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isotopes of spin-polarized atomic hydrogen the strong spin polarization
prevents the recombination of atoms into molecules, resulting in the large
lifetimes of the atomic gases 1 | and D§. For *He| systems the possible
metastability is connected with the fact that the polarization of some
helium systems may be caused not by direct magnetization in high magnetic
fields (the so-called “brute force technique”) but by some alternative
indirect method. This is so because the interaction of helium atoms is
mostly exchange and conserves the total magnetic moment {spin) of the
particles, thus leading to the possibility to create polarized states with a
total magnetic moment that is not determined by the values of the tempera-
ture and the external magnetic field but by the prehistory of the system,
This possibility is especially important for such helium systems for which
the direct magnetization in practically accessible magnetic fields up to 100
kOe does not result il an appreciable degree of spin polarization. Informa-
tion on the methods to create spin-polarized quantum systems and a
summary of the results obtained up to 1980 can be found in Spin-Polarized
Quantum Systems (1980).
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Most interesting low-temperature properties of *He are due to the
existence of the nuclear spin of the 3Te particles and are a manifestation of
magnetic phenomena in different solid, liquid and gaseous phases of *He.
At present, the influence of spin polarization on the various properties of
*He has been investigated most thoroughly in the case of solutions of FHe
in superfluid “He. Interest in *He—He IT solutions is stimulated by several
considerations. First, dilute *He—He II solutions are practically the only
example of a (nonelectron) Fermi gas that does not condense at any low
temperature. For such systems one can easily obtain a comparatively simple
and complete theoretical description by the same methods as for other
dilute gases. On the other hand, one can investigate the solutions experi-
mentally in a very wide range of parameters: at temperatures between 0.2
mK and 1 K, *He concentrations from 10~* or 107% up to 1072, and at
practically arbitrary degrees of spin polarization. Apart from this, in
‘contrast to the majority of other *He systems, spin polarization of solutions
at low temperatures and low *He concentration can be achieved relatively
easily, by direct magnetization in not very high external magnetic fields.
The simplicity of the theory and the possibility of experiments in a wide
range of parameters allow a consistent comparison of the theoretical and
experimental data on the properties of *He}—*He solutions practically
without any model assumptions and adjustable parameters. For this reason

the information on the properties of the solutions is more complete as

compared with other spin-polarized *He | systems.

The considerable amount of available data on *He} —*He solutions can
be cast in a relatively general form and extended (at least qualitatively) to
other spin-polarized quantum systems. It is evident that the properties of
He| or D| gases are analogous to the properties of nondegenerate
SHe | ~*He solutions, and the Fermi liquid approach to the degenerate
solutions can be generalized to the dense normal *He| Fermi liquid.
Moreover, many of the results on the spin dynamics of nondegenerate
3He | —“He solutions can also be applied to the H} Bose gas. Thus, the
investigation of *He}—*He solutions provides a convenient method to
model quantum phenomena in other spin-polarized quantum systems.

Moreover, JHe| ~“4He solutions are the object of specific cryogenic
interest. In all modern cryogenic equipment one has to use some phase of
*He (as a working medium or a heat transferring agent) and high magnetic
fields. Therefore, the study of spin-polarized helium systems can be useful
for the progress in the ultralow-temperature technique. It is important that™
superfluid *He—*He solutions are the only liquids with a considerable
(orbital} entropy at temperatures below 1 mK.
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1.2. *He-Hs [ SOLUTIONS: NEARLY AN IDEAL FERMI GAS

A 3He-He 11 solution is a system of impurity *He fermions dissolved in a
superfluid *He Bose background. At sufficiently low Havwﬂﬁ_qmm ﬂ the
number of Bose excitations of the system (phonons, rotons) is negligible,
and the normal component of the superfluid *He-He II solutions wm
determined solely by the *He impurity -system (the condition T< 0.5 K 1s
sufficient at not very low *He concentrations). According to the theory of
| Landau and Pomeranchuk (1948) an isolated ¥He impurity atom in super-
M fluid “He bebaves as a delocalized Fermi quasiparticie with its states
. classified by the values of momentum p and a continuous energy m_umﬁwca
&(p). In an external magnetic field H the energy spectrum .2 the “He
quasiparticles with (nuclear) spin 1/2 1s described by the spin ,.uvmam:o.,
£=&,(p). At sufficiently low temperatures and 3He concentrations the
characteristic velocities of the quasiparticles are small, and the energy
spectrum of the bare quasiparticles & can be represented as a mnln.m of even
powers of the small momenturm p. Taking into account 9.:% the first three
terms of this expansion, the energy spectrum & can be written as

2

&0y ={~+ Bg[1=v(p/n Y]} - patt

(1.1)

)

{
' where f=0.0778 mK/kOe is the 3He nuclear magnetic moment, = op
- are the Pauli matrices, i= 8,5 15 the unit spin operator, M is the ef mno“:,_n
mass of the *He quasiparticles, p.=M45 with m, the Bmmmﬂo;m_ the “He
atom and s, the sound velocity in pure He 11 (p/h ~ Hm A . at zero
pressurc), and the dimensionless parameter y < 1. 1;.@. vom:w& sign of the
binding energy A > 0 corresponds to the finite solubility o.m He in super-
fluid “He discovered by Edwards et al. (1965). The effective mass of the
3He quasiparticles M and the binding energy A depend on the pressure
(density) of the solution; at the saturated vapor pressure A~28 K,
M~23m, (m, is the *He atomic mass). More precise data on ,Em
spectrum of isolated IHe impurity quasiparticles can be found in mma_ son
et al. (1973), Baym and Pethick (1978), Greywall (1978) and Bashkin and
Meyerovich (1981).
" At sufficiently low *He concentrations one can always snm#noﬂ.ﬂrm
interaction of the *He quasiparticles, and the system of “He quasiparticles
represents an ideal gas of fermions with the spectrum (1.1). Note, that the
contribution of the term with v in (1.1) often lies beyond the accuracy of
the calculations in the ideal gas approximation for thermodynamic func-
tions of solutions: the neglected interaction terms (see below) more often
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than not are more important than the deviation of the spectrum from a
quadratic one. In the approximation of noninteracting particles with
quadratic (y = 0) spectrum the evaluation of the thermodynamic, hydrody-
namic and kinetic characteristics of solutions becomes trivial and must be
done using the standard formulae of the ideal gas theory. Thus, the Fermi
momentum p, of the *He quasiparticles in a (nonpolarized) solution is
determined by the number of 3He atoms per unit volume N,: Py ==
h(372N;)'/3, and the degeneracy temperature of the solution (i.e. the Fermi
energy of the *He quasiparticles) T, is equal to Ty=:p2/2M =
(B*/2M)(372N,)?3. Numerically, 7} is equal to 2.6x%? K at Em saturated
vapor pressure, where x is the concentration of *He in the solution.
Consequently, at Tz T the thermodynamics of the solution is governed in
this approximation by the expressions for the classical (Boltzmann) ideal
gas, and at T< T, by the expressions for the degenerate ideal Fermi gas.
Since the temperature can easily be varied in experiments between 1 K and
1 mK and the *He concentration between 10~* and 107", the *He quasi-
particle system in the solution turns out to be the only gas accessible to
experimental investigation in the degenerate, nondegenerate and inter-
mediate cases.

In a spin-polarized solution the Fermi surface of the quasiparticles
consists of two Fermi spheres whose radii p, are determined by the
numbers of particles with up and down spins per unit volume, N,
(N,+N_=MN): p,=h(6x*N )} In a fully polarized solution one om
,Hrmmm Fermi spheres vanishes: N_=p_=0, N_=N,, p,=2"p . Below
we shall always suppose that N > N_. In the discussed approximation the
degeneracy temperatures for ﬁm:.:orwm with spin projections 4-1/2 are
ﬁ PL/IM. When N_—0, T_—0, 7, =277, ~ 42x%? K. If the
spin polarization is an equilibrium one and is determined by an external
magnetic field, then the degree of polarization P of a nondegenerate
(Boltzmann) solution at 7= T, is given by ,

P=(N,—N.)/N,=tanh(BH/T);
in the case of a degenerate solution at T< T_, P is given by the m@:mmo.nw

wnmwlnw,

3 3 P+ P = 6nihPN,.
PLtpl

pL—pl=4BHM, (1.2)

The solution of eqs. (1.2), P(H), is plotted in fig. 1. At an arbitrary degree
of quantum degeneracy of the solution the dependence of the polarization
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Fig. 1. The dependence of the degree of spin polarization P = (N, — N_)/N; on the magnetic
field H for degenerate solutions, T < Ty, in the ideal gas approximation (1.2), (3.8); he =
BH/2T,, h=28H/T,,

on the magnetic field is determined by the well-known Stoner formulae
(McDougall and Stoner 1938):

pe BH

gl{x,) —gl{x.)
o

P= glx,)+gl(x_)

» unuw"

where the chemical potential p is given by the equation

1= 1T/ T,) g (x.) +g(x)},

and the function g(x) has the form of the usval Fermi integral,

m?v nhsh\u dy{1 +96C1x:=.~.

For a nondegenerate {Bolizmann) solution at T's 7T, most of the
thermodynamic functions do not depend on the degree of spin polarization
in the ideal gas approximation because the mean velocities of the particles
do not depend on the spin projections and are determined only by the
temperature of the solution, 7. On the contrary, for a degenerate solution
the characteristic (Fermi) velocities v, = p , /M are determined by the spin
projections, and the thermodynamic quantities depend considerably on the
polarization.
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Note that in the case of high ﬁo_m:wmco:m one can find (Meyerovich
1978) a specific region of parameters

T <«T=T,, (1.3}

for which the spin-up component of the solution is degenerate, and the
number of particles with down spins N_ < N 4+ 1s small enough to make
the spin-down component nondegenerate. Such a solution may be called
“semidegenerate”. In this semidegenerate region the presence and the
statistics of spin-down particles in many cases is very important for the spin
dynamics and kinetics, mmwv:m the very small number of particles with
down spins, N_.

As we shall see below, one can use the EQ: gas approximation in order
to understand (at least qualitatively) many of the main effects associated
with the spin polarization of solutions. This approximation is even more
useful for polarized solutions than for nonpolarized ones because it is more
convenient to polarize (by an external magnetic field) solutions with low
"He concentrations.

1.3. INTERACTION OF QUASIPARTICLES: A CHOICE OF A zo_u_uﬁ QUANTUM
GASES

The above description of *He | —*He solutions on the basis of the spin-
polarized ideal Fermi gas model is effective only for dilute solutions, when
the interaction corrections are small due to the smallness of the concentra-
tion. At higher concentrations the interaction corrections cannot be ignored.
Moreover, there are many interesting effects which cannot be understood
without inclusion of the interaction even for very dilute solutions.

Unfortunately, at present there is no consistent accurate microscopic
method for a description of the interaction in the *He impurity quasipar-
ticle gas. The difficulties are associated, first, with the absence of a general
evaluation procedure for the interaction effects in comparatively dense
systems (in our case, in the *He quasiparticle system), and, second, with the
presence of the *He superfluid Bose background with soft excitation modes
(the sound velocity is small), which leads to an additional complication of
the *He quasiparticle interaction because the interaction processes are to a
great extent indirect and are accompanied by emission and absorption of
(virtual) phonons, resulting in retardation and nonlocal effects even at not
very high velocities /energies of the quasiparticles.

For this reason, the majority of authors, following the well-known
suggestion of Bardeen, Baym and Pines (1966, 1967) describe the interac-
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tion in a model form [see, e.g.,, Bardeen et al. (1966, 1967), Radebaugh
(1968), Ebner and Edwards (1971), Esel’son et al. (1973), Baym and Pethick
(1978), Ghozlan and Varoquaux (1978)}: one chooses some relatively realis-
tic model form of the *He quasiparticle interaction potential which depends
on the velocities (momenta) of the interacting particles and contains several
arbitrary adjustable parameters. The values of these parameters must be
chosen by a best fit of the experimental data (e.g. on the solution thermody-
namics) with the results of calculations with a given type of model poten-
tial. However, the choice of one or other form of model potential cannot be
fustified microscopically. Nevertheless, for nearly all model potentials with
a sufficient number of adjustable parameters one may expect a compara-
tively good description of the thermodynamic, hydrodynamic and transport
phenomena in concentrated solutions. Considerable differences between all
models appear in the calculations of the spectra of high-frequency oscilla-
tions and of the *He superfluid transition temperature in solutions. The
latter becomes quite evident if one takes into account that the superfluid
transition temperature in a Fermi gas depends exponentially on the interac-
tion (see section 6.1).

Though there is no consistent analysis of polarization effects in solutions
on the basis of model interaction potentials, it is quite clear that different
types of potentials can provide satisfactory expressions for the thermody-
namic, hydrodynamic and transport effects in spin-polarized *He | —*He
solutions (maybe one will have to include additional fitting parameters due
to the presence of an additional thermodynamic variable — the magnetiza-
tion vector of the solution).

Nevertheless, one can carry out a fairly general semimicroscopic proce-
dure of description of the He quasiparticle interaction in solutions, which
is valid at not very high *He concentrations (Bashkin 1977, Bashkin and
Meyerovich 1981). As we shall see below, this description possesses two
considerable advantages. First, the interaction is taken into account using
just a single microscopic constant, which has a clear physical meaning.
Second, such a description, in contrast to the method of model potentials,
has a well-defined accuracy. This description of the interaction is based on
the simple fact that in a wide range of solution parameters the de Broglie
wavelength A of the quasiparticles is large compared to the atomic dimen-
sion ay,

p,\wVDo.w A.—m:
The €m<mo:mﬁr A~ h/p, where p is the characteristic momentum of the
quasiparticles, which is equal to p ~ (ME)/?, with the characteristic energy
of the particles E ~ max{7, T, }. Thus, the condition of a large de Broglie
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wavelength (1.4) is equal to the following inequality for the temperature
and the Fermi energy of the *He quasiparticles:

T, T, < h*/Ma}. {(1.5)
R*/Majz1 K, Ty~ 2.6x%* ¥, and the conditions (1.4), (1.5) are easily
satisfied at sufficiently Jow temperatures and *He concentrations x < 1%.
Sometimes dilute gases, Na} <1, are called “quantum gases” if conditions
(1.4), (1.5) tumn out to be valid. Often the term “quantum gases” is used-in
the case of a more rigid limitation for the wavelength, A > N~/3 & a,. In
this case quantum effects are mostly due to the quantum degeneracy of the
gas and to the corresponding changes of the distribution function. Below
we are interested in the less rigid conditions (1.4), (1.5) (with an unspecified
relation of A to N™1/?), when many of the quantum effects are not related
to the degenerate form of the distribution function, but to the (ultradquan-
tum character of the interaction of long-wavelength particles.

The quantum gas of *He quasiparticles (1.4), (1 .5) forms a gas of slow,
pay/h <1, particles. The scattering amplitudes £, in channels with orbital
moment [ decrease sharply for slow particles, f o ( pay/RY? when !
increases (if the interaction between particles vanishes rapidly enough at
large distances). Therefore, for the quantum gas (1.4), (1.5), the interaction
reduces mainly to s-wave scattering with scattering amplitude —a indepen-
dent of the momenta of the interacting particles. As a result, one can try to
describe all interaction effects using just a single microscopic constant — the
s-wave scattering length a. By taking into account only the s-wave scatter-
ing processes one neglects corrections of the order of ( pa /#)>. In this case
one must restrict all caleulations to the first and the second order in the
interaction. This also means that the contributions of the terms with vy in
the spectrum of the bare quasiparticles (1.1) do not lie beyond the accuracy
only when the calculations are performed up to second order in the
interaction. Besides, the retardation effects are of the order of (p/Msy)?
and are not significant in the s-wave scattering approximation for the
interaction (Bashkin and Meyerovich 1981). .

_ The analysis of all available experimental data on the thermodynamics
and kinetics of nonpolarized solutions has shown [see e.g. Bashkin and
Meyerovich (1981)] that a~ —1.5 A. As an example, fig. 2 gives the
dependence of the *He chemical potential in degenerate solutions, pi, on
the *He concentration x. The dashed line corresponds to the *He chemical
potential in the ideal gas approximation, and the solid curve takes the
interaction into account in the s-wave scattering approximation with a=
—1.5 A (the normalizing constant / makes g, +/=0 at the demixing
concentration). One can see that the above approximation is good enough

g
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Fig. 2. Concentration dependence of the #He chemical potential p, *,.o_. T—=0 x= Zu.\A Z.u +

N,} is the *He concentration. The dashed curve no:nmno:am ._o the ideal gas umvnoﬁﬂ.zm:oﬁw

the solid curve to the s-wave scattering approximation s_:m a = w;w.m A (Bashkin an

Meyerovich 1981), The constant [ is the latent heat of o<.mﬂo§:o: om. He, and the oosn_:".oa

fiy+ =0 corresponds to the demixing concentration. Circles: experimental results of Selig-
, Emszﬁm_.ﬁomﬁ.

for the thermodynamic functions up to concentrations of the order of 3%;
an analogous agreement can be seen in the cases of nearly m_.~ other
thermodynamic and kinetic quantities (Bashkin 1977, wmmv_c: and
Meyerovich 1981). The negative sign of a corresponds to effective attrac-
tion between particles in the s-wave channel. . : .

