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The spin dvnamics of spin-polarized Fermi gases with arbitrary degrees of degeneracy is investigated. The spin-wave
spectrum, phenomenologicai diffusion coefficients and the macroscopic equation of metion for the magnetic moment are
derived. The degeneracy of the gas leads to a considerable anisotropy of the equatians of motion.

/. Recently the theory of the propagation of spin
-ves in degenerate [1,2] and nondegenerate
“ultzmann) {2-6] spin-polarized quantum gases has
"1 developed. Such spin oscillations were detected

ring the last several months for nearly all possible
-iarized quantum gases {7—10]. Moreover, in ref.
++0] the results for the intermediate {between
iafizmann and degenerate) temperature region were
irported. Below we give some additional comments
un the spin dynamics of spin-polarized quantum gases
including this intermediate region.

2. The simplest description of the spin dynamics
of a dilute (Vz> < 1) quantum (g/X <€ 1) spin-polar-
ized gas with an arbitrary degree of degeneracy can
be given by a Fermi-liquidlike approach [2] (for
dilute qiantum gases in the main order in the inter-
action alt first-order perturbation schemes and molec-
ular field approaches give the same results). Above &
is the number of (3He) particles per unit volume, a is
the s-wave scattering length, A ~ A/(2mE)1/2 is the
characteristic wavelength of particles with energy £
and (effective) mass »1. In this approximation the
energy of single-particle excitations has the form é
=€y + 8¢,
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where p is the (quasi-)particle morrientum, e is the
unit vector along the direction of the equilibrium mag-
netization M, (or an external magnetic field H) e
=My/My, N, correspond to the densities of particles
with spin projections £ 1/2 on the axis e(z}, 57 is the
deviation of the single-particle density matrix # (an
operator in the spin space) from its equilibrium value
ftg, & are Pauli matrices. In the case of 3Het gas (m
= ry is the 3He atomic mass, a is the s-wave scattering
length of two 3He atoms in vacuum) and dilute solu-
tions of 3He? in superfluid 4 He (the effective mass of
3He quasiparticles m = 2.3my and 2 ~ —1.5 A at zero
pressure) § = 0.08 mK/kQOe is the *He nuclear mag-
netic moment. The results for other spin-polarized
quantum gases, especially for Ht bosons in the two
lowest hyperfine states, do not differ essentially from
the dilute phases of 7 He: one only has to change
slightly the Zeeman terms and the scattering probabil-
ity symmetrzation [4,5,11].

The linearized kinetic equation for the Fourier
components of the circular projections m, =m,
* im}, of the magnetization vector m = Sp &7 is easily
reduced to

{w—kev—Qy+9Q,0m,
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in accordance with (1) at an arbitrary degree of degen-
eracy of polarized (Fermi) gases (cf. eq. (4.5.1) of ref,
[2] and eq. (2.13) of ref. [3]). Here I(n) is the colli-
sions integral, Qg = 28 H/A is the usual NMR frequen-
¢y, and the presence of an internal frequency Qipe =
~(4mahim)(N, — N_) is due to the interaction con-
tribution to the energy (1) and to the spin matrices
tommutator in ‘the kinetic equation, n,(e,) are the
equilibrium distribution functions for up and down
spins:

Ag = [n, +-n‘_ tereln, —n_)}/2,
ny(er) = {1 - th[(FBH + p2/2m — u,)/T1}/2,

where the chemical potentials ¢, are equal, My E U,
if the polarization is in equilibrium and is caused by
an external magnetic field. Note, that for dilute ‘quan-
tum gases Na® < Ema? /1 (this condition is always
fulfilled for dilute (Va3 < 1) low-temperature (/A
< 1) gases) the first term in the square brackets in eq.
{2) is negligible in comparison with the second one.

* We use the following usual r-representation for the
spin-conserving exchange collisions integral:

Spely=0,
W; Spely=— 171~ (r7t — T De(e 1) ©)

where 7,y are the transverse and longitudinal relaxa-
tion times, ( ) stands for the averaging (integration)
in the momentum space, and Jy={v; Spesan)isthe
spin current. In the long wavelength limit 8w, ku
<€ iy (5w = 0w — Q) the spectrum of spin oscilla-
tions can be derived from egs. (2), (3) by a simple ex.
pansion in §e/Q;,, ku/ , :
o L2 1= S, N2y ~ N_(u2)_

= [ e R—

@7 N, ~N_ .

