  rn, A A 

The unit vectors em=Qm/Q characterize he re  the ani- 
sotropy of the s t ruc ture  (7), while p3,p4 and p3 ,  pa a r e  
respectively the densities and chemical potentials of 
3 ~ e  and 'He in the solution, S i s  the entropy per unit 
volume, and P i s  the pressure .  The corresponding 
thermodynamic identity is of the form 

The system (29)-(30) already takes into account the 
fact that a l l  the calculations a r e  ca r r i ed  out near the 
superfluid transitions, when the difference between the 
total and normal densities of the  impurity component 
and between the general (Galilean) velocity and the nor- 
mal  velocity is negligibly small .  All the results  ob- 
tained with the aid of these equations a r e  meaningful 
only in the principal order  in p'S'. 

The system (29)-(30) differs from the equations of 
the three-velocity hydrodynamics of the homogeneous 
superfluid phase 3 ~ e  in a 3He-He I1 solution in the sub- 
stantial anisotropy and in the presence, in the expres-  
sion for  the momentum flux tensor,  of an  additional 
te rm characterizing the elasticity of the structure.  In 
the homogeneous phase of the solution, in the absence 
of a magnetic field, three types of acoustic oscilla- 
tions can propagate18: of the density, of the concen- 
tration, and of the temperature. These waves can 
propagate also in the inhomogeneous phase of the solu- 
tion. In addition, the hydrodynamics equations for  the 
inhomogeneous phase have also distinct solutions that 
describe the elastic oscillations (of the rigid-body type) 
of the structure.  

The elasticity of the s t ruc ture  has practically no ef-  
fect on the density and concentration oscillations, since 
the corresponding correction would be of the order of 
Q~ and would therefore be exponentially smal l  in t e rms  
of the concentration. Nor a r e  the oscillations of this 
type influenced by the anisotropy of Eqs.  (29) and {30), 
since the oscillations have a t  any ra te  a low sensi t i -  
vity to the superfluid propert ies of the impurity com- 
ponent.1L18 In the inhomogeneous phase, just as in 
the absence of a field, the propagation velocity of the 
density oscillations is close t o  the speed of sound in 
pure 'He, and the oscillations of the concentration 
propagate with an approximate velocity u F / a .  

The appearance of inhomogeneity of the structure in- 
fluences noticeably the slower oscillations, whose 
propagation velocity i s  exponentially smal l  in t e rms  of 
the concentration of the 3 ~ e  in the solution. In this 
case  substantial changes occur in the propagation velo- 
cities of the temperature waves, and additional elast ic-  
oscillation modes appear. Since the propagation velo- 
city of these oscillations c << u F ,  to determine the dis- 
persion law of the temperature and elast ic  oscillations 
it i s  necessary to put in Eqs. (29) ap3/at = ap4/at =0.  
As a result ,  Eqs. (29) and (30) reduce to the system of 
equations a,,u,=O with a matrix a t ,  equal to 
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Here n is a unit vector along the direction of the wave 
vector k of the oscillations, n =k/k , c  = w/k is the 
propagation velocity of the oscillations, w i s  the fre-  
quency, e,=QJQ, and the quantity c, 

coincides formally with the velocity of the temperature 
waves in the homogeneous phase of the solution (C 
= TaS/aT is the heat capacity per unit volume of the 
solution). 

The oscillation propagation velocity c is determined 
from the dispersion equation 

Det (aik) =O. (32) 

This equation for  the velocity has  solutions proportional 
to the square root of the smal l  quantity p'a'. In this 
case  the principal te rm in the matrix a,, (31) i s  the 
last one, which i s  inversely proportional to p"'. This 
makes it possible to obtain directly an expression for 
the propagation velocity of the temperature waves in 
the inhomogeneous superfluid phase of this solution 
(cf. Refs. 11 and 18): 

The dispersion equation (32) for  the inhomogeneous 
phase, however, has also other solutions of the same 
order ,  which determine the propagation velocity of the 
elastic oscillations. The expression fo r  the co r r e s -  
ponding velocities, in the principal order  in p"' has 
the rather cumbersome form 

vm,=eme., am=nem. 
The propagation velocity of the elastic waves, just a s  

that of the temperature waves, is exponentially smal l  
in the concentration of the solution and depends sub- 
stantially on the mutual orientation of the wave vector 
of the oscillations and of the vectors e m ,  which char-  
acterize the structure.  Fo r  example, in the case  of 
the layered phase (8) ,  the solutions (33) and (34) of the 
dispersion equation (32) for  the temperature and elas-  
tic oscillations take the respective form 

Thus, in contrast to the homogeneous superfluid 
phase, the spectrum of the slow long-wave oscillations 
of the inhomogeneous phase is  anisotropic and includes 
additional modes of other oscillations of the structure.  
The dependence of the propagation velocity of the elas-  
t ic  (and temperature) oscillations on the intensity of the 
external magnetic field i s  determined by the behavior 
p ' * ' ( ~ )  (19) and of Q(H).'~" 

The long-wave hydrodynamic oscillations investigated 
in the present paper do not include the entire spectrum 
of the possible low-frequency waves propagating in the 
spatially-inhomogeneous phase 3 ~ e  in the 3He-He 11 
solution. In principle, oscillations can exist cor re-  
sponding to inhomogeneous rotations of the structure,  
and also low-frequency oscillations with la rge  (of the 
o rde r  of Q, - Q,) wave vectors. Great  interest attaches 
a lso  to the study of the additional modes that charac- 
te r ize  the spin dynamics of the system. 