In polarized solutions the quasiparticle interaction can be S_Sd into
account using just the same constant a. This is due to the fact that in the

nonrelativistic approximation the particle interaction and the scattering

amplitude are spin independent. Therefore the ﬁ_oﬁmnamnn.n of .:5 interac-
tion effects on the polarization in the wxnrmsm@.mﬁnﬂoﬁam:ws appears
mainly because the polarization changes the %E:_u::w: .?:o:o..dm wm the
quasiparticles. But in solutions with high spin ﬁo_m:Nm:.osm this is not
exactly so. Due to the Pauli principle, the s-wave m.om:,wznm.oﬁ mm_sb /2
fermions is effective only for collisions of particles with ovvo.m:o Spins; m,o_.
this reason, in the case of niearly full polarization, when _.uamo:om._q all spins
are parallel to each other, the s-wave scattering becomes _:o2no:<w, m:n_, the
main interaction mechanism is associated with the p-wave scattering. m::.”o
the ratio of the scattering amplitudes for the p-wave and s-wave o:.m::n_m 18
small for slow particles as far as ( pay/h)* is small, full uo_uzwm:om “wwam
to a decrease of the effective interaction by the factor m.u\?.s.nwuw —x7*%in
degenerate solutions, T< T, (x is the 3He nosmo::.m:o: in the solution),
and by the factor A2/Ma2T in Boltzmann solutions, T = Ty, B

To a great extent the polarization of @cm:c:: gases under the conditions
(1.4), (1.5) leads to the same quantum effects independently of Ew aw.m_dm. of
quantum degeneracy of the gas. The role of the form of the distribution
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functions at different degrees of degeneracy reduces to an insignificant
quantitative difference, which can almost always be eliminated if one
replaces the Fermi momentum p,, by the thermal momentum p,. = (MT)Y/2
Therefore, in this review we shall discuss the polarization effects, where
possible, at an arbitrary degree of quantum degeneracy of the *He quasipar-
ticle system. Certainly, one can obtain the main analytical quantitative
results only in the two limiting cases of completely degenerate and Boltz-
mann systems. As usual, in the intermediate temperature region one has to
use numerical calculations. Unfortunately, many experiments are per-
formed in this intermediate region, thus complicating the comparison
between theoretical and experimental data.

2. Macroscopic description of polarized solutions

2.1. EQUATIONS OF SPIN DYNAMICS

One can obtain a macroscopic description of many of the magnetic phe-
nomena in *He|~*He solutions by taking advantage of the fact that the
YHe quasiparticle interaction is mainly of the exchange type and conserves
the spin, and that the spin-nonconserving nuclear magnetic dipole interac-
tion is extremely weak. In the exchange approximation the equation of
motion for the magnetic moment (per unit volume) M takes the stmple
form-of the conservation law of the magnetic moment,

d d 28 B
M+ mxkblvﬂihxhi!o, - (20)

and the problem reduces to the evaluation of the spin current J;. In
hydrodynamics the spin current is given by an expansion in the spatial
gradients of thermodynamic variables, which are small, and can be repre-
sented in the form

s A M d d 9
e (n} — — — e
J, = Mo +bm$2w+$§ﬂ+m§$h+\_£§ A

(22)
where ¢/ is the normal velocity, IT is the osmotic pressure (the pressure in
the *He quasiparticle gas), and N; and N, are the numbers of *He and ‘He
particles per unit volume. (Sometimes it is more convenient to use, instead
of N,, the total pressure in the solution & as an independent thermody-
namic variable. This leads to some redefinition of the coefficients 4, and
Ay in eq. (2.2).) Below we are not interested in the effects caused by
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changes of the superfluid Bose background density; therefore in this section
we shall omit the fast term in eq. (2.2) for the sake of simplicity. In a mwm:u”:
with a single preferred direction in spin space (the n._:.nn:on of the equi-
librium magnetization e = M /M), the spin vectors 4 in eq. (2.2) are always
directed along e and can be expressed as :

Ap=—BN;Dge,  Ap=—pN;De, (2.3)
while the tensor D = D,; in the Bomﬂ.mmsﬂm_ form has three mzmoﬁmumnﬂw
components proportional to e,eg, the unit tensor 8,5 and to g,45.2, (45, 1
the completely antisymmetric tensor):

D=~ BN ( D8, 4+ Dyeep+ Dygop e,

Below it will be more useful to introduce new notations K.y, K, Dy, D,
and £, ,7, instead of the coefficients Dy, D,p, Dy, D, and Djy:

int
Dyp=DyKor/T, Dy=Dy+D,,

D, = b_? + @W_qu,

Dyp=DyKp/11,
27y = D3/ Dy,

(2.4)

where 7, is the diffusion (exchange) relaxation time, The reason for such
definitions of the coefficients in the spin current will soon become Qnm_...H:
the notations (2.4) the spin dynamics equation (2.1) takes the following:
form (Meyerovich 1983, 1985):

9 9 plLoTexp
Zw .@lm.m-r_l G__n wxww Oﬂh H_
J
I S O B @xmé_
mk__ﬂ HL..DWE...W mHk Tk

D{1+8%s3)-D, @A d g

+ b._. mm|.&.m»ﬁ
ST S T e R (2.5)
., .Ibﬂ_zumﬂl,mtmlﬁﬂﬂ‘f T 3x, ’ |

sg_.n, HW M /BN, is the polarization vector of the mo_::o? and bo.ﬂ
2BH /h is the usual frequency for the precession of the magnetic moment in
an external magnetic field H.
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We choose as the z-axis the direction of the ve

€quation for the longitudinal component 7, of the polarization

a
EAII + c?v!mlvﬁ

o TR Bx, )T
0 i K 3
Ta Dy e Ser 9 K D
mkaA 13 ox, = 7 ¥x, u;.r!m,mw»‘ =0, (2.6)

msm the linearized equations for
zation M = M+ ;@ﬂ

d , D

M, iR M - o i i

arit+ Lizg %+ 1+ 02 .2 AH +~.©~.Eﬁ._.vmv:,ma+. Awd
imt’ P\k '

decouple completely.

The representation of the coefficients in the spin current (2 2) has been

chosen in the form of egs. (2.3}, (2.4) in order to emphasi

o g INary mixtures [see, e.g., Landau and
aC
K K
ZT: +eﬂ& sﬁﬁbiﬁniT }%331 Mﬂmﬂiv =0, (2.8)

where C is the concen
hydrodynamic velocity,

Wm ﬂwﬁmﬂ& diffusion and pressure diffusion ratios. In our case (2.6) the

noﬁm_o cﬁ Em..& noﬂﬁOBoE of the polarization, P = Af /BN, _u@wmiwm. M_H_S the
neentration of a dissolved com " | u i

nal spin diffusion coefficient mmmcw_w .MO FMM na\ﬂoﬂ Hw nwm:m_ o

t, s =D Koo/ T an =D K ,./IT

can naturally be called the spin ﬁrmnudo&m:wmo:wmsm spin ?.nm_mcﬂm L_._..mmﬂmu:

coefficients (X, and K, are the spin thermal diffusion and spin pressure

Mmm..:mmnu ratios). The analogy between the longitudinal 1
ynamics (2.6) and the diffusion equation for binary mixtures 2.8) 1

in mxormbma processes. In the exchange approximation
MWMSB Mm auw:cn..& spin-1,/2 particles behaves (for processes that do not

nge t @.988.55 of the magnetization, M, =0 asa binary mixt f
particles with Spin projection + 1 /2 (the d s it

: witl . ensity V,) and particles with
Spin projection —1/2 (the density N_), while all exchange interactions

Ctor e. Then the linearized?

i

TP
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conserve the number of particles in each component. Using the analogy
with the diffusion theory, one can easily write the equation of heat transfer
in polarized solutions:

ar Mﬁtw...__. m__.:u m:un

o T\ 9B, ), w

=x AT,

where x is the thermat ditfusivity, C, is the heat capacity, and p p is the
chemical potential corresponding to the polarization P. The similarity of
longitudinal spin dynamics to diffusion in binary mixtures helps not only to
derive macroscopic equations of motion, but also to evaluate the transport
coefficients,

Equation (2.7) for the transverse components of the magnetic moment
M, determines the spin wave spectrum in polarized solutions:

1 \hM.
q.|_: ’

int

b.ﬁ b.s_q.._.

1

g (2.9)

.—,I
.p+.©.~”q,WA 2

m

The coefficient. D| a7, determines the transverse spin diffusion in the
limit {2, v, — 0. The damping of spin waves is small only when v, > 1.
The possibility of large values of the parameter 2, ,7, does not contradict
the hydrodynamic condition used in the small-gradient expansion in egs.
(2.1), (2.2): the hydrodynamic condition « — £2;=8w <1/+ means only
that the frequency 8w < 2, when 12,7, = 1. Ttis clear that the appearance
of a high “internal” frequency £, is absolutely necessary for the existence
of weakly damped spin waves. We shall see below that the frequency Q,,,
‘determines the precession frequency of the magnetic moment in a molecylar
field. In general, the possibility of propagation .of spin waves with a
quadratic spectrum « & k2 is not surprising for an exchange system with

‘nonzero total magnetic moment; the spin dynamics equation (2.7) is to a

great extent analogous to the Landau-Lifshitz equation for ferromagnets.
The above spin dynamics equations were derived in the exchange ap-
proximation. In the case of *Hel|-*He solutions, the extremely weak
magnetic dipole interaction of the *He nuclear magnetic moments and the
*He quasiparticle collisions with the walls are the only spin-nonconserving
processes. The nuclear magnetic dipole relaxation is characterized by a very
long relaxation time 7, ~ AE/BYN;?, where E is the characteristic energy of
the quasiparticles. (In nondegenerate solutions E ~ 7, in degenerate solu-
tions E ~ T, and the expression for 7, contains the additional large factor
(T,/T) > 1) Numerically the quantity AE/B*N? is of the order of
10°E/x? s/K (x is the *He concentration). Nevertheless, even such slow
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dipole processes sometimes lead to considerable consequences. The in- |

fluence of the dipole processes on the properties of spin-polarized solutiong
is to some extent analogous to the influence of very slow chemical reactions
on the properties of usual binary mixtures.

Magnetic dipole processes lead to violation of the magnetic moment
conservation ‘law (2.1), ie. to violation of the conservation law for the
number of particles with a given spin projection;

N,
o1

o,

ot

2&!2@

2

+N_ div o™ = —
- T
’ (2.10)
+ Ny div o™ =0,

where E@A H, T, N,) are the local equilibrium values of the spin densities
N, for particles with spin projections +1 /2 (N +N_=NO+NO= Ny
in eq. (2.10) we omitted for the sake of simplicity the diffusion spin currents
described above. The dipole processes tending to level off the chemical
potentials g for up and down spins are the only processes that establish
the equilibrium values of the spin densities N Therefore, for all oscilla-
tion phenomena the value- of the parameter
oscillations) becomes very important, thou
formally independent of wr,. At low frequencies w1y <1 the densities N +
relax to N? during the period of the oscillations, and the oscillations are
truly wwm_.nwn__%bmawo. In the opposite case of high frequencies @ty > 1 (this
case corresponds to usual experimental conditions) there is no such relaxa-
tion, and the oscillations take place at a fixed number of particles in each of
the spin components. For example, the oscillating increments of the spin

densities §N + are given in the (second) sound wave, according to eq. (2.10),
by the relations

wTy (w is the frequency of the
gh many of the quantities are

NO .
£ 3N, + ——
A o

N, = (83, — N D), G._E

which can be reduced to

N, _ 1 Z%.H. i aND
ON; IH.ML\S\_.& N, wiyg AN, | e

As a result, the second-sound velocity 52 = (1/M) AIT/9N; - (thé second
sound in *He—*He solutions at low temperatures is practically the sound in

SR
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i i i : i motic pressure, ie. the
the YHe impurity quasiparticle gas; IT is the os p

pressure in the *He quasiparticle gas) depends on the frequency [cf. Landau
- and Lifshitz (1978)]:

. 2 DM
arf aN_ T s + 590

AN_ N, | 1+ieT

1 9T 9N

2
$2

=} , (2.12)
M\ 3N, BN,

where s is the second sound velocity in the limit mqurl.v _o M\MM“%,WW& mw,__”,m
; i ity in the high-fr

=3ND d s is the sound velocity in th . mit

o mwﬂmﬂw_ﬂﬂ %w,w \u. %.Zu = N©/N,. This frequency dispersion of the oscilla

E..._-Q E +

tions leads to damping of the sound waves:

. 172 (o)
1+ w2t +i(r? — Doy @ 5§
o’

1+ w?riv? 5§

(2.13)

Py =

k .6

(k is the wave vector), and gives rise to the second {buik) viscosity
{Meyerovich 1982)

(1t _ g 2.14

{= w@\ﬁ - maqmvu $o= ?a?mqa?msv - .&B v ( )
() hen

Of course, when the polarization goes 1o zero, 2&\@, NG \ﬁw —-1,2, the
the frequency dispersion and the spin second viscosity vanish. o mecha.
The spin second viscosity dominates over the usual &_mm_ﬁw BAH i
nisms o%mo::a absorption only in the _osr?oo_cn:o%rommw 0Ty ionile

i ime determined by the “He quasip:

1 exchange relaxation time ! i icle
Eﬂ.“ﬂ% MAq %m Note, that the expression mo_..:_o m.oc:a <o_wo_w ,Wmnm
a MS mmu JON ’ is exact only for the quadratic dispersion law of the ¢
- VE.:QOw w@ (1.1) with y = 0. The above ﬁmm::m. for .::w mnoo.mmm_mocﬂ !
MMMMM_HQ &mmuanmwo: and the spin second viscosity in spin-polarized solu

. ¢ in
" tions are analogous to the well-known Mandelstam—Leontovich effect 1
io

hydrodynamics (Landau and Lifshitz 1978).

. . ‘ .
7.2, FERMI LIQUID DESCRIPTION OF DEGENERATE SOLUTION

. . an
For m. degenerate *He quasiparticie system 1n superfluid Inﬁ: MMM WMon
additional macroscopic description in the ?manéwﬂm om the .ﬁ..“”u tau theoty
i Hqui {halatni 1971)]. This descri
Hquids [see, e.g., Khalatnikov ( . 5C 0 o
MMMHW&%M_E Homz be used for degenerate spin-polarized “Hel He
i

ons, | . w
mc_%ﬂwnmmaam liquid function of an arbitrary exchange polarized system o
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spin-1,/2 particles in the most general form can m_s\mwm be linearized in the |

Spin operators of the Interacting particles:
Sp 6 ' &Y= 4 (p, p)II" +¢( p, p)és
+elw(p, p)ol" +o(p, p)éi)

TE(p, p)(oe)(5%), (2.15)

A

where & are the Payli matrices, [ = 8,5 is the unit operator, and mﬂa /M w

18 Sw Eﬁ.ﬂ <mQ”oH in the direction of the spin polarization. The energy of the
quasiparticles in the Fermi liquid is a linear function of the spin operators:

mﬂmomhvw,fmmﬁv%m+mm,

.,I > /
Bé= —B6 8+ m@i\\?f é, p’, 6’) 84 . (p’) dI, (2.16)

s d3 A i
where dl'=d’p/Q2uh), and 84 is the deviation of the single-particle

density matrix (the distribution functi i
lens metion) for the quasiparticl i
liquid from its equilibrium value 4 Hparticies of the Fermi

(2.17)

and m(p) =Sp6Ai® determine the i
: : ., equi-
librium distributions of the particle density and the magnetic Boagm of
e sob The Emm.oum_ components n, of the spin density matrix

ermine the equilibrium distribution functions for quasiparticles with

spin projections +1/2 on the axis ¢ and i
pin proj =+ are given i
distribution functions, ¢ Py the uswal Fermi

B
Il

+ Tlﬁmswmwltﬁv,

57 n=n,+n_, ‘Sﬁm?f.l.:lv,

NI b=

(2.18)

where ¢, = £+ B are the diagonal components of the quasiparticle ener

and 5.@ chemical potentials #, for up and down spins are equal to ommnum
other in 5.@ case of equilibrium polarization determined by an external
Emmb.mﬁo field. According to Abrikosov and Dzyaloshinsky (19583, the
function B(p) in the energy (2.16) can be expressed in the noEﬁo:azm {of

P
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the Fermi liquid function (2.15) using the transformation rule for the energy
of Fermi liquid excitations at infinitesimal rotations:

B(p)=RH= [t(p, p)n.(p")~n_(p")] ar". (2.19)
Most of the fina? results must include the harmonics in the expansion of

the Fermi liquid function in Legendre polynomials on the Fermi surfaces of

radii p_ = h{(67*N )"/ Let us denote the corresponding harmonics as

m
¥ = (n+ 1) 22 f4(p,, p)P,(cos x) d cos x, (2.20)

223

and similarly Z(P, ®{? and = for the functions {, ¢ and £ Here the
indices (a, b) take the values (+) or (—), P, are Legendre polynomials, x
is the angle between the vectors p, and p,, and m  denote the effective
masses of quasiparticles on the corresponding Fermi surfaces. Many results
can be expressed through the following four linear combinations of Fermi

liquid harmonics:
. _ (r) {n =in
AW=¥ + 2P 4200, 4 20 41,

BP=w - ZM + o F o) — EL. (2.21)
If we are interested in phenomena without changes of the direction of
magnetization, then in the exchange approximation a polarized Fermi
liquid of spin-1/2 particles is equal to a binary system of components
corresponding to systems of particles with spin projections +1 /2. For such
phenomena all spin operators remain diagonal, and all caleulations must be
carried out exactly as for other two-component Fermi liquids [see, e.g.,
Bashkin and Meyerovich (1981}, Oliva and Ashcroft (1981), Meyerovich
(1983}, Bedell (1585)], while the Fermi liquid function enters all final results
only in the combinations 4, B [eq. (2.21)]. For example, the effective

masses m, of Fermi liquid guasiparticles are equal to

AV 4L pliga) \
EH," .“. e " + = , . ANMNV
EH \:ﬁv|mw“wﬁﬂ\~u%

where the effective masses of the bare quasiparticles M MH =(0& ,/0p )/P.
are determined with the help of the spectrum (1.1):

M, =M/(1—2vp%/p2).