3 8L 2.2
int 1+ I/QinIT.L ()

where

1 d3p
wh, == [ vin, —_
N, f * (2nn)3

is the average of v over the distribution functions n,.
The spin wave damping is small when Q7 > 1. The
last condition is equal (r, ~ 1/Nva?) to (W, — N_WN
> a/\ and is always met for a quantum {afhn <€ 1) gas

with not very low polarization. The spectrum (4) coin-
cides in the case of a completely degenerate Fermi gas
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with the corresponding equations of refs. [1,2], and s
the case of nondegenerate Boltzmann gases

[ o

Qi 1+ 1/ni2mr§’ : _
with the results of ref. [2-5] (above vy = (T/m)!/2 i
the thermal velocity, v, =p, /m = (6725, )!/38/m are
the Fermi velocities of the particles with up and dowi
spins; note, that eq. (2.22) of ref. {3] for the spectrur
Is invalid — the misprint is corrected in eq. (4.8.5) of
ref. [2]).

3. The macroscopic equation of motion for the
transverse components of magnetization M, v l
={(Sp &x,yr‘z) can be obtained using the procedure ¢
developed by Leggett [11] for degenerate Fermi sys-
tems with low polarizations, Integration of eq. (2)
yields

M+ Vi, + Qoe XM =0,

. i
I H(Qg — Qe X T+ 77l :
y
N ¥y, - N_(D 3

1 . + + —_ -
+3V;:M NN 0, i;
|
M =M —cle-M). ()

o
T

The equation for the longitudinat component of mag-:
netization M, = e+ M has the form of the usual spin
diffusion equations (below we neglect spin thermal !
and pressure diffusion terms [13,14]) :

(3/30)(M,/N) — DN AGMIN) =0 , ©

while the phenomenological expression for the longi-
tudinal spin diffusion coefficient can easily be derived
with the help of equations from ref. [12]:

Dy =r NI(N v+ N_(0-D),) . (7

Combining eqs. (5)--(7) one gets the following equa-
tion of motion for the magnetic moment of the spif-
polarized quantum gas with an arbitrary degree of
quantum degeneracy:
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N, — N_(vD)_ 7 5
NN . (8)

This equation is a generalization of the corresponding

results of ref. [14] on the case of two different relaxa-

tion times. .

Eq. (8) and the spectrum (4) can be used both in
the “hydrodynamic” Swrf < | and collisionless §cor;

> 1 limits. The only limitation on the frequency Sw
<€ Q4 and the condition of small damping Q.7 > 1

t

Di"jTl

- do not depend on the value of §wr,. Such a situation

is common for the oscillations in systems with 2 [arge
internal {requency caused by interactions (in our case

the role of “plasma” or “cyclotron” frequencies is
.

- played by £2;,,). Note, that the factor (1 + 1/95“71‘)_1

in egs. (4), (&) can be taken into account only in the
“hydrodynamic” case when §¢/,, €1/Q;p,7,5in
the opposite case the neglected terms of the order
8¢/ may be more important. Often the notation
pM is used (following refs. {6,121} for our quantity
§3;¢7, for some cases our notations seem to be more
convenient. The values of the relaxation times m
can be calculated using e.g. the general expression
[13] for a collisions integral of dilute gases with an
additional simplification: in the low-energy s-wave
approximation which is valid for dilute quanium a/)
<€ 1 gases, the scattering probabilities do not depend
on momenta,

4.1f Dy = D) eq. (8) coincides with the isotropic
equations of motion [6,12—14]. Certainly this is true
for low polarizations when Dy =D, 7, =71,,and Dfr
= (v‘z)i. Such coincidence also takes place in the case
of nondegenerate Boltzmann gases, when according to
Lhuillier and Lalo¢ [6] D) =D, and [see egs. (7), (8)]
Dyfr, =Dyjry = u%. The degeneracy of polarized gases
leads to the violation of the above equalities. In the
completely degenerate gas

D =l u%N+ —ViN_ D =l Nvg;v%
L TET , T3T :
Ny —N_ I I N+v,2r +N 02

)
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Besides, while the degeneracy of 2 Fermi gas results in
a proportionality of TH_I to (T/Ty)?, the expression
for Trl contains & term without such a small factor,
The value of 7, determines the damping of the non-
diagonal elements of the density matrix, In the general
case of a degenerate polarized Fermi system these ele-
ments do not correspond to the well-defined single-
particle excitations with long life-times remaining near
the Fermi surfaces. Thus 1y 2 7771 and i1 is small
for a polarized degenerate quantum gas only due to
the low density of the gas,

Most of the experiments on the spin dynamics of
polarized gases provide one with data on £, 7,. Using
e.g. eq. (8) it is easy to calculate the value of D start-
ing from these data. In the nondegenerate case D),
=D, and the values of the decrement of the spin os-
cillation damping lead directly to the temperature de-
pendence of the usual spin diffusion coefficient D
=D,. But at lower temperatures D, # D, and one, "
cannot evaluate {at least now) the value of D using the
experimental data on §;,,7,. This may be the reason
for a deviation of the corresponding resuits of ref.
[10] from the expected values of D at low tempera-
tures (at higher temperatures in the Boltzmann region
the results [10] for D coincide with the direct calcula-
tions of D [6,13,14] with a reasonable scattering am-
plitude).