Many of the results  obtained in the present paper a r e  
not restr icted to ' ~ e - ~ ~ e  solutions and can be easily 
applied to ca ses  of other types of Fe rmi  sys tems with 
inhomogeneous pairing. In particular, the dispersion 
laws for  the temperature and elastic oscillations take 
a form analogous to (33) and (34) also for other inho- 
mogeneous Fe rmi  systems near a second-order tran- 
sition, independently of the presence of a superfluid 
Bose background. 

I am grateful to A. F. Andreev, M. I. Kaganov, I. M. 
Lifshitz, and L. P ~ i t a e v s k i r  for  numerous helpful dis- 
cussions. 

'A. E. Meyerovich, Phys. Lett. 75A, 297 (1980). 
'E. P.  Bashkin, Zh. Eksp. Teor. Fiz. 73, 1849 (1977) [Sov. 

Phys. J E T P  46, 972 (1977)l. 
3 ~ .  P .  Bashkin. Phys. 5ett. !9A, 282 (1978). 
4 ~ .  P. Bashkin and A. E. Meierovich. Zh. Eksp. Teor. Fiz. 
74, 1904 (1978) [Sov. Phys. J E T P  47, 992 (1978)l. 

5 ~ .  E. Meyerovich, Phys. Lett. 69A, 279 (1978). 
6 ~ .  Fulde and R. A. Ferrell ,  Phys. Rev. 135, A550 (1964). 
'A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fie. 
47, 1136 (1964) [Sov. Phys. J E T P  20, 762 (1965)). 

'D. Saint- James, G. Sarma, and E. J. Thomas, Type-Two 
Superconductivity, Pergamon, 1968. 

'A. Malaspinas and T.  M. Rice, Phys. Kond. Mat. 13, 193 
(1971). 

'OE. P. Bashkin and A. E. Meierovich, Usp. Fiz. Nauk 130, 
279 (1980) kbv. PhyS. USp. 23, 156 (1980)l. 

"E. P .  Bashkin and A. E. Meyerovich, Adv. in Phys. 30, 1, 
(1981). 

1 2 ~ .  A. Kirzhnits and Yu. A. ~ e ~ o m n ~ a s h c h i T ,  Zh. Ekep. Teor. 
Fiz. 59, 2203 (1972) [Sov. Phys. J E T P  32, 1191 (1971)j. Yu. 
A. Nepomnyastchii, Teor. Mat. Fiz. 8, 4J3 (1971); Yu. A. 
Nepmnyashchii and A. A. Nepomnyashchii ibid. 9, 137 (1971). 

13p. G. de Gennes, Superconductivity of Metals and Alloys. 
Benjamin, 1966. 

14v. Ambegaokar, P. G. de Gennes and D. Ralner, Phys. Rev. 
A9, 2676 (1974). 

151. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 32, 653 (1957) [SOV. 
Phys. J E T P  5. 542 (1957)l; Pis 'ma Zh. Eksp. Teor. Fiz. 17, 
534 (1973) [JETP Lett. 17, 386 (1973)l. 

16Z. M. Galasiewicz, Phys. Lett. 43A, 149 (1973). Phys. Cond. 
Mat. 18, 141, 155 (1974). 

17v. M. Mineev, Zh. Eksp. Teor. Fiz. 67, 683 (1974) [ k v .  
Phys. J E T P  40, 338 (1975)l. 

1 8 ~ .  F. Andreev and E. P. Bashkin, ibid. 69, 319 (1975) [42, 
164 (1975)). 

"G. E. Volovik, V. P. Mineev, and I. M. Khalatnikov, &id. 69, 
675 (1975) [42, 342 (1975)l. 

2 0 ~ ~ .  A. ~ e p o m n ~ a s h c h i r ,  ibid. 70, 1070 (1976) k, 559 (1976)). 
2 i ~ .  Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207 
(1976). 

2 2 ~ .  B. Migdal, Fermiony i bozony v sil 'nykh polyakh (Ferm- 
ions and Bosons in Strong Fields), Nauka, 1978. 

Translated by J. G. Adashko 

121 Sov. Phys. JETP 5411, July 1981 