A density change of the spin-up or spin-down component 3V, causes
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*He | —*He solutions:

272h° 2a7h?
B, = A9 8N, + =T po
£ p AV N B N,
BN .
mﬁll.ws.mmmAEF 0y © imzil :
p— (N AQ+N_BOY) 4 — (N_A®+ N, BP0

(2.23)

mﬁmw expressions allow one to determine the second-sound velocities

(My/M)(ADAO— pORO)

2
57 ~ (4D p® O_ @y’ ro=tirs,
_(AY rv+w+A\H|lW+v = 2nh
: 1 (1 1
g§0)" — T Ar2 v arn g |I|H IH
§ TR NZ4O b NIAD+N N ™ w@f\ BO

(2.24)

(Equation (2.12) is valid only for the quadratic spectrum Q.S with v = 0; if
v+ 0 the sound velocity s? differs from (1/M) 3I1/0N, by the mmowo_‘
{{(M,/MYON,/AN,) + (M_/MYIN_/3N,)) ! with which eq. (2.12) and
consequently, eq. (2.24) should then be multiplied. . ,
The transport coefficients of the spin-polarized Fermi liquid can be
nxmammma.@% phenomenoclogical scattering probabilities for quasiparticle
pair collisions using the method developed by Abrikosov and Khalatnikov
{1957) for z.osvonn.Nnn_ Fermi liquids. For polarized systems one has to use
H.ro .mgmnmrwmmos of this method to the case of Bﬂ__:noaﬁos.mi Fermi
liquids. The corresponding, rather cumbersome, formulae can be found, for
example, in Meyerovich (1983). .

In %E-ﬁ&m&mwa or multicomponent Fermi lquids one may be con-
fronted with an additional peculiarity pointed out in some detail by Troian
wb&. .gwqaw (1985). The quasiparticle energy & appearing in the local
equilibrivm distribution function A(%) is determined by the nonequi-
librium distribution function (2.15)—(2.18): _ :

fnmoﬂm+?ﬁ3f€+wwewe\+$

+mxﬂm%fwweﬂe\lmﬁ. (2.25)

changes of the chemical potentials 8¢, and the osmotic pressure 817 of |
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For a nonpolarized system, i.e. for a single-component Fermi liquid, this
fact is not very critical because this rescaling of the energy takes place in
both (left- and right-hand) sides of the kinetic equation, and the corre-
sponding rescaling factors usually cancel. For a spin-polarized Fermi liquid
these rescaling functions (2.25) form the matrix 4 ,, B, [eq. (2.21)] with
more complicated rules of cancellation, and may enter the final expressions.
As a result one has to be somewhat more careful with the kinetic equation
for a spin-polarized or a multicomponent Fermi liquid.

The transverse spin dynamics (processes accompanied by a change in the
direction of the magnetic moment) is more complicated for a spin-polarized
Fermi liquid than the longitudinal dynamics. These processes correspond to
the dynamics of the nondiagonal elements of the single-particle density
matrix #. The nondiagonal elements of the density matrix do not represent
the well-defined Fermi liquid quasiparticles with definite spin projections
and with long lifetimes, remaining near the Fermi surfaces. This can lead to
a large damping of the nondiagonal elements (to the absence of the large
factor (T,/T)* = 1 in the lifetime) and to the appearance of the forbidden
integration deep into the Fermi spheres [integrals like in eq. (2.19)].

Besides, in the case of transverse spin dynamics, e.g. in the case of spin
waves, there are also some additional problems caused by the appearance of
gradient (nonlocal) terms of the following type [see, eg., Meyerovich
(1983)]

_\.wu
88=Sp,. | fO—8a,(p") dI".
\ dx?

These terms make a considerable contribution to the spectrum of spin

‘waves. Up to now there is no consistent procedure to overcome these
_difficulties for a dense spin-polarized Fermi liquid. Some additional com-

ments on the justification of the Landau theory for polarized Fermi systems
can be found in a recent paper by Quader and Bedell (1985). Certainly, all

‘these difficulties disappear for weakly polarized Fermi liquids when the

relative shift of the Fermi spheres is small, (p, —p_) <p,.
A detailed description of the transverse spin dynamics of weakly spin-

- polarized dense Fermi liquids has been given by Leggett (1970). On the

basis of a direct integration of the kinetic equation Leggett has derived the
macroscopic equation of the spin dynamics of weakly polarized Fermi
liquids (an equation like egs. (2.5), (2.7) without spin thermal diffusion and
pressure diffusion terms) and has shown that the characteristic internal
frequency §2,, can be expressed through the first two harmonics of the
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Fermi liquid function,

Q= ANoINH\wv_@c
it A+2Z,/3(1+2,)"

(2.26)

{For weakly polarized Fermi liquids the functions @, £ in the ffunction

(2.15) are equal to zero, and the quantities Z,,, being the first two

harmonics of the function ¢, are equal to their values in the absence of -

polarization). Apart from this, in the case of weak polarization =T
A >

Dy =D, =105(1+ Z,)/3, and the spectrum (2.9) of the spin waves has the

form (Leggett and Rice 1968a,b, Leggett 1970)

w = .@o +
1+
32 (2,-2,/3)(1 + 1/22,52) 5Ty

vk® 1+ 7)) (1+ Z,/3) i
v. (2.27)

Often the spin waves (2.27) in spin-polarized Fermi liquids are called Silin

waves (the existence of spin waves with a quadratic spectrum in weakly

magnetized Fermi liquids was predicted by Sili ; i
: ¥ Silin (1957); see also Abrikosov
and Dzyaloshinsky (1958), Platzman and Wolf (1973)). The frequency Q2

int

(2.26) is the frequency of the precession of the magnetic moment in the -

Borwmz_m.n mﬂa originating from the Fermi lquid interaction. If the s n
polarization is caused not by an external magnetic field, then instead of Mdo
frequency £, =28H/% in eq. (2.26) one must substitute 2wk /Mp, (N
— N_)(1+ Z,). Often the notation pM is used [following Leggett m:m En.m
ﬁmmwm._uv“ Hummmmﬁﬁ {1970)] for the above main parameter of the transverse
MMWSW WMMMH.EM 2,7, ; for many cases our notation §2,,,7, seems to be more
The transverse spin dynamics of *He) -*He solutions has been studied
by Owers-Bradley et al. (1984a) at *He concentrations of 5% (pressures 0
10 and 25 bar) and 9.5% (pressure 10 bar) in the temperature range from Mm_‘
a.oéd to 0.3 mK. The spin polarization was caused by an external magnetic
moﬁ. of 280 Oe (£, =925 kHz). The experiments were performed with the
continuous NMR technique. It was found out that the NMR line racti-
cm:.%. never has a complicated structure. The NMR linewidth m%& the
position of . the maximum were temperature dependent. The linewidth
increased with the temperature decreasing from 25 mK, reached a maxi-
mum at Pu.zqﬂ 1 and then decreased. At a *He concentration of 5% the
maximum linewidth was reached at temperatures T=2.15 4+ 0.1 mK (zero
pressure), 1.90 4+ 0.1 mK (10 bar) and 1.75 + 0.1 mK Ammlcm@ At zero
pressure 772 =28 x 1071 5 K2 (Owers-Bradley et al. 1984a Ooq.w:nn:: et
al. 1972), and the condition ;.7 =1 leads to the wo:oim:,m value of the
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parameter A =@, /82, (2.26): A= —0.024 + 0.002 (the negative sign of A
is determined by the sign of the NMR frequency shift with respect to £2,). .
This suggests for Z, = 0.08 + 0.03 that the value of the unknown Landau
parameter Z, is Z, = 0.33 =+ 0.1. Owers-Bradley et al. (1984a) treated their
experimental data in a somewhat different manner. The position of the
absorption peak (the NMR frequency shift) and the linewidth were calcu-
lated with the help of eq. (2.7) assuming that spin waves with only a single
value of the wave vector k are excited. Comparison with the experimental
values of the frequency shift and the linewidth resulted in the values & ~ 1
mm~! and A= —0.028 + 0.003, which leads to the Landau parameter
Z, =0.34 + 0.1, though it is not quite clear why the system would pick out
a single oscillation mode: the experimental cell used by Owers-Bradley et
al. (1984a) had a rather complicated geometry and did not represent a good
resonator.

The equilibrium time for the magnetization — the nuclear magnetic
dipole relaxation time ~ in nonpolarized (and weakly polarized) Fermi
liquids is of the order of (Vollhardt and Wolfle 1981a,b) Tt~
(BPN)AT/ Ty (v /BT) /(1 + Z,)° at low temperatures (v is a constant of
the order of 10-100). The time 7, reduces in the case of strongly nonequi-
librium polarization due to the absence of the factor (T, / T)%. The depolari-
zation times have not been studied in detail for Fermi liquids with high
degrees of spin polarization and for the relaxation processes of quasiparticle
collisions with the walls.

3. Dilute spin-polarized solutions. Thermodynamics

In section 1.3 we suggested a method for the description of the quasiparticle
interaction in dilute quantum solutions [eqs. (1.4), (1.5)]. Applying this
method one has to determine only a single interaction parameter — the
s-wave scattering length a. Below we shall restrict ourselves for the sake of
simplicity to the first (linear in @) order in the interaction. This corresponds
to the first order of perturbation theory and to zero order in the concentra-
tion /temperature expansion. Some results up to second order can be found
in Bashkin and Meyerovich (1981).

In the first order in the interaction for the s-wave scattering with the
amplitude —a independent of the momenta, the interaction correction to
the (free) energy of the 3He quasiparticle gas is given by the quadratic form
of the single-particle distribution functions #,{p) of the ideal noninter-

acting gas,

wah? N n NF 7y )
F= Y Sp.Sp, A, p) A (p )T —a0’]. - (B
rp ‘

M



24 AE. MEYEROVICH

Direct integration of eq. (3.1) with the distribution functions (2.17), (2.18) :
arbitrary degree of quantum |

results in the following expression for F at an
degeneracy of the 3He quasiparticle gas:

2
F = 47gh

The fact that the interaction correction F, (3.2) is proportional to the
M.Hm.mcon N 421 m.um ﬁ.rn densities N, and N_ of the quasiparticles with
1iierent spin projections, indicates that, due to the Pauli principle, only the |

noEmﬁa of quasiparticles with antiparallel spins are effective in the s-
mo.mzodwm of spin-1,/2 fermions, Note, that the use of the quadratic term
@9 Y in the spectrum (1.1) often lies beyond the aceuracy of the calcula-
tions in the first (lowest) order in the s-wave interaction. As a result Hrm
free energy of the degenerate solution is equal to ,

= FO _ 3
F=EO =Nt 55 (AN +pAN_) ~ BH(N, ~ N )
+kﬂam~2 N
TR (3.3)
and for the nondegenerate (Boltzmann) solution
/2
F=FO®—NA-N,Th Imgﬁ EJ
Ny \2qp?
MT V2 dgnpn?
~N_T il anh ‘ o
W mimv + 2 NN, (3.4)

where F{ is the energy of pure He II for T — 0,
The energy of 2.5 single-particle excitations of the interacting quantum
gas (the single-particle energy (1.1) with interaction corrections) is equal to

§=2,+83,

2arah? -

LUN
MMl

£p= Aai m@v?m&:

N ~N_
w %) (3.5}

g - an 2
Bi= Sp,. 41" 91,1} (11— 657 270

at an arbitrary degree of quantum degeneracy. The terin 5% in eq. {3.5)

NV _ (32
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" represents the change of the single-particle energy with the change of the

*He quasiparticle distribution functions, i.e. the molecular field. The ex-
istence of this term demands an explanation. A degenerate solution is a
low-density Fermi liquid of *He quasiparticles, and 3% (3.5) is the usual
Fermi liquid term (2.16) with the f-function (Bashkin and Meyerovich
1981)

2aak? | aa o
_ 2mah” ). (3.6)

fp, 6 p', 6)=—— ('~ 88
In this case the presence of the term 8& (3.5) is beyond doubt. For
nondegenerate systems the introduction of a molecular field like 82 (3.5) is
usually beyond the accuracy; but in quantum gases (1.4), (1.5) the molecu-
lar field 82 (3.5) can be taken into account even for nondegenerate dilute
Boltzmann gases. The reason is that the molecular field is linear in the
interaction (linear in &), while all incoherent and nonlocal collision correc-
tions are quadratic in a (the scattering probabilities in the collision integral
are quadratic in the scattering amplitude). Therefore, all collision correc-
tions, forbidding the application of the molecular-field approach in most
cases, turn out to be small for quantum gases (1.4), (1.5) in comparison with
82 (3.5). . .

All thermodynamic characteristics of polarized quantum solutions (1.4},
{1.5) can easily be derived using the above expression for the free energy
(3.2)-(3.4) and the single-particle energy (3.5) in the s-wave interaction
limit. Apart from this, for degenerate solutions the expression for the Fermi
liquid function (3.6) permits one to use directly the equations of the
preceding section (note that only the harmonics ¥ and Z® (2.20), (2.21)
differ from zero for the f-function (3.6)). For example, the equilibrium spin
polarization of degenerate solutions in an external magnetic field is de-
termined at T=0 by the minimization of the energy (3.3) with respect to
N, with N, + N_= N, =const.:

(1 /3a7()1/3
NV

N,~-N_. NO-N®
= s a— T
N3 gL/

A Ny

» (3.7)

a

1/3
1+4{£)

where Zmu, being the densities of up and down spins in the ideal noninter-
acting gas, are determined by the following equations:
12/ iy 1273
2&2 ?2!;
N, N,
NP+ N
Ny

=hp,
(3.8)
=1, hp=28H/2*"T,.
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(2*°T; is the Fermi energy of the fully polarized gas, and the condition:
hy =1 gives the value of the field necessary for full polarization of the gasi
at I'=0.) Figure 1 displays the dependence of the polarization P(h), eq.::
(3.8), on the magnetic field A for an ideal gas of *He quasiparticles ati’
7'=0. Analogous curves for finite temperatures T+ 0 can be found int
Mullin and Miyake (1983} and Greywall and Paalanen (1981, 1982), and fory
a weakly interacting gas in the s-wave scattering limit (3.7) in Owers-Brad- :

fey et al. (1984b).

Usually the influence of spin polarization on the thermodynamic char- '
acteristics of a solution is insignificant and reduces to a change of thel
high-order terms of the thermodynamic functions. However, two quantities §
are very sensitive to spin polarization. Strong polarization dependences can i
be observed for the osmotic pressure (the so-called magneto-osmotic effect) &
and for the second-sound velocity (Bashkin and Meyerovich 1978, 1981). &
The osmotic pressure is given as the pressure difference between two parts -
of a cell separated by a membrane with a superleak permeable for the “He !
superfluid component only, while the concentrations of the *He impurity |
(normal) component N{*@ are different in the two parts of the cell. The |
value of the osmotic pressure IT can be easily evaluated for T - 0 using the ¢
condition of equality of the *He chemical potentials on the two sides of the |

membrane,

_;Ammuv N, vavﬁfA%lﬁ, N, ?AIBY

where # is the overall pressure in the solution. This equality together with

the thermodynamic identity for the pressure at 7= 0,
F=N,dp, +N_dp_+N,dp,,

leads to the following expression for §17:

du I :
8IT= (N - +N_ 8N
VAN, [y L +
i Op
+¢ N_ wl_)w 2++2.+ N . SN_. ﬁw@v
In accordance with eq. (3.3) the chemical potentials i, are equal to
S | .. g (3.10)
SR T 2MT T .
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and direct integration of eq. (3.9) results in
T(ND, N N@, N®) = (N, NOY -~ T (NP, ND),
. . (3.11)

daah®
M

Amﬂ.wvm\umm
SM

ﬂ?ﬂw\wgr?.\W\u.—x_; N.N_.