Unfortunately the above results cannot be applied
directly to the data of ref. [7]: the 3He concentration
in the experiments was too high. For >He concentra-
tions that are greater than =1% the theory of dilute
solutions {3] can be used only qualitatively (e.g. for
concentrations of 3% or more the equations of ref,

[3] lead to the conditions | F{**| > |F§®| for the har-
monics of the Fermi liquid function which are invalid
for dilute gases),

5. For a polarized Fermi gas one can find [3,16] 2
specific region of parameters for which a spin-up com-
ponent is degenerate 7 < T, = (12/2m)(6n2N)2/3,
and the number of particles with down spins is small
enough NV_ € /N, to make the spin-down component
nondegenerate, In this “semidegenerate” region the
above relations reduce to

k2 1=ifQr VENLJS — VAN _
ine 1+ Qi 72 Ne-N_ 7
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Dy=m NUEU?I'/(3N+U% + N—U?f) ~ 'Tﬁu%'/?’ )
Dy =1 (EN, /S — AN )N, — N_)~12/5 .

Notice that the limiting value of Dy /7, in polarized
degenerate gases is nonzero [cf. eq. (9)]. These ex-
pressions for a semidegenerate gas are valid only if the
contributicn of spin-down. particles exceeds the ne-
glected high order terms in N,,l,"g’a: 1» (1"‘/1’"1:)3"'2

> N_jN » (Na®)(r2/mTa?).

6. The above results were obtained within the
framework of the molecular field approach and low-
energy s-wave scattering approximation. The latter
approximation can be justified in the spin-wave region:
the conditions £,7, 1 and a/\ <€ 1 for a polarized
gas practically coincide. But this approximation is not

unavoidable — the molecular field approach developed

can be easily generalized in order to take into account
the exact energy dependence of the scattering ampli-
tudes (see e.g. ref. [11]). More important is the ques-
tion of the validity of the molecular field approach.
Possible limitations may be caused by the nonloeal
and quantum corrections to the left and right sides of
the kinetic equation, damping of the single-particle
excitations, etc. {see refs. [5,14]). The nonlocal terms
in the kinetic equation (including the collision integral)
seemn to be the most dangerous ones. But it is easy to
show that in the spin-wave region &7, 3 1 all these
difficulties disappear, and one can use the molecular
field results in a straightforward manner {e.g. the first
such results on the spectrum of spin waves in Boltz-
mann polarized gases {2,3] were confirmed by alter-
native methods), There are two alternative techniques
for the spin dynamics of quantum gases {4,5]. Both
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methods go beyond the mean field approach and in
principle can provide one with precise high order
terms. But these formalisms though seemingly more
consistent and accurate also do not take into account
nonlocal contributions which may be necessary for
Q7 S 1 while in the case Q7 3 1 the results of
all first order perturbation schemes coincide and give
quite accurate results,

References

[1] E.P. Bashkin and A.E. Meyerovich, Sov. Phys. JETP 47
(19783 992.
[2] E.P. Bashkin and A.E. Meyerovich, Adv. Phys. 30 (198
1.
{3] E.P. Bashkin and A.E. Meyerovich, Sov. Phys. JETP 5C
(1979} 196. L
[4] E.P. Bashkin, Sov. Phys. JETP Lett. 33 (1981) 8; Sov.
Phys. JETP 55 (1982} 254,59 (1584) No. 3.
{5] E.P. Bashkin, Sov. Phys. JETP 60 (1984) No. é.
[6] C.Lhuiilier and F. Lzlog, I. Phys. (Paris) 43 (1982) 197
225, -
[7] I.R. Owers-Bradley, H. Chocholacs, R.M. Mueller, Ch.
Buchal, M. Kubota and F. Pobell, Phys, Rev, Lett. 51
(1983) 2120.
[8] B.R. Johnson, I.5. Denker, N. Bigelow, L.P. Levy, J.H
Freed and D.M. Lee, Phys. Rev, Lett. 52 (1984} 1508.
{91 P.J. Nacher, G. Tastevin, M, Ledue, S.B. Crampton an¢
F, Lalog, J. Phys. (Paris) Lett. 45 {1984) L441.
{10] W.J. Gully and W.J. Mullin, Phys. Rev. Lett. 52 (1984
1810.
[11] L.P. Levy and A.E. Ruckenstein, Phys. Rev. Lett. 52
(1984) 1512,
[12] A.J. Leggett, J. Phys. C3 (1970) 448,
{13] A.E. Meyerovich, J. Low Temp. Phys. 47 {1982) 271.
{14] A.E. Meyerovich, J. Low Temp. Phys. 53 (1583) 487.
{15] V.P. Silin, Vvedenie v kireticheskuyu teoriyu gasov
(Introduction to the kinetic theory of gases) {Nauka.
Moscow, 1971). .
[16] A.E. Meyerovich, Phys. Lett. 69A (1878} 279.