Oo(N,, N_)=
,mxmﬂmmmmou (3.11) for I, actually a.ﬁnaam:m.m z.ﬁ pressure :,._ zﬁwm ,Uu EM
impurity quasiparticle gas. If the mm_z polarization 18 aoﬂ.n:‘_“_nm émw. &
magnetic field, the spin densities N, in the square brackets in t Mo.n._o o of
eqs. (3.11) can be expressed by the spin densities of a vo_mn._mn idea omo:
N@ using eq. (3.7). As a result the mnﬁms.aacoo of the 8395.9..”%5
the polarization takes the following form in a degenerate solution:

1/3 -1/3
Hy(P) _ NP4V [ 20maNi 2 N NNy
:oAOv - .?mu\u Aaﬂ.mvu\u 2+\ “+ Zl

(3.12)

i ) - . . - .—.—
The polarization dependence of T, (P)Y/T1,(0) 1s w.ros.s in rm. 3in .ﬁ m
ideal gas approximation (without interaction corrections). Some numerica
results for IT,(P) including the interaction terms at nonzero temperatures

can be found in Owers-Bradley et al. (1984b).
16
15 |
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13 7

/ P
g2 o4 . g5 08 10
Fig. 3. Polarization dependence of the relative change of the osmotic pressure JI(P)/ IT{0), eq.

{3.12) teurve 1) and of the second-sound velocities .qms_“:uv\mw::‘ eq. A.“.:.s (curve 1) and
. ...WQNA w«\qwﬁd. eq. {3.13) {curve 2} in dilute degenerate solutions,
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The pressure in a dilute gas is determined by the characteristic momen-
tum of the particles. In a degenerate gas the particle momenta P, depend
on the polarization, leading to a considerable polarization dependence of
the pressure (3.12). In a nondegenerate gas the momentum of the particles ©
is determined by the temperature and practically does not depend on the
polarization.. Therefore, the magneto-osmotic effect, being strong in al
degenerate solution [eq. (3.12)], decreases with decreasing degree of degen- ;
eracy, and in the limiting case of Boltzmann sclutions the osmotic pressure

depends on the spin polarization due to the presence of the small interac-
tion corrections exclusively.

A successful observation of the magneto-osmotic effect has been made |
by Gully and Schmiedeshoff (1983). In this experiment the osmotic pressure
has been measured for a solution with a *He concentration of 1.6 x 10-* M_
(75 ~ 8 mK) in the temperature range between 50 and 5 mK. The magnetic |
field of 90 kOe (28H ~14 mK) made it possible to achieve a spin |-
polarization of the order of 70% at the lowest temperatures. Unfortunately, ©.
the detailed results of Gully and Schmiedeshoff (1983) are not available to b
the present author; it has only been reported that the results of the :

measyrements are in-good agreement with a simple gas model.

The other significant effect in thermodynamics is the dependence of the

second-sound velocity in a solution (the sound velocity in the *He impurity
quasiparticle system), s3 = (1,/M) 3I1,/3N,, on the polarization (Bashkin
and Meyerovich 1978, 1981, Meyerovich 1982, Greywall
1981, 1982). The expressions (2,24) lead for the second-sound velocity in
degenerate solutions with the f-function (3.6) to the following value in the
low-frequency (hydrodynamic) limit:

FORACIERS: N3
hummalva" ﬁ T v h zum\u 3
- 3M7 T NNV
61173 NLApL3 ’
X H+NAEV a—>L—= . (3.13)
7 N2 N1/3
and in the high-frequency limit wr, > 1 to
2 ) (67782 NP N2
SylwT; = oo) =
2 3M? N
61> N.N_
X TQAEV a—-* . (3.14)
T Zw\w!m: N33

and Paalanen

ol onane
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The relative changes of the second-sound velocities (3.13), (3.14),

hw:uw o= 8 _ Mm\;ﬂ\u
s2H(P=0) NP+ N2

3 139071 /307-1/3
7 NV34+ NI
Em:vw W oou _ Mu\wAZN\ufTZW\J
s3H(P=0) N7 .
3 —1/3
7 P A NI NS

are shown in fig. 3 in the ideal gas approximation (without the last terms in
ckets). o .
nEM\oW“.M:% H_ﬂw second-sound velocity is given v%. M._:w nrmnwo#wnm:o veloci-
ties of the *He quasiparticles. The Fermi ai.@o_:nm vy ina awmmsm_‘mﬁn
solution depend essentially on the polarization even in the ideal rmmm
approximation, in contrast to a nondegenerate mo_cﬁo:_ where the ¢l m:.m
acteristic velocities are nearly spin independent and m:mmﬂ m.‘o:a the therma
velocity v,= (T,/m)!/? only to the extent of small interaction effects. mo_.
this reason the polarization dependence of the maoo:@-mocza velocity
weakens with decreasing degree of degeneracy of the solutions. .
Experimentally the dependence of the second-sound velocity on EM
degree of polarization of the spin system rm.m been Smmm:anm by Q_.au.\ém.
and Paalanen (1981, 1982) for solutions with three "He no:oo:ﬁm:o:umw
1 =10"2 (7;~120 mK), x,=3x107° (T,~54 mK) and x, ﬁ%mo
(T, ~ 25 mK), at temperatures above 10 mK in a Emms.n:o. field of 9 ; M
(28H ~14.5 mK). The [requency of the sound o.wn_zm:oa was abou
several kHz. A trivial estimation of the miclear dipole relaxation .:39
1y~ KTy /B*NFT? ~10% s K2/T? shows that wry > 1, Mwa the experimen-
tal results give the value of the second-sound velocity s5°. ﬁ.& nmﬁn:&m?
tal data of Greywall and Paalanen (1981, 1982) are plotted in-fig. 4. uwo
dashed lines correspond to the values of {s{®'(H; H.v -5, 6“ Ty} \&6_ )]
caleulated by Greywall and Paalanen (1981, 1982) in the ideal Fermi mmw
model at finite temperature. The points A, hp,.\r denote the <m._:mm 0
{s{O(H; 0) — 5,(0; 0}} /5,(0; 0) for Eo.oozom::mﬁoam X), Xps Xy, Tt is clear
that the agreement between the experimental and theoretical data is very
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Fig. 4. Temperature dependence of the relative change of the second sound velocity i
s4V P T /54(0; T Experimental data and the calculations (in the ideal gas approximation)
of Greywall and Paalanen (1981, 1982); O (curve 1): *He concentration X =1073 (T, ~ 26

mK); ® {curve 2): x, =3x1073 (T, ~ 54 mK), m (curve 3 2y =1072 (T, ~120 :iﬁw.. The
points Ay, A, Ay correspond to the values of s§7(P; T=0)/5,(0; 0) in a field of H = 93 kQe |

for the concentrations x;, x,, x3. .

good, va results of Greywall and Paalanen (1981, Homwv,oosmaa_ the main |
theoretical predictions (Bashkin and Meyerovich 1978, 1981): an increase of ,.

the second-sound velocity with increasing polarization and a decrease of the

polarization dependence with decreasing degree of the quantum degener- |
acy. The accuracy of the experimental data is high enough to show the ;
difference between s{” and s{*’. Unfortunately, even for the highest *He |
concentrations (1%) the interaction corrections are too small and cannot be &

extracted from the experimental data.

It was mentioned in section 1.3 that for nearly full polarization the *He |
quastparticle interaction is associated with p-wave scattering because the “

s-wave scattering 1s ineffective for spin-1/2 fermions with equal spin
projections. In this approximation the Fermi liquid function of fully

spin-polarized *He | - *He solutions is equal to (Bashkin and Meyerovich
1977, 1981)

A 7bp?
E:WMMMUMA%\‘NUv

7(6)= =27
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where pg —21/3p, is the radius of the Fermi sphere for the fully polarized
gas. The value and the sign of the constant b ~ a® are unknown at present.
The effective mass of the Fermi liquid excitation is

m, = M{1+2y(pp/p.) —120bN, },

where it has been taken into account that the effective mass of the bare He
quasiparticles (1.1) is equal to

M, =M/(1=2%yp2/p?).

The total energy of the fully polarized degenerate solution at T'=0,
including the quasiparticle interaction, is

3, 2 .
E=EP = NA+ o piNs (1 $v(pr/p.) + 7bN; | = BHN,,

and the single-particle energy of the Fermi liquid excitations has the form

2 2 ' 367
e(p)=—8+ %m (1—v(p/p.) +127BN, } + 1557 PO
= BH + 8e( p).

The limiting value of the osmotic pressure is equal to

) ‘
-y
ﬁoﬁﬁﬂdﬁmzum%wﬁ I%<mhﬁ\nov~+woav>ﬁw

in first order in the interaction for a fully polarized solution {for details see,
e.g., Bashkin and Meyerovich (1981)].

4. Transport phenomena and magnetokinetic effects

4.1. VISCOSITY, THERMAL CONDUCTIVITY AND ABSORPTION OF SOUND

. A gigantic growth of transport coefficients such as the viscosity and the

thermal conductivity on polarization of the spin system seems to be one of
the most striking and peculiar polarization effects in a quantum gas of
fermions. The corresponding phenomena have been called magnetokinetic
effects. , , ,

Magnetokinetic effects were first predicted for degenerate Fermi gases
(Bashkin and Meyerovich 1977, 1978), but it soon became clear (Meyero-
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vich 1978) that such effects can be observed at an arbitrary degree of
quantum degeneracy of a Fermi gas. The explanation of these effects 18
quite simple. As was stated above more than once, in a quantum gas (1.4),
(1.5) (e.g. in the *He quasiparticle gas in *He | —*He solutions) the particle
collisions reduce mainly to s-wave scattering. Due to the Pauli principle,
only collisions of particles with antiparallel spins are effective in s-wave
processes for identical spin-1/2 particles. Since the particle mean free paths
are inversely proportional to the density of scattering centres, the mean free
paths /, of particles with spin projections +1/2 are of the order of
I, ~1/N;a’ It is evident that at full spin polarization N_— 0, and the
mean free path /, of the particles with spin-up increases infinitely, /, — oo,
This leads to a corresponding increase of the viscosity and thermal conduc-
tivity. At full spin polarization the s-wave processes are ineffective, and
p-wave scattering becomes the main interaction channel, with a cross-sec-
tion of the order of ¢, ~ a’( pa/h)*, where p is the characteristic momen-
tum of the particles. As a result, the ratios of the viscosity coefficient 5 and
the thermal conductivity coefficient & of a fully polarized gas to their values
in a nonpolarized system is inversely proportional to the ratio of p-wave
and s-wave cross-sections:

k 4
IA h v

2W(P=1) (1) o
((/Ma*)/TY,

n(P=0) To,
(B/Ma?) Ty} ~ x4, T=<T,,

&(0) o

P

T=T,,

(4.1)

where x is the atomic density of the gas (in our case x is the 3He
concentration in the *He | —*He solution). For quantum gases (1.4}, (1.5)
such an increase of the transport coefficients may be very large, and one
can observe the transition to the Knudsen regime.

The dependence of the transport coefficients on the spin polarization is
determined by a solution of the kinetic equation. In our case the kinetic
equation coincides formally with the system of two'kinetic equations for a
binary mixture of gases with densities N, and N_. These two equations for
the distribution functions n, of up and down spins are coupled through
the collision integrals. Such a coupling must result in the existence of four
different longitudinal (exchange) relaxation times. This coupled system of
two kinetic equations has to be solved in the same manner as in the case of
an arbitrary binary gas mixture.

1t turned out that these two kinetic equations always decouple in the case
of dilute quantum gases with s-wave interaction, and there are only two

4
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independent longitudinal relaxation times =,. As a result, the viscosity and
thermal conductivity coefficients n and « have the following form for dilute
degenerate >He | —*He solutions (Bashkin and Meyerovich 1978, 1981):

n(P) _ (p/py) 2+5d°—3d"

7(0) 2d* 5342 Wy
k(P)  (pa/py) 4+3d*+d° iep I

o aaar o TP

where n(0) and «(0) are the viscosity and thermal conductivity of non-
polarized solutions. The polarization dependences of the relative changes of
n and « (4.2) are shown in figs. 5, 6. The expressions (4.2) have been
obtained on the basis of an approximate method developed by Abrikosov
and Khalatnikov (1957) for the kinetic equation in a degenerate non-
polarized Fermi system. It is well known that the exact solutions of the
kinetic equation (Brooker and Sykes 1968) differ from the results of
Abrikosov and Khalatnikov (1957) by considerable correction factors. In

1)

¢

as P10

I ]
o 46

Fig. 5. Polarization dependence of the relative change of the viscosily, (PY/n(0); 1:
degenerate solutions, eq. (4.2); 2: nondegenerate solutions, ¢q. (4.5).
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Fig. 6. Polarization dependence of the relative change of the thermal conductivity, x( P)/k (0% £

1: degenerate solutions, eq. {(4.2); 2: nondegenerate solutions, eq. (4.5).

the case of nonpolarized dilute *He—*He solutions (Bashkin 1977, Bashkin

and Meyerovich 1981) these factors are equal to 0.81 and 0.52,

1 p
247 (MaT)’

_ 3
RAB = 17

dAOv" 167 A.?HQVMH.

-0.81,

and in the case of fully polarized solutions in the p-wave scattering
approximation (Bashkin and Meyerovich 1977, 1981) the Brooker and}

Sykes factors are equal to 0.79 and 0.55,

T 2R N
iC!MAﬂ%v Po-0.79, «(1)=

B VM 0.55

35«
24wbM [  p,

2A3.6T

Nevertheless, the corresponding corrections to the relative changes of the |
viscosity and thermal conductivity (4.2) turned out to be very small and do
not exceed 8% at an arbitrary degree of spin polarization [Mullin and |

Miyake (1983); the exact formulae of these authors are rather cumbersome].
The difference in 5{0) and «(0) between Mullin and Miyake (1983) and

052, (4.3)}
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Bashkin (1977) seems to be caused by the different definitions of the
scattering length a.

The expressions (4.2) for the transport coefficients of a spin-polarized
degenerate gas are inadequate at very high degrees of polarization, N_ — (.
When N_ — 0, the degeneracy temperature for down spins T'_ ~» 0, and the
corresponding subsystem becomes nondegenerate. In this case one has to
treat a He | —*He solution as a “semidegenerate” system [eq. (1.3)]. If
N_— 0, the viscosity i behaves as (Meyerovich 1978)

283 (T,
5M_8 mﬁ (44)

u\p
xl V(z), z=(2*°T,—2pH)/T,

with the function

-1
P O S Sl £ exp(r—z) 1+ exp(t)
QANVHM .\m.u.

1+ exp(z)

In

3

1+exp(t—z) exp(r—z)—1

plotted in fig. 7. (In eq. (4.4) the spin polarization is supposed to be caused
by an external magnetic field.) The dimensionless parameter z in eq. (4.4)
characterizes the degeneracy of the distribution function n_, When z > 1,
the systemt of down spins is degenerate (z=T_/T, V(z)= z7%?), and eq.
(4.4) coincides with eq. (4.2) in the limit p_/p, — 0. In the opposite case
z— — oo the function n_ becomes the Boltzmann distribution function and
the viscosity n (4.4) depends exponentially on the temperature and the
magnetic field: ¥(z) = 0.70 exp{ —z). Thus, at high polarizations the growth

vigl &

N Fig. 7. The [unction ¥{z), eq. (4.4).
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of the kinetic coefficients becomes somewhat slower in comparison with eq,

(4.2), and the limiting values w(1) and k(1) are reached through the
semidegenerate region (4.4).

For polarized nondegenerate Boltzmann solutions the kinetic equation
coincides with that for a binary mixture of classical ideal gases with

densities N, and N_. Hence, one can obtain the values of the transport’

coefficients practically without calculations, using well-known results of the
Chapman—Enskog theory for transport phenomena in classical binary
mixtures. In our case there are some additional simplifications. First, in the
s-wave scattering limit the scattering amplitudes and cross-sections do not
depend on the particle momenta. Thus, we are interested in the results of
the Chapman—Enskog theory in the simplest hard-sphere approximation.
Second, in considering the s-wave *He--“I1e collisions one has to take into
account only the interaction of particles with opposite spin projections, i.e.
the collisions of particles from different components of the classical binary
mixture. Therefore, in the expressions of the Chapman—Enskog theory [see,
e.g., Hirschfelder et al. (1954)] one has to put formally the scattering
cross-sections of particles with atoms of the same component equal to zero,
W, = Wy, =0, and to take into account only the collisions of atoms of
different components with the scattering probability ¥, = W,, = const,,
independent of the momenta. ’

Due to these simplifications the cumbersome formulae (Hirschfelder et
al. 1954) for the transport coefficients of classical binary mixtures become
much more transparent, and after some algebra one can obtain the follow-
ing expression for the transport coefficlents of spin-polarized nondegener-
ate *He | —*He solutions:

9(P) _ N +3(N,-N) 5 (wMTY'?
7(0) AN, N ’ 1(0) ~ 8 dwa?
k(Py  SHN2+N2)+54N N_
k(0) 172N, N_ : (43)
()= B T
32 4ra?

The relative changes of the viscosity and thermal conductivity (4.5) with
polanzation can be found in figs. 3, 6. The above method of calculation was
developed in Meyerovich (1982) for the transport phenomena in nondegen-
erate *He | —*He solutions. Lhuillier and Lalog (1982) analyzed the kinetic
equation for the general case of a spin-polarized Boltzmann gas and
reproduced the Chapman-Enskog procedure for longitudinal transport
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phenomena. Of course, in the low-temperatare quantum region (1.4), (1.5)
the results of Lhuillier and Lalog (1982) coincide with eq. (4.5) (there are
some insignificant numerical differences between the results of Meyerovich
(1982) and Lhuillier and Lalog (1982) in the values of the transport
coefficient at zero polarization). Certainly, the results of the Chapman-En-
skog theory for binary mixtares make it very easy 1o generalize eq. {4.5) in
order to take into account the real energy dependences of the scattering
amplitudes and to obtain results valid at higher temperatures. .

The growth of the kinetic coefficients (4.2), (4.5) can be limited by
p-wave scattering processes, by *He quasiparticle collisions with the walls,
and by the collisions of *He quasiparticles with some other excitations of
3He | —"He solutions (for example, with phonons). The last scattering
mechanism turned out (Meyerovich 1978) to be ineflective and can in-
fluence the magnetokinetic effects only in nondegenerate *He—“He solu-
tions with very low *He concentrations,

x<(0/Ms2)(T/0)" 7,

where & and s, are the Debye temperature and the first-sound velocity in

_pure He 1L

The above transport phenomena are stationary processes and cannot
demonstrate the existence of two different longitudinal (exchange) relaxa-
tion times 7. The presence of different relaxation times can be exposed in

- dynamic processes with finite frequencies, for example, in sound propa-

gation. The absorption of first sound was investigaied in Meyerovich (1982)
for degenerate spin-polarized *He | —*He solutions. The first-sound waves
in dilute *He—*He solutions are mainly oscillations of superfluid He IL
Though *He quasiparticles also participate in these oscillations, their in-
fluence on the sound velocity is small because of the low *He concentration.
However, the attenuation of first sound at low temperatures is predomi-
nantly due to the *He impurity component. Though the polarization of
solutions is unimportant for the sound velocity, it must cause a tremendous
change of the sound absorption because of magnetokinetic effects. Tt is
clear that in spin-polarized solutions there are two absorption maxima at
frequencies wr = 1 instead of a single maximum w7 =1 in a nonpolarized
solution.

Tn a dilute degenerate spin-polarized solution the longitudinal relaxation
times T, are given by

(4.6)

S Gt
= .
Am MAaT] 5 _3(p./p. )\ P=
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Both relaxation times 7, are related to the corresponding “dynamic”
viscosities, .

ny=7.N pL/SM,

(4.7)

while the “static” viscosity (4.2} is equal to 5 =n, +n_. In the first-order
approximation in the *He concentration the absorption coefficient for first
sound takes the form

+ , 3.8

where «=(N,/m,s2) 3(—A)/dN, (at the saturated vapor pressure pre-
sumably a~0.3). In the truly hydrodynamic regime wr, <1 the sound
absorption coefficient in degenerate solutions 1s given, as in an arbitrarily
degenerate Fermi system, by the value of the static viscosity =7, +7n_.

As the polarization grows, the sound absorption maximum (4.8) at the
frequency w=1/7, increases in value and moves to vanishingly low
frequencies, while the second maximum at the frequency w=1/7_ remains
at the same position and decreases to zero. Note, that, as a result of the
magnetokinetic effect, the relaxation time 7, {4.6) increases practically
without limit with increasing polarization, and at high degrees of polari-
zation only quasistatic oscillations are truly hydrodynamic; at high degrees
of polarization 0 < {1 — P) <1 the condition w7, <1 corresponds to the
numerical inequality «[s™1] <5 X (10x}°)*T2 /(1 — P)mK~?], where x is
the *He concentration. _

Up to now there are no calculations of the magnetolkinetic effects in the
intermediate (between Boltzmann and degenerate) temperature region.

As far as the author knows, there have been no direct measurements of
the polarization effects on the transport phenomena in *He | —*He solu-
tions, though several groups had planned corresponding experiments. The
only experimental result is associated with a weak increase of the second-
sound absorption coefficient in a magnetic field observed by Greywall and
Paalanen (1981, 1982). But such an increase could not definitely be inter-
preted as a sign of a magnetokinetic effect; the experimental cell of
Greywall and Paalanen (1981, 1982) possessed a very complicated geome-
try, and the results on sound absorption could not be subjected to a
quantitative analysis. ‘ .
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4.2, SPIN DIFFUSION, SPIN THERMAL AND PRESSURE DIFFUSION. SPIN SECOND
VISCOSITY

The longitudinal spin diffusion coefficient D, (2.3)-(2.6) has to be calcu-
lated using the diagonal (in spin space) kinetic equation for the single-par-
ticle density matrix. In a polarized gas of spin-1,/2 particles (*He }-*He
solutions) this coefficient is essentially analogous to the usual particle
diffusion coefficient in a binary gas mixture. For degenerate solutions
calculations on the basis of Hone's scheme (Hone 1961) lead to the
following polarization dependence of the coefficient D (Meyerovich 1982):

(the small correction t0 eq. (4.9) similar to the Brooker-Sykes correction
factor has been calculated by Mullin and Miyake (1983)), and in nondegen-
erate solutions the coefficient D, does not depend on the polarization
(Meyerovich 1982, Lhuillier and Lalo€ 1982):

?ﬂ\_&_iﬁ

(4.10)
47a u?w

.b u

3
1Tg

reflecting the fact that in a classical ideal binary gas mixture the diffusion
coefficient does not depend on the concentration of the mixture.
* The spin thermal diffusion ratio for nondegenerate solutions is equal to

S NN . 4.11
Nﬁ‘wﬂ,.l 43 _?m . A v
The results obtained by Meyerovich (1982) and Muilin and Miyake (1983)
for the spin thermodiffusion coefficient in a degenerate spin-polarized
solution are slightly different. The spin pressure diffusion ratio, calculated
with the help of the usual thermodynamic relations (Landau and Lifshitz
1978), is equal to (Meyerovich 1982)

K= IHHo?wZH\ZL\mﬂL iR

3 ZM\NZW\M

- £ LR (v ) (V)

(4.12)

in degenerate solutions, and is equal to zero in the nondegenerate case
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because in binary mixtures of ideal Boltzmann gases the pressure diffusion
coefficient differs from zero only when the masses of the particles are
different in both gases.

However, this approach to the pressure diffusion on the basis of the
thermodynamics of irreversible processes is not always correct. It is well
known (Zhdanov et al. 1962) that the pressure diffusion coefficient is often
renormalized in the presence of viscous flows in gases. In our case of spin
pressure diffusion in polarized solutions (4.12) this renormalization for
degenerate solutions, tesulting in small corrections in T/7, is insignificant,
On the contrary, in the Boltzmann temperature region the thermodynamic
pressure diffusion ratio differs from zero only due to small interaction
terms, and the viscous renormalization becomes dominant, excluding very
high polarizations when the viscosity is very large. In this region the spin
pressure diffusion coefficient is given by the expressions of Zhdanov et al.
(1962) rather than by the thermodynamic expressions for binary mixtures of
gases of particles with equal masses (Landau and Lifshitz 1978, Hirsch-
felder et al. 1954).

The spin diffusion coefficients (4.9), (4.10) do not depend on the spin
polarization in the same way as the viscosity and thermal conductivity
coefficients. In degenerate solutions the coefficient D, not only does not
increase with the polarization, but even tends to zero. This is due to the fact
that the diffusion in binary mixtures is determined using the condition of
absence of total mass flow. This condition results in the tendency (4.9)
D, > 0 for N_— 0 because the Fermi velocity for down spins v_ decreases
when N goes to zero: v & N*/*— 0. For Boltzmann solutions the char-
acteristic velocity does not depend on the spin polarization and is de-
termined solely by the temperature, vy = (T/M)'/?, leading to the absence
of a polarization dependence for D, (4.10).

Let us list also the values of the longitudinal diffusion (exchange)

relaxation times. For degenerate solutions the corresponding relaxation

time is connected with the longitudinal diffusion coefficient as

2.2

_ T Nde?
e 2 1
3N VLA N_E

D (4.13)

In accordance with eq. (4.9) this expression means that 7, does not go to
zero when N_ — @, but has a finite limit:

3 h{ R

(N-=0) = g0

T|.
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For Boltzmann solutions

Dy/my= 07, (4.14)
where vy = (T/M)"/? is the thermal velocity of the 3He quasiparticles. For
semidegenerate solutions (1.3) the longitudinal relaxation time

2.2
W: _ Ny’ o7

"y - w2+tm.+~<[cw.

~vi/3. ?:mv

The calculation of the spin second viscosity (2.14) for dilute solutions is
trivial. For degenerate spin-polarized solutions (Meyerovich 1982)

o= 208 o VNN V) (4.16)
R IM2 d Eum\uﬁ.zw\u._‘ZHl\J )

In polarized solutions the ratio of the first and second viscosities is
determined by the parameter w’r 7, where 7, is the viscous relaxation
time (see section 4.1). A rough estimate shows that at T~ 1 mK the second
viscosity dominates in dissipative phenomena only for quasistationary
processes. In the Boltzmann temperature region the bulk viscosity is equal
to zero in the ideal gas approximation when in eq. (2.11) AND/BN; =
N©O/N,. In this nondegenerate case the spin bulk viscosity is always small
and differs from zero due to subtle interaction effects only. Certainly, this
also concerns the (second) sound frequency dispersion.

5. Transverse spin dynamics and spin waves

5.1. THEORETICAL RESULTS

Other interesting peculiarities of spin-polarized 3He | -*He solutions are
the transverse spin dynamics and the possibility of spin wave propagation.
Basically, long-wavelength spin oscillations with a quadratic dispersion law
{of the ferromagnetic type),

w=8,+ (A4 —iB)k?, (5.1)
can propagate through an arbitrary exchange system with ‘an intrinsic or
induced magnetic moment. Here @, =28H/h is the usual precession
frequency of the magnetic moment in an external magnetic [ield, & is the
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wave vector of the oscillations, and the real coefficients 4 and B are
determined by exchange interaction processes and give the velocity and
attenuation of the spin waves; the condition of low damping has the form
A = B. The coefficient A is related to the existence of a molecular field, and
the coefficient B to the relaxation processes (the incoherent interaction).
The fact that the spin waves (5.1) may be low-damped in polarized
degenerate solutions is not surprising: a degenerate solution is a low-density
Fermi liquid in which the spin polarization leads to the existence of Silin
waves (see section 2.2). In this case the low damping of spin waves is
associated with a strong molecular field (a Fermi liquid interaction) and
with a long characteristic relaxation time proportional to (T,/7T)? = 1. The
surprising fact is the possibility of spin wave propagation with low damping
in nondegenerate (Boltzmann) solutions: usually the incoherent interaction
in classical Boltzmann gases is more effective than the coherent interaction,
and B ® 4. Maybe the only exception is a quantum gas (1.4), (1.5). In
quantum gases the large wavelength of the guasiparticles (compared with
the interaction radius) makes the coherent interaction effects strong enough
to provide spin wave propagation even in the Boltzmann temperature
region. Note that for Boltzmann spin-polarized quantum gases the existence
of spin waves is the most striking consequence of the presence of a strong

molecular field, and for pure quantum gases the spin waves (5.1) represent .

the only possible type of nonsound collective modes. To some extent, the
possibility of spin wave propagation in spin-polarized quantum Boltzmann
gases contradicts the usual views on collective phenomena in gases.

The spin dynamics in spin-polarized *He | —*He solutions can be easily
investigated in the dilute quantum gas approximation (1.4), (1.5), irrespec-
tive of the degeneracy of the gas, The kinetic equation for the single-particle
distribution function (density matrix) A_{ p) has the usual quasiclassical gas
form .

0A 84 98 0 9E 1

= oo o ok [, ] = L(#),

ar apor @rap 7 (52)

where Mﬁmv is the colliston integral, and [£, #] is the spin commutator of

the spin matrices of the single-particle energy & and the distribution
function #A. The kinetic equation can be linearized in the small deviation 84
of the distribution function from its equilibrium value, A=/, + 84. In the
quantum gas approximation (1.4), (1.5) for the nearly ideal spin-polarized

quantum gas of *He quasiparticles the equilibrium distribution function is
diagonal in spin space,

(5.3)

fo=3(n,+n VI +1(n, —n_)ée,
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when the z-axis is chosen along the direction of the magnetic moment
e=M/M (6 are the Pauli matrices, /=28, is the unit spin operator, and
n, are the (scalar) gas distribution functions for the particles with up and

down spins). The functions n are given by

-1
n,= ?+oxw:mwltwu\ﬂ: . (5.4)
If the spin polarization is the equilibrium one and is determined by an
external magnetic field, then the chemical potentials p wop.. up and down
spins are equal to each other, p, =p_= ps( Ny, H), where

s = (3F/3N,) y,. == 15 + DF, /0N,

p® is the chemical potential of the particles of the ideal gas with ﬂrw energy
specirum (1.1) in an external field, and F) is the interaction correction (3.2)
to the free energy F of the gas.

The single-particle energy of the interacting particles is given by eq. (3.5),
and the diagonal (in spin space) components of the equilibrium energies for
up and down spins are given by

P 2aah? N, ~N_

F ELAUSSA B ek . (5.5)
257 TP 3 N

g —AF M

The molecular field in the Harniltonian (3.5},

bem 27 1 EP pepsa(py—aspesa(p)).  (56)
M) (amny
coincides formally with the Fermi liquid interaction determined by the
f-function (3.6) at an arbitrary degree of guantum degeneracy of the gas.
The inclusion of this term demands special justification for nondegener-
ate systems (see section 3). Usually in nondegenerate systems this »mmﬁ lies
beyond the accuracy of the calculation due to the damping of .:,a single-
particle excitations, to nonlocal, quantum and incoherent corrections .ﬁo the
left- and right-hand sides of the kinetic equation {5.2), etc. However, 5.5@
case of quantum gases (1.4), (1.5) one may always 8_.8 E.m _.:o_mo_.:mq field
(5.6) into account. The reason is that the Eoﬁo,o:w:. :a_n._._: gases is always
proportional to the forward scattering amplitude (linear in @) and leads to
corrections to the particle energy of the order of a/A. Nenlocal m:.m
relaxation corrections to the single-particle energy result for dilute gases in
higher-order terms in this parameter: the damping is always quadratic in
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the interaction (quadratic in a), and nonlocal terms contain an additionat
differentiation 3,/3r% ~ p2/h? ~ 1 /A%, also leading to the additional factor
(a/A)?. Our quantum limit (1.4), (1.5) formally corresponds to the condi-
tion @ — 0, and the molecular field, being the leading term in «, can be
taken into account. More detailed comments on the validity of the molecu-
lar field approach to the spin dynamics of spin-polarized quantum gases
have been given by Bashkin (1981, 1984a,b) [see also Meyerovich (1985)]

The possibility of propagating spin oscillations is determined by a strong
molecular field (5.6) in quantum gases (1.4), (1.5) and by the spin polariza-
tion of gases, which results in a nontrivial role of the spin commutator
[2, 7] in the kinetic equation (5.2). The transverse spin dynamics is governed
by the equation for the transverse (to the direction of magnetization e)
components m,, m, of the vector mt= Sp,d d4. The linearized kinetic
equation for the Fourier components of the circular projections of the
magnetization vector m ,=m_ +im is easily reduced to

(ko= Qy+ @, Ym

_ 2mak? dn, on_ 2

&mﬁ
M ko de, +mm| |M?+I:| .\»E

= Sp.6. L(A), (5.7)

at an arbitrary degree of degeneracy of polarized solutions. Here ;=
2BH /h, and the internal frequency {2,

(5.8)

determines the da_wonmmwon frequency of the magnetization vector in the
molecular field. The exchange interaction of the 3He quasiparticles con-
serves the total spin, and

\mimg dr=0. (5.9)

Collisions lead only to a spin current. The corresponding collision contribu-
tion to the spin current can be described using the relaxation time ap-
proximation. In a system with a single preferred direction (the vector
e=M/M) there are two characteristic exchange relaxation times: the
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longitudinal and the transverse relaxation times 7, and 7, . In this case the
collision integral must be parametrized as

. 1 11
[b,sp.6L(R)Y AT = = —J—{ -~ elel),
L:

.
i L

(5.10)

where J, is the usual spin current,

J= T_. Sp,é 84 dT.

It is evident, that for a dilute (N;a®=<1) quantum gas (L.4), (1.5) the
inequality Nya® < EMa*/h* (E is the characteristic energy of the particles)
can be rewritten as dn/de~1/E < (Ma*/h) /(Na®), and the first term 1n
the curly brackets in eq. (5.7) is negligible in comparison with the second
term. We are interested in the spin wave spectrum in the long wavelength
fimit 8, kv <8, (Sw=w—12) In this limit the spectrum of spin
oscillations can be easily derived by a simple expansion in 8w/, and
kv/82,, at an arbitrary degree of degeneracy (Meyerovich 1985)

0 1 k2 1—i/8,7, 2+Acmv+|2|?~v\
=0+ = .
OO 3 Q1410202 N, —N_

int

(5.11)

Here and below the mean velocities {v') . are defined as
d’p
(27h vu

1
?an,zﬂ?“f

.. > L. The relaxation time
is of the order of 7~ H\anu, and, according to eq. (5.8), the condition of
small damping is always met for a gas with not very low polarization,

“The damping of spin waves is small when 2,

N,—N_ th]
N, AT

P=

The last condition can be easily met for a quantum gas (1.4, (1.5) mm:mm
(a/A)<1. In the limiting case of ‘degenerate .mo_c:owm, (v =10
(v.=p,/M are the Fermi velocities of the vmn._o_mm with up mwa down
spins), the spectrum (5.11) takes the form (Bashkin and Meyerovich 1978,

1981)

o 1 k? 1—-i/0 7, N, oA —N_v%
= o} =
O S Q1 1/0Q2 73 N,—N_

1

: (5.12)
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In S.n. Boltzmann temperature region 7= T, the values of the mean
velocities are equal to each other, (v®), =303 (vp=(T/M)/? is the
thermal velocity), and the spectrum (5.11) is reduced to (Bashkin and
Meyerovich 1979, 1981) *

K 1-i/Q,,7,
it 1+ 1/Q2,72

@=£8+ . (5.13)

In semidegenerate solutions (1.3) with T = T'= T'_ the spectrum w_Wm the
form (Meyerovich 1985)

K 1-1i/Q,7, AN,/5-viN_
D 1+1/02 72 N.—-N_ 7

w={+ (5.14)

and practically coincides with eq. (5.12) because N_ <N, vy <v,.
The macroscopic equation of motion for the transverse components of
the magnetization vector M_ , ‘

Eku.ﬂ = -\-QHJ mﬁa%««.ku\mn.

can be obtained using the procedure developed by Leggett (1970) for a

m@maumamﬁwmddm@2032::Hoévo_mmmmmo:.U:moﬁmswomum:o:%nn.
(5.7 yields .

M, +v,J, +2lexM]=0,
Jo (8= Qe x J) + 1,
4

N () N 19
N, -N

+IVM, 0,

M, =M-eleM), J, =J—e(el).

i

) * .Zoﬁ. that eq. (2.22) of Bashkin and Meyerovich (1979) for the spectrum is invalid; the
misprint is corrected in eq. (4.8.5) of Bashkin and Meyerovich (1981).
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The solution of egs. (5.15) coincides with the equation of motion (2.7} at
arbitrary degrees of degeneracy and polarization (Meyerovich 1985):

. D 2 2
M, +QfexM]— = Am 9

H_.+_©.-q_~. mqu..nung._.u_l@ma"ﬂ._. eX ﬂgk VHOv
i

(5.16)

where the transverse spin diffusion coefficient D, 1s retated to the corre-
sponding relaxation time 7, (5.10) by

r 2+Ac~v+|ztAcmvi i

D, =51, N N - (517)
In the Boltzmann region relation (5.17) takes the form
D, =uvpT,, © (5.18)
in a degenerate system
2 2
and in semidegenerate solutions
D =1, UN SN 2 (5.20)

N,-N_

while the longitudinal diffusion coefficient Dy is related to the longitudinal
relaxation time =, (5.10) by {Meyerovich 1985)
q.__Zw

RGN R .

b_m

Relation {5.21) coincides f.::,nﬁ_w. {4.13)—(4.15) in the corresponding limits.

The macroscopic equation of motion (5.16) and the spin wave spectrum
(5.11) can be used both in the * hydrodynamic” limit 8w 7 <1 and in the
“collisionless” limit 8w 73 1. The only limitation on the frequency is
$e < £,,,. This condition and the condition of low damping, 2,7, > 1, do

not depend on the value of 3w . Such a situation is common for oscilla-
tions in systems with a large internal frequency caused by interactions. In
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our case the role of the “plasma” frequency is played by the precession
frequency £2., (5.8) of the magnetization in the molecular field. Note that
the denominator 1 + 22,72 in egs. (5.11), (5.16) can be taken into account
only in the low-frequency limit 8w 7 <1 when 8w/@;, <1/, In the
opposite case 8w 7, = 1 the neglected higher-order terms in 8w/{;, may
be more important than small corrections of the order of 1/82;,7, .

When Dy=1D,, the equations for the spin dynamics become isotropic
and formally coincide with the equation of Leggett (1970). Certainly, this is
true for low polarization when D, =D, , 7y=7, and D/r=1/(v7%). The
isotropy is also likely to be observed in a polarized Boltzmann quantum gas
when, according to Lhuillier and Lalo& (1982), D, = D, and [see eqgs. (4.14)
and (5.18)] Dy/my=D_ /7, = v2. However, according to Bashkin (1985),
there are reasons to suppose that even in polarized Boltzmann quantum
gases the spin dynamics may turn out to be anisotropic, and the gquestion
seems to be unsettled. Nevertheless, it is clear that the degeneracy of a
spin-polarized gas of fermions always leads to a strong anisotropy
(Meyerovich 1985). While the degeneracy of a Fermi gas results in propor-
tionality of ' to (T/T;)? the expression for r7! in polarized gases

L
contains a term without such a small factor. The value of =, determines the

damping of the nondiagonal elements of the density matrix for single-par-’

ticle states. In the general case of a degenerate polarized Fermt system these
elements do not correspond to well-defined single-particle excitations with
long lifetimes remaining near the definite Fermi surface. Mathematically
this means that the collision integral for evaluation of 7, contains a term
not with a 8-function of the total energy of the colliding particles 8(e), but
with P(1/¢). Thus, in a considerably polarized degenerate Fermi system
7t el and r71 is small for a spin-polarized degenerate quantum gas
only due to the low density of the gas. Unfortunately, there are no
consistent calculations of 7, in spin-polarized gases even in the limiting
cases of degenerate or Boltzmann systems in the s-wave scattering ap-
proximation for slow particles. .

For a degenerate spin-polarized dilute gas the spectrum of spin waves
(5.12) was derived in Bashkin and Meyerovich (1978), and the equation for
the spin dynamics in Meyerovich (1983, 1985). Note that these results differ
essentially from the well-known data on the spin dynamics of polarized
Fermi liquids (Silin 1957, Abrikosov and Dzyaloshinsky 1958, Leggett and
Rice 1968a,b, Leggett 1970, Platzman and Wolf 1973): for a dense Fermi
liquid all results were obtained and can be used only for fow spin polariza-
tions. For a degenerate polarized dilute Fermi gas there are no difficulties
associated with nonlocal effects and with the use of the nondiagonal
elements of the single-particle density matrix, and egs. (5.12), (5.16) are
valid at arbitrary degree of spin polarization. : :
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_,Ean possibility of spin wave propagation in polarized Boltzmann systems
was predicted for the first time, presumably, by Aronov (1977) for the case
of an electron gas in semiconductors. However, m..a model mE.:omor cm.&
by Aronov (1977) cannot provide a correct description of the spin au\:mm.:_nm
in real gases. Spin waves in polarized Boltzmann gases of heavy particles
(atoms) were introduced by Bashkin and Meyerovich quc..zwi for the
example of *He | —4He soluiions, using the above molecular field m_uﬁno.wor.
Later Bashkin (1981, 1984a,b) and Lhuillier and Lalog Gwmwv.mnunqmrwma
these results to other quantum gases (including Boltzmann gases of bosons)
amd obtained the relations for the spin dynamics beyond the s-wave
scattering and the molecular field mwﬁmoﬁq:m_aﬁsm.m\Mgm:q:mn_dmooﬂwm _MM

ic equation for the spin dynamics in polarized bo zmann ga
M_M%mmo_m like eq. (5.16)] ﬂmm derived in EE::E.. and Lalo# (1982). Hro
anisotropy of the spin dynamics and the msﬁogwa_mﬁo.?mgnm: w.ozwam::
and degenerate) 89@@533 region were investigated in Meyerovich (1983,
1985).

52, EYPERIMENTAL DATA ON THE SPIN DYNAMICS

The transverse spin dynamics of *He| _*{e solutions have been studied in
experiments by Owers-Bradley et al. (1984a) m:a. by Gully and ZE:.:
(1984). The results of the former authors cannot be Eﬁﬁ.ﬁnﬂwa on ﬁ._._o basis
of the above theory of dilute quantum 3He | ~*He solutions: 1n these
experiments the 3f1e concentration was several percent, and Em.n:mnga
condition (1.4), (1.5) for the *He aCmmwﬁm:.ﬁ_o. £as Emw not fulfilled. .s_,rn
theory of a dilute quantum gas can be applied for “He concentrations
x<1%. At higher concentrations the expansion parameter pa/h for the
interaction is not small. This can be illustrated by the ﬁ.mom :;.ﬁ the mmoo.ba
term in the expansion in pa/ h for, e, the ﬁo.na_ liguid harmonics
becomes greater than the first if x ~ 3%. In the nxﬁnnﬂmaw. of Owers-Brad-
ley et al. (1984a) this fact was confirmed by the m%vo.a,:m Em:.om the 27.\:ﬁ
frequency shift in comparison with the conclusion of the a__&o.mow::o:
model with a < 0. As a result, the data of these authors can be interpreted

“only with the help of the macroscopic theory of spin-polarized Fermi

iqui ee section 2.2). .

rn_mwwm Ma contrary, :Nw experimental results of Oc:.% and ZE::. G@mé
represent a rather good test of the theory of the mﬂ_: dynamics in spin-
polarized quantum gases. In their experiments Mro He concentration n
3He | ~*He solutions was equal to x= 3.7 107* (the degeneracy temper-
ature T, ~ 13 mK), and the experiments were ﬁmq%on-.:& in the temperature
range between 15 and 700 mK. The spin polarization was caused by an
external magnetic field of 89 kOe (28H /T, ~ 1.04) and exceeded 30% at the
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Fémmﬁ temperatures. Thus, the measurements were conducted at relativel
high polarizations and at temperatures from the Boltzmann region down AM
the &mm.oﬁwnmo% temperature, and the quantum condition (1.4), (1.5) was met
except in the high-temperature region. , ,
The measurements were performed by a usual spin echo technique in a
magnetic H..R."E gradient of 2.6 kOe/m. The experimental data were treated
on ﬁ.ro basis of the spin dynamics equation (5.16) (including the field
gradient term) by two independent methods. In the first method the
a.oww:mnmoam of the echo amplitude on the time between pulses and on the
tipping angle were measured. These dependences could be described in
terms .& eq. (5.16), and the condition of best fit determined the values of
the adjustable parameters D, and &, 7, . The results of the measurements
of Eo phase shift for the spin echo signal (the second En:ao&. were
consistent with the amplitude measurements. The obtained temperature
dependences of the main parameters of the transverse spin dynamics, D
and &,,,7, , are shown in fig. 8. T
12.6 main problem in a quantitative comparison of the data of Gully and
Mullin (1984) with theoretical predictions is due to the above mentioned
m@mmdom. cm. direct calculations for D, and r,. Therefore, the theoretical
curves In fig. 8 correspond to the temperature dependences of D (T, eqs
(4.9), (4.10), and of bikﬂvﬁ_ﬁdu egs. (4.13), (4.14), (5.8), for MW:N_.,:msn.

T .
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Mpm. 8. %nEvnnwE_.m dependences of (a) the spin diffusion coefficient I, (b) the parameter

imT- @ experimental results of Gully and Mullin (1984) for D, and &, 7. . Theoretical

n“jam AoEQ.bm”na ..e.m.ﬂ: a=-135 HWL“ (a) curve 1: U.:ﬂv in nondegenerate mo__::onm‘ eq. (4.10%;
{b) curve 1: iamy i nondegenerate solutions, eqs. (4.10), (4.14), (5.8); curve 2: 2, 1, in
* - int

degenerate solutions, eqs. (4.9), (4.13), (5.8): curve 3: @, 7 calculated with 8, fromeq. (5.8),"
D, from eq. (4.9) and the ratic D /7 given by eq. (319 for D, and 7, . _
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(curve 1) and degenerate (curve 2) solutions (there are no calculations in the
intermediate region). For the s-wave scattering length we have taken the
value of Bashkin and Meyerovich (1981), a= —1.5 A.

The agreement between the experimental data and the simplest quantum
gas theory is fairly good. There are three main reasons for thz divergence of
the experimental and theoretical results. At low (and maybe high) temper-
atures the divergence may be related to the anisotropy of the spin dynamics
and to the lack of calculations for 7, . The experimental data seem to
confirm that at low temperatures 7' < T, the quantities 7, 7, (7> T,) and
their temperature dependences .;GJ and 1, (') are quite different, though
in the Boltzmann region these dependences are similar. Figure 8 also shows
.7 (curve 3) with 7 calculated using the coefficient D, eq. (4.9), and the
ratio D /7 given by eq. (5.19) for D, and 7, . The difference between curves
2 and 3 clearly demonstrates the difference between the ratios D\/7, and
D, /7, for degenerate solutions.

The other reason for the divergence is important at high temperatures
and is related to the fact that conditions (1.4), (1.5) are not very well
satisfied: at T == 100 mK the expansion parameter of the theory is not small
enough, pa/h=a/A ~0.2. Besides, at high temperatures the 3He transport
is affected by collisions with phonons, and the spin diffusion coefficient
and the relaxation time are smaller than the values given by eq. (4.10).

. However, there is a method to exclude the shortcomings of the theoreti-
cal description of the data for D, , 7, on the basis of data for D, =, The
ratio ©2,,,7, /P, does not contain any unknown parameters associated with
the anisotropy of the spin dynamics and is given by {(Meyerovich 1985)

LR _ ..;Hwa.am T<+I.~<tv~
Dy , M 2+A&wv+|zlAcuvl
4
N ﬂm~2+|2|v, T> Ty,

=\ 20@ak(N, - N_Y (5:22)

M(N, o2 —N_v?)

T<T,.

3

~ Figure 9 shows the ratio of the parameters {7, and D}, measured by
Gully and Mullin (1984) and the curve for eq. (5.22) at T= T, with
2= —1.5 A. In contrast to fig. 8, the experimental and theoretical curves in
fig. 9 are much more similar. Maybe the reason for the remaining difference
between the curves is explained by the fact that the real value of a is nearly
two times smaller than the value —1.5 A (this will result in a very large
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decrease of the superfluid transition temperature for *He in *He--“He
solutions). The extrapolation of the curves in fig. 9 shows that these curves
reach the limiting value of the ratio (5.22), 2.2 X 103, for low temperatures
T < T, at a temperature of about 4-5 mK.

The decrease of a suggested by fig. 9 provides excellent agreement
between the experimental and theoretical data for 2,7, /D, if a~ —(0.3
—0.7) A, and improves agreement for D, in fig. 8, :Ho:mrﬁ\rw Eiﬁoumo
between the experimental and theoretical curves in fig. 8 cannot be removed
completely by a mere change of ¢ the data for D, and 7, taken

separately are sensitive to the anisotropy of the spin dynamics and to the -

presence of phonons, while the ratio 2,7 /D, [eq. (5.22)] is not sensitive
to these factors in dilute quantum gases. For these reasons a precise
measurement of the ratio 2,,,r, /D, by NMR methods seems to be one of
Eﬁ most reliable ways to determine the main interaction parameter of
dilute *He—*He solutions — he s-wave scattering length a.

On the whole, the results of Gully and Mullin (1984) confirm the main
oopwoﬂ.:mwon of the theory of the transverse spin dynamics in *He| -*He
solutions - the existence of spin waves, including the Boltzmann region
The experimental data on the trarsverse spin dynamics can be m:.ﬁmwﬁﬂom
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on the basis of the simple quantum gas theory and this interpretation is
considerably more transparent than for other spin-polarized quantum sys-
tems (see section 7.1). Some additional experiments seem to be desirable
(especially at low temperatures) for a detailed analysis of the anisotropy of
the spin dynamics in polarized systems. Calculations of D and 7 are also
necessary, including the intermediate temperature region. The possibility of
an accurate determination of a by the NMR technique is very important

for the estimation of the *He superfluid transition temperature in *He-“*He
solutions. .

6. >*He superfluidity in 3He | - *He solutions

61. TEMPERATURE OF THE SUPERFLUID TRANSITION

After the successful discovery of the superfluid transition in pure liquid *He
several experimental groups made attempts to observe the superfluid transi-
tion in the *He quasiparticle system in 3He—*He solutions. Up to now ail
these attempts have failed [see, €.&. Ahonen et al. (1976), Osheroff and
Corruccini (1981), Guénault et al. (1983), Mueller et al. {1983), Owers-Brad-
ley et al. (1984a)}, even though a temperature of 0.2 mK was reached. Thus
the 3He—4He solution remains the only liquid with considerable entropy at
temperatures below 1 mK. To a great extent, the interest in. the “He
superfluid transition i$ caused by the unique character of the system —
below the transition the solution will represent the only system with two
Bose condensates, *He and 4He. Maybe the only analogous system is
superfluid star matter, where, along with a neutron condensate, one can
find a small fraction of proton condensate,

Up to now the question of a reliable theoretical estimate of the *He
superfluid transition temperature in solutions remains unsettled. The availa-
ble results range from T, ~ 10—-3-10"* K for optimistic predictions down to
T, ~ 10~% K for the most unfavourable estimates. Such a difference in
predictions for T, is regretiable but not unexpected. As was mentioned in
section 1.3, there is no consistent microscopic theory for the interaction in
relatively dense *He quasiparticle systems dissolved in a dense superfiuid
Bose background with complicated intrinsic excitation modes. All descrip-
tions of the *He interaction in solutions are completely or partially based
on a model, and the parameters for different models are obtained from fits
to thermodynamic and (rarely) kinetic experiments. :

The thermodynamic and kinetic results are not very sensitive to the
choice of a model if it has a sufficient set of adjustable parameters. On the
contrary, the temperature of superfluid pairing for IHe quasiparticles

.
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depends wﬁuonmnmm:% on the values of the interaction parameters and is
very sensitive to the choice of a model. Besides, even if one regards some
anm.w as an exact description of the interaction, then there always remain
@cmmvobm as to the accuracy of the calculations for T, within the framework
of mE.m model and of the limits of 3He concentrations for which the results
OH.mdm model are applicable. As a result, modern. theories cannot give
E—E.En values of 7., nor do they provide an answer to the question of the
maﬁm.mvm:&_ of further attempts to discover >He superfluidity in *He-*He
solutions with the help of modern low-temperature equipment. The answer
to the .Hmwﬂ question depends completely on the optimism of the experi-
mentalists involved. In this context T wani to emphasize that without hope
of a rapid cardinal progress in obtaining ultralow temperatures it may be
E@?.ﬂ.ﬁo pay attention not to the direct observation of the superfluid
transition, but to the search of fluctuation effects associated with superfluid
fluctuations above the transition. :

The above comments on the *He superfluid transition in *He-*He
mo.H:.ponm can be illustrated on the example of the description of solutions
2:.: the help of the dilute quantum gas theory with s-wave interaction
which is adopted throughout this review. From this point of view Em
system of *He impurity quasiparticles in dilute solutions may qoqumanw the
sole example of a system for which the BCS theory does not give just a

model but an exact description of the su 1 iri 1
. perfluid pairing (Bashkin 197
.wmmEnE and Meyerovich 1981): 7 e ' >

y(2)” 2
ﬁnAiv Ty exp(—1/g), g =2l

7\e ah (6.1)
5&9.@ Iny=C=105772... is Euler’s constant, p, and T stand for the
Fermi momentum and temperature of nonpolarized solutions and a <0 is
the s-wave scattering length. The index of the exponent in eq. {6.1) is equal
Mo —1.20/x? fora=—15A and at the saturated vapor pressure (x is the

He oo.domb:m:os in the solution). This means that for a= —1.5 A the
expression (6.1) gives for 7, a value of about 1.4 mK for x = 0.03, but if «
is two times smaller {as was suggested in the preceding section) ﬁrm value of
u.m for x = 0.03 decreases to 0.03 mK. Of course, at lower *He concentra-
tions the ow.msmm in' 7, with a decrease of a is even more drastic. Apart from
%m.cbnmﬂmmua\ in a in eq. (6.1), one has to clear up the question of the
limits of applicability of eq. (6.1). The BCS theory has been developed
_.5&9.. the assumption that the coupling constant g in the exponent in eq.
(6.1) is small, 2p,|a|/mh<1. When a= —-1.5 A this condition is equiv-
alent to the numerical inequality x!/3 /1.20 < 1. Apparently, this means that
the expression (6.1) may be interpreted literally for solutions with IHe

SPIN-POLARIZED *He-*He SOLUTIONS 55

concentrations below 1072-1073 (for x = 102 and a= —1.5 A, g~ 0.083).
it is absolutely unknown how T, deviates from eq. (6.1) at higher *He
concentrations. If @ ~ —1.5 A, then the experimental data suggest that an
increase of the *He concentration leads to a decrease of T as compared
with eq. (6.1). ‘

One should also keep in mind two additional circumstances when trying
10 observe the *He superfluid transition in solutions. First, one has to take

into account the growth of the relaxation times for the temperature and for

the magnetic moment of the *He impurity quasiparticle system. The super-
fluid transition is determined by the temperature in the quasiparticle
system, while all thermometry is based on measurement of phonon temper-
atures. It is known that at temperatures T ~1 mK one may be confronted
with a considerable difference between the phonon and 3He temperatures.
In the experiments one also has to control the spin polarization of solu-
tions: as we shall see below, even a very small polarization of about
P~T /Ty~ 10-3-10~* can result in a drastic decrease of the transition
temperature T,. Such a polarization can be caused not only by a weak
external magnetic field, but also by the prehistory of the sample, because
the (dipole) magnetization relaxation times are very long.

The second circumstance is related to the fact that BCS pairing is
possible for not too fast spin—lattice relaxation, T,z h/7*. From this point
of view, the dipole processes do not Jead to complications (the correspond-
ing relaxation time 7 is long enough), but the collisions of *He quasipar-
ticles with the walls with the magnetic coverage or impurities may be
important. Simple estimates of the mean free paths of the guasiparticles at
T, T.< 0.1 mK show that this factor may become essential especially in
experiments in a restricted geometry, when the solution is cooled in a
porous medium in order to achieve effective cooling.

In summary, the situation concerning the *He superfluidity in 3He-*He
solutions is rather unclear. One can make with certainty only one assertion:
since all experimental data suggest attraction in the s-wave channel for IHe
quasiparticles in 3He—*He solutions (Bashkin and Meyerovich 1981) {in
contrast to pure liquid 3He), He superfluidity will be connected, at
sufficiently low *He concentrations, with the usual BCS s-wave pairing of
the 3He quasiparticles.

" In the two following sections we discuss the influence of the spin
polarization on such a pairing.

6.2. BCS PHASE OF A POLARIZED SOLUTION

Spin polarization of 3He—*1le solutions has two appreciable effects on the
BCS phase of superfluid 3ge| in *Hel-*He solotions: a considerable
decrease of the *He superfluid transition temperature and a change of the
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Fig. 10. (a) Temperature of superfluid transition and (b} momentum @ of Cooper pairs ﬁ

functions of the field. wo::. L: eq. (6.10), point M: eq. (6.16), the final point: eq. (6.11). T is
the superfluid transition temperature in the absence of the field. )

1 i
& a2s  as

wﬁnoqca .o.m Hoé-?wmﬁmuo% hydrodynamic modes. The dependence of the
.Ew Qmsm._ﬁouu temperature T;,( H) on the magnetic field (spin polanization)
is shown in fig. 10. Note that the characteristic scale of polarizations which

. orm:.ma the thermodynamics of the transition is quite small and is de-
termined by the parameter S§H /T,, where T, is the transition temperature in
the absence of a field (polarization). Pairing in the s-wave channel becomes
absolutely impossible when SH /T, > 1.33 (for T, < 0.1 mK, this limitation
on the magnetic field corresponds to H < 1.6 wOn.w.;. _

Spin polarization also results in some peculiarities of the propagation of
temperature waves. Temperatore waves in *He—*He solutions with two
Bose condensates are the analogues of second sound in pure He II at finite
ﬂoB.ﬁQ.mHE.mm. In our case the temperature oscillations are accompanied by
oscillations of the magnetization, leading to changes of the conditions of
wave propagation and to some new experimental opportunities.

. In the case of s-wave paiting the >He superfluid motion is not connected
with the transport of magnetization, and in spin-polarized *He|~*He
solutions the dissipationless equations for the three velocity hydrodynamics
of systems with two condensates (Khalatnikov 1957, Andreev and Bashkin
1975, Volovik et al. 1975, Bashkin and Meyerovich 1981} must do.m:E&o-

Boima. by the equation of motion for the longitudinal component of the
magnetic moment M,

M, + div( Mp™) = 0. (6.2)
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The expression for the differential of the pressure & has to be rewritten to
include the magnetic contribution, which has the [ollowing form in a
constant magnetic field:

m.%“ HEN\XV man Am.uv
where x=M/H is the longitudinal susceptibility of the solution. The
expressions (6.2), (6.3) are analogous to the corresponding equations for the
entropy S of solutions, because the entropy also takes part in the normal
motion only: .

S$+Sdive™®=0, 82=(TS/c)?3S, (6.4)
where ¢ is the heat capacity of the solution. Comparison of eqs. (6.2)-(6.4)
demonstrates that the propagation of the corresponding waves is accompa-
nied by simultaneous coupled spin-temperature-entropy oscillations, and
the velocity of wave propagation differs from the velocity of temperature
waves in nonpolarized solutions (Andreev and Bashkin 1975, Bashkin and
Meyerovich 1981) by the formal substitution of the quantity TS 2se+ MI/X
for TS?/c (Meyerovich 1984):

782  M? o,

hM“ —= - +
% Ve — Mo/

(6.5)

where p, = M, N,, and p,(T, H) stands for the superfluid density in the
superfluid gas of 3He impurity quasiparticles.

As magnetic measurements are much simpler and more precise than
calorimetric ones, spin-temperature waves can be investigated by exciting
the waves by a change of the longitudinal component of the external
magnetic field. In this case one has to add to eq. (6.3) the exciting force
—M_BH.

The velocity of spin-temperature Waves (6.5) is extremely small, while the
wave attenuation is rather high, resulting in some additional difficulties for
experiments. Near the superfluid transition

(6.6)

21| Vo
Th Py ) e’

,_Mlp BHBH P J AP
where b, is the Fermi velocity. Qb the Jast inequality we have used the
relation BH < T,, which 1s valid because in higher fields BH >1.33T,
s-wave pairing is impossible.) The attenuation of waves is governed by the




58 AE MEYEROVICH

ﬁmoom:wv Mrﬁ‘B& oOb&EumﬁQq spin diffusion and longitudinal spin relaxa-
WOMV\W he last two mechanisms can be described by addition of the terms

AM, and 8M,/7* to eq. (6.2). When one uses resonant excitation of
spin-temperature waves, then low damping means that

Da/s? <1, .Eﬂ*w'u.

| (6.7)
With the help of eq. (4.9) for the spin diffusion coefficient,

D~ WRIN\AWVM
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— - (6.8)

Wma MOH low T, low damping means that the oscillations are quasistatic.

on :.Bb (6.8) shows that resonant excitation of waves is difficult; at the

same Q.Bm nonresonant excitation considerably lowers the amplitude of the

oscillations. The compatibility of conditions (6.7) demands that
sr* /D 1.

(6.9)

Whether this inequality holds or not d
. : epends on the type of longitudi
spin relaxation. When this is dipole relaxation, then 7% W@,& gitudina

/13~ 107 B5x*AT2 /R T

then condition (6.9) is equal to

(T./Ty){p/ps) = 10715,

and can easily be met. Additional difficulties for the observation of s in-
Mnﬁwﬁ.mfao waves arises due to the large growth of the mean free vmﬂm of
He quasiparticles and the transition to the Knudsen regime.-

The above difficulties for the observation of spin-temperature waves are
common not only to magnetic methods of wave generation and observation
E: m_.mo to the usual thermal methods. In this case the role of the spin
Q&GEOM .md& longitudinal relaxation are played by the viscosity :S:M&
conductivity and the scattering of quasiparticles by the walls, Miém the
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{ tmitation on the frequency of the omnw:m,aonw (6.8) practically does not

change.

6.3. INHOMOGENEOUS PHASES: SUPERFLUID LIQUID CRYSTALS

In not very high magnetic fields the superfluidity of *He in solution is
caused, as in the absence of a field, by the s-wave pairing of }He quasipar-
ficles. The s-pairs are formed from particles with opposite directions of spin
projections and momenta. In a magnetic field the Fermi momenta of
particles with opposite spin projections p , are not equal to each other, and
the relative shift of the Fermi spheres prevents the formation of BCS pairs
with zero total momentum. On the other hand, the formation of pairs with
nonzero total momentum raises the energy of the condensate. The competi-
lion of these effects resuits in a decrease of the temperature of the *He
superfluid transition with increasing field, and in some range of fields the
formation of pairs with zero total momentum becomes unfavourable. In
this range pairing with nonzero total momentum is efficient, jeading to a
spatial inhomogeneity of the appearing superflonid phase.

The dependence of the superfluid transition temperature Ty, (H) /T, on
the value of the external field BH/T, (T, is the transition temperature at
zero field /polarization) 1s plotted in fig. 10a. To the left of point L,
determined by

pH, /T, =106, (6:10)

Ty /1= 0.56
(in low fields), pairing takes place with zero momentum, and the superfluid
phase is of the ordinary BCS type. In higher fields [ > H, pairing with
nonzero momentum Q () (see fig. 10b) takes place, and the corresponding
phase is spatially inhomogeneous. Some properties of such a phase are
described below.
In high fields,
BH = 1.33T,, (6.11)
s-wave pairing becomes absolutely impossible. Tn such fields the superfluid
transition is due to p-wave pairing (if the interaction in the p-wave channel
corresponds to an effective attraction), and the superfluid phase is some-
what similar to the A;-phase of superfluid pure 3t e in very high magnetic
fields, BH > A (A is the energy gap). ,
An inhomogeneous phase with nonzero momentum of the pairs was first
predicted for superconductors (Fulde and Ferrell 1964, Larkin and Ovchin-
nikov 1964). From the thermodynamic point of view the formation of
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inhomogeneous phases in *He | - *Ie solutions and superconductors is ve

similar. However, there are essential differences between the properties m
superconductors and *He | —“He solutions, which are caused by the ab-
wnnoo o“, charges .mba the presence of two condensates (*He and “He) in
.Em&l He solutions. For real superconductors the model of a spatiall

EroB.omammosm phase is rather rough because it does not take into mnooﬁm
Hﬁo spin—orbit interaction, electron diamagnetism, scattering of quasipar
ticles from impurities, etc. The presence of impurities in mcﬁm_‘oo:n_cowoﬂ..
seems to be the most important obstacle since the scattering of pairs 25”
nonzero momentum from any impurities (in contrast to ordinary patrs with
Zero 2.:& momentum) leads to a loss of coherence and to the break-up of
the patrs. For these reasons the superconducting inhomogeneous wrmmnw@
uo.~ detected for nearly two decades. Only recently some signs of Em
existence of this phase have been observed [see, e.g., Buzdin et al Qom»ﬁn
On the contrary, *He | —*He solutions represent a unique oxormb e wﬁm
M.Hc:.uH mwﬁ.ﬁﬂd nm mwormamom fermions, and consistent theoretical and Wxﬁwn.-
ﬁowwowd_w“mwwmwwmwsﬂ the inhomogeneous phase of these solutions seems

w,ﬂ.,.o order parameter (the energy gap) in spatially inhomogeneous phases
obtains some sort of “crystalline” structure,

A(ry=Y A_exp(iQ, r/h), (6.12)

and w&@ Eﬁm@ represents a peculiar superfluid liquid crystal. Near th
transition vo.:: all vectors @,, in eq. (6.12) have the same .Emm:::amm
| @, i = 0, given by the function Q(H) in fig. 10b. The exact type of m.m
expansion (6.12) corresponding to the minimum of the {ree energy is not yet

known. Usually one investi i i
gates the phase with a i
so-called Fulde-Ferrell phase): ’ @ single harmonie (the

A(ry=A, exp(iQr/h), (6.13)
the layered phase,

A(r) =24, cos(Qr/h), (6.14)
or the cubic phase

A(r) =28, {cos(0x,/h) + cos{ y,/) + cos(Qz/h)). (6.15)

gnmﬁ probable are the structures (6.14) or (6.15). The order of the super-
fluid phase transition depends on the type of phase and on the strength of
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the magnetic field even in the mean field approximation. In this approxima-
fion the transition is of second order for the Fulde—Ferrell phase and of
| first order for the cubic phase. For the layered phase (6.14), the superfluid

wansition is of first order in low fields H; < H < Hy (see fig. 10), with the

1 point M determined by

(6.16)

pH,/T,=128, Ty /T~ 03,

i and of second order in higher fields (Malaspinas and Rice 1971). If one’

takes the fluctuations into account (Brazovski 1975), then the divergence of
the fluctuations near the transition point always makes the transition into
an inhomiogeneous phase to be of first order. Due to the rotational

| invariance of the normal phase of *He in 3He | ~*He solutions, the spatial
orientation of the structure remains arbitrary in the zeroth-order approxi-

mation. The orientation of the structure (the orientation of the systerm of

{ vectors Q,,) is determined by the walls, the magnetic dipole interaction or

the superfluid current (Meyerovich 1981, 1984). The first factor is the most
important one. In the case of specular reflection from the walls, the most
favourable structure is the structure (6.12) with one of the symmetry planes
parallel to the wall.

The thermodynamics of the inhomogeneous phases of solutions is analo-
gous to that of the inhomogeneous phases of superconductors (Larkin and
Ovchinnikov 1964, Takada and Izuyama 1969). Thus, in the inhomogeneous
phase the quasiparticle velocity in some directions can be close (or equal} o
zero, resulting in a slow decrease of the specific heat with temperature and
a strong anisotropy of the transport coefficients. In the equilibrivm state of
the inhomogeneous phases (6.12) the spatial distribution of *He particles
does not depend on the coordinates, the superfluid currents are absent, but
one can find a spin density wave. For example, the equilibrium magnetic
moment M per unit volume of the layered strocture (6.14) is equal to
(Bashkin and Meyerovich 1981)

14,17
(BH)Y

near the transition point, where M,=3N;(BH/ T,) is the magnetic moment
above the transition, and the functions F,(H), F,(H)are plotted in fig. 11.

The most striking consequences of the inhomogeneity can be found in
the hydrodynamics of the phases (6.12). The corresponding effects are
associated with the anisotropy of the hydrodynamic equations and with the
appearance of a new hydrodynamic variable — a translation vector

M(r) =My — [ F, + F, cos(20r/1)] (6.17)
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Fig. 11. The functions F, ,( ), eq. (6.17) (Bashkin and Meyerovich 1981).

(Meyerovich 1981, 1984). For example, the direction of >He mass flow does
not coincide with the directions of velocities,

_ 1 4P m
2m, - s Qu

g=2m,u, + 2(M—m;)o, — 2M,

55

0, + Euzuc?u,
(6.18)

() § y 3 ‘
Mwnww o _M wMM normal velocity, and v, b, are the superfluid velocities for
e "He an e co iti ] iti
e ndensates. Near the transition the superfluid densities
pi™) are equal to .

oy _ 3 14512
The function @( H) is shown in fig. 12. :

The ﬂ&ﬂmbnm of the new dynamic variable & can be traced to the broken
translational symmetry of the phases (6.12) (the transiations r—r+u
change the order parameter A(r)). The translations » may be introduced
muEw .ﬁoa directions for which the transformations A{r) — A{r+ u} are not
identical: in the case of the one-dimensional phases (6.13), (6.14) only one
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Fig. 12. The function ¢( H), eq. (6.19) {Meyerovich 1981).

component (parallel to Q) of the vector u has sense. Note, that the vector u
is not an entirely new independent variable: the vector @ determines the
transformation r— r-+ it and is connected with the normal velocity.

In hydrodynamics we are interested in the linear response of the system
to static deformations u(r) which are slowly varying in space. In this case
the vector u enters the linearized equations of motion via the symmetric
deformation tensor u,, = 3(du,/dx, + du, /9x;). Inversion r— —r changes
the direction of mass flows, but does not change the tensor u;,. For this
reason, in the case of symmetric phases (6.12), A(r) = A(—r), the deforma-
tion u,, does not lead to mass flows but results in an additional momentum

flow:

*(Q,v)

. 6.20)
3(Q,.r) A

all, 2
- 2y (0,),

anr. M m

 The hydrodynamics of inhomogeneous symmetric phases of *He | -*He
solutions with two condensates was studied in Meyerovich (1981). The
existence of the new dynamic variable gave rise to a new jow-frequency
Goldstone mode, and the anisotropy of the hydrodynamic equations caused
a considerable anisotropy of the spectra of low-frequency modes. Three
types of low-frequency modes can propagate through the usual BCS phase
of solutions with two condensates (Bashkin and Meyerovich 1981): density
oscillations (an analogue of first sound), oscillations of the *He concentra-
tion (an analogue of second sound in *He-He II solutions above the
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r.mbmﬂ:o& and @?:..Xo.avmﬁmaa waves (see section 6.2). Such oscillations
M.m;w a wo H.unomummmﬁw in inhomogeneous phases; apart [rom these, one can
ind also in the inhomogeneous phase specific i scillati
shear- -
Jng also In ¢he p p ear-wave-like oscillations
H.b..w w_mmcom@ o%” the structure and the anisotropy of the equations
practica E.rmﬁ no Eacwuoo on the oscillations of the density and the *He
oouoonﬁ.am:oﬁ mmow ommoEm:o:w are not very sensitive to the superfluid
%Momumaow of the “He HE.vsﬂQ component. In the inhomogeneous phase, as
.:m ~absence of a field, the velocity of propagation of the density
wmQ m:wmm is close to the sound velocity in pure He I1, and the concentra
ion oscillations propagate with a velocity clo i .
: se to !
Fermi velocity). g co\,\w (to 1 the THe
_A,r.m Ewogowmb.mm% of the structure affects the slowest oscillations with a
<m.00:% exponentially small in the *He concentration. The velocity of
spin-temperature waves in inhomogeneous phases of solutions is equal to

sT=52%"1A 1252 2
hu:m_ :,; Qs\.m_b..:w 5 AQ.NHV

where «,,=ne, determines the angle between the wave vector of the

oscillations n = k/k and the axes of the © »
the quantity e “erystal” (6.12) e,, = Q,,/Q, and

JER TS?  M?
T EIINZN - +
34V3 X

moaoa.wm formally with eq. (6.5) for the velocity of spin-temperature waves
in the wogomﬂ.umoﬁ_m phase. The velocity, of clastic waves is of the same
order .0m magnitude as the velocity of spin-temperature waves. Th

sponding expression is rather cumbersome: e

2 _DMQN
5= — 2.2 2
2miMN, m | et Q QSV

m,n m

L T 14,4, 1220 {2(r,, — a,0,) = (1 - a2 )(1 —a? ;S

-1
XAM _bs_mv , P Ee
™ mn 3&: . ) AQ.NMV
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In the case of the layered structure (6.14) the expressions for the velocities
of the spin-temperature and elastic waves, eqs. {(6.21), (6.22), reduce to

4

(6.23)

N
s2=s2a®, 5= _ouwm a?{(1—a?), a=kQ/kQ.
mzMN,

The Fulde—Ferrell phase (6.13) differs considerably from the symmetric
phase discussed above. First, in this phase without inversion symmetry,
A(ry#A(—r), a deformation u,,(r) results not only in a momentum flow,
but also in a mass flow (Meyerovich 1981), etc. Second, in this phase a
translation r—> 7+ u(r) cannot be distingnished from superfluid motion
[change of the phase of the order parameter (6.13) ¢ > @ + dg(r)], and the
broken symmetry of this phase is a relative pauge-translation symmetry
(Stern and Liu 1983). As a result, the number of Goldstone modes in the
Fulde—Ferrell phase is less than in other inhomogeneous phases (6.12). In
this phase the analogue of the spin-temperature and elastic waves is the
coupled m_umz-ﬁaﬁmﬂﬁcnmimromn wave with a velocity given by a combina-
tion of the velocities of the spin-temperature and shear elastic waves (6.23).
The dynamics of the Fulde-Ferrell phase was studied in detail by Stern and
Liu (1983) on the basis of general symmetry considerations.

The problem of structure defects in inhomogeneous phases has not been
studied. The question of possible resonant propetties of these phases is also
unsettled.

7. Other spin-polarized 3e Fermi systems. Concluding remarks

7.1. SOLID, LIQUID AND GAsEOUS TR )

Most of the above results for dilute 3He | ~He IT solutions have a very
simple and transparent form. Therefore, one faces a natural question: to
what extent may these results be generalized to other types of spin-polarized
quantum systems, especially to other phases of 3Hel.

The simplicity of the results for 3He | —*He solutions can be traced to
two reasons: to the low *He concentration and to the quantum condition of
long wavelength for the 3e quasiparticles. Certainly, these two conditions
are valid also for the He | gas at low temperatures, and the *He | gas may
be described by the same formulae as >Hel-He II solutions in the
Boltzmann temperature range with the trivial substitutions of the *He
atomic mass m, for the effective mass M of the bare 3He quasiparticles and
of the scattering length as, of *He atoms in vacuum for the s-wave
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scattering length in solutions g, This i
. procedure can be 1
at temperatures of the *He gas below 1072 K. applied successfully

At higher temperatures /energies for a number of reasons one has to take

mto account the energy dependence of the scattering amplitudes. Neverthe- -

less, the available *He gas even at T3> 1072 K § i i
- of the density are about N, £10"7-10' anwuwm, Mﬁﬁwﬂﬂom“_wﬁwﬁmw\m@%mwhwﬂﬂm
%ow for dilute nondegenerate *He | -*He solutions can be applied to mH
He! gas. Thus, the kinetic equation for a polarized *He gas has the same
form as for *He|~He 11 solutions, eq. (5.2). Therefore, calculations of

transport coefficients for a spin-polarized *He | gas can be performed using

the results o.m the Chapman—Enskog theory for classical binary mixture
though not in the hard-sphere model, but taking into account E.m exa mm
energy dependencies of the scattering amplitudes and cross-sections En
usual integrals £ in the classical theory of gases). Ta this case one can m_Mw
observe very strong magnetokinetic effects - these effects are based on the
smallness Ow. the scattering amplitudes in channels with higher moment
compared with the s-wave scattering amplitude, and the presence or m%
sence .oH an energy dependence of the s-wave scattering amplitude is not
nmmo.njmw. Caleulations of the transport coefficients in the *He | gas §50m
realistic .wo.mzmasm amplitude can be found in Lhuillier and Lalo# (1982
and Lhuillier (1983). In the *He | gas the magnitude of the magnetokin #.v
effects may be restricted by the presence of *He atoms in an as %Lo
,ﬂtmmm of the transport coefficients in a *He | - *He gaseous Ew_::nmm o.m Uo
oEEbom using the results of the Chapman-Fnskog theory for Ham y
numﬁcwnm o,M nsual ideal gases (Meyerovich 1983). mQ.
n “Hel gas one can also observe spin wave i
B:mﬂg of the transverse spin muﬁmamw has ﬁm.o ﬂwmn”:m MM?MMQ%M
equation Em frequency of precession of the magnetic Bo?wu.n in zun
ﬂomnoEE. field £2,, is determined by the exact scattering amplitude (Lhuil
lier and Lalog 1982, Lhuillier 1983, Bashkin 1981, 1984a b) -
mﬁooomm@b experiments with a spin-polarized *He | mma “‘.awam performed
by the Paris group. The gas was polarized using optical pumping (see, o.g.
Leduc m.ﬁ al. (1983); the brute force technique could not be applied wmwma _
the ratio SH/T is very small at temperatures T>1 K). This 3% ;
managed to obtain a *He| gas with a density ?mlt 10 om~3 M& M
polarization P < 70% at temperatures T > 2 K. The lifetime of the polarized
state was more than 60 hours. In this gas spin waves were detected
irrespective of the presence of *He impurities (Nacher et al. 1984, Tastevi
et mm.. Gm&. The experimental results were in very good mmammans”_ with 9:
wammwosocm of the theory of spin-polarized quantum gases. )
ote that spin polarization may help one to obtain 2
temperatures and higher densities :S:mm possible Mwa_:ﬁmww MMM%MLMMMM
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3He. The saturated vapour pressure of 3He gas falls exponentially with
decreasing temperature, and the main factor preventing the investigation of
3He gas at low temperatures is condensation of the gas. Polarization of the
*He spin system leads to a considerable increase of the energy of liquid
He, resulting in a decrease of the index in the exponent for the *He
saturated vapour pressure.

If one neglects the effects associated with the excitation of the *He
superfluid background, then the macroscopic properties of concentrated
3He | -He 11 solutions differ only numerically from those of spin-polarized
liquid normal *He | . Both these systems are described by the same equa-
tions of the Landau theory [or spin-polarized Fermi liquids (see section
2.2). Recent experiments on spin waves and the transverse spin dynamics in
pure liquid *He § (Masuhara et al. 1984, Einzel et al. 1984) have once again
confirmed the validity of the Leggett theory for the spin dynamics of
weakly polarized Fermi liquids. _

High degrees of spin polarization for normal liquid *He| have been
achieved using the elegant method (suggested by Castaing and Noziéres
(1979)) of rapid melting of spin-polarized 3He crystals. (The brute force
technique, being ineffective for liquid 3He due to the low ratio SH /T, is
quite useful for solid 3He at low temperatures.) This method made it
possible to obtain liquid 3He| with polarizations P <50% with the
depolarization time exceeding tens of minutes. However, the characteristic
parameters of polarized liquid *He have not been measured yet. The
available experimental results concern mainly the polarization shifts of the

3He melting curve [see, e.g., Bonfait et al. (1984)]. Cerlainly, polarization of

liquid *He has to result in lowering of the melting curve, and full polariza-
tion results in the disappearance of the Pomeranchuk minimum on the
melting curve (Castaing and Noziéres 1979, Lhuillier and Lalog 1979).

The properties of spin-polarized solid e seem to be quite different
from those of liquid *He | —He II solutions. The low-temperature properties
of solid *He are usually determined by Bose excitations of the system
(phonons, magnons), while the properties of 3{{e—He II solutions are
related mainly to Fermi excitations (*He quasiparticles). Nevertheless, *He
crystals can be characterized also by a peculiar system of Fermi excitations
corresponding to delocalized vacancies in crystals {see, e.g. the review by
Andreev (1982)]. There are some indirect indications that one can find on
the magnetic phase diagram of solid *He a region of the so-called vacancy
ferromagnetic phase (Andreev et al. 1977, Andreev 1982). In this phase all
3He spins are ferromagnetically ordered, and its energy is determined at
T— 0 by a small fraction of zero-point vacancies. The properties of this
phase are very similar to those of dilute fully polarized 3He | -He 11
solutions with the 3He interaction in the p-wave channel.
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. Spin polarization leads also to interesting peculiarities of two-dimen-
w._o:& helium systems (*He surface states in *He—*He solutions, helium
films, adsorbed *He, wall boundary layers, etc.). However, the Eov.nim% of
mzor.@rmmom can hardly be described using an m:m_omu\.g.? *He|-*H
solutions due to the fundamental differences between three- and two a.m
mensional quantum systems. o

.>= E._monwi confirmation of the fact that many guantum effects in
spin-polarized quantum gases (1.4), (1.5) do not depend on the degree of

degeneracy or the statistics of the gas, but are determined by the ultra--

@rmb::b character o.m the interaction of long-wavelength particles, has been
given by the recent discovery of spin waves in a Bose gas (the spin-polarized

m.Hmm of atomic hydrogen) in the Boltzmann temperature region (Johnson et -
al. 1984). The theory of spin wave propagation in the H| gas practically.

completely coincides with the above theory of the transverse spin dynamics

for a quantum gas of *He iparticles i i
guasiparticles in the Boltzmann
Levy and Ruckenstein (1984)). reston [see, e

7.2. UNUSUAL PHASES OF *HE |

Above we rm<.m already mentioned three new unusual phases of 3He |
ﬁ&,o.mm very existence is due to the polarization of the *He spin system:
onammgﬂma .wmmelaﬁa solutions, the inhomogeneous phase o.m
moel. He solutions with two Bose condensates, and the vacancy ferro-
magnetic phase of solid *He. While the existence of the first two phases is
nearly beyond doubt, the question of the existence of the third ﬁ%mmo ma
be mm.;mm& only on the basis of experimental data. Spin polarization :3%
provide the existence of some other unusudl phases of *Hel in LM
pressure—temperature—polarization phase diagram of He.

The appearance of some of these new phases is commected with the
Huﬁ.umuawﬁww of the *He | /?He | - *He phase equilibrium (Meyerovich 1983)
It is m:.mma.% known (Castaing and Noziéres 1979, Lhuillier and Lalo# G..E.
mvﬁ-wam:woa Quantum Systems 1980, Bashkin and Meyerovich GWH,
Mummﬂ.&zm et m.r 1982) that _.prm polarization of *He significantly changes ﬁrm

Em vrmmm diagram, and, in particular, alters the mutual solubility of the
helium Hmo:.uﬁmm. Nevertheless, there are two additional possibilities which
seem to be interesting from both the theoretical and experimental points of

VEW.

. M.u time Intervals less than the dipole depolarization time =, the equi-
Eu:Ed between *He| and a *He|—9He mixture is amﬁnﬁahmm by m&o
Em@ﬁommma conditions, p{ =p; and pJ =p;, where pf and uf are the
chemical wwﬁonm&m of *He particles with up and down Hmﬁmum m:m%@ ure
phase and in the mixture. If the energy scales are considerably &R@nn%ﬁ n
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both phases, polarization of the 3He spin system leads to quite different
polarization dependences pi(Py) and pi(P;). Asa result the equilibrium
conditions pif( Py) = p3 (Py) are fulfilled at different degrees of polarization
P, , of both phases, and the equilibrium *He concentration in the solution
also depends on P; 5.

The influence of polarization on the phase equilibrium is evident in the
case of weak polarization when the change of energy with polarization is
quadratic in P, ,. In this case

W_.MHNH.MwZH\AXF?m+R-<~Y P/Py=X1/X2>

where x,, are the susceptibilities per 3He particle in pure *He and in the
mixture, P = (PN, + P,N,)/N; is the total degree of spin polarization of
the system, and N, N, (N, + Ny = N,) are the numbers of IHe atoms in the
pure phase and the mixture. Due to the evident dependence of the *He
distribution between both phases, Nj/N;, on the relation between the
numbers N, and N, of e and *He atoms in the sysiem, on¢ can easily
vary the polarizations Py, P, by changing N,/N,. The main difficulty in
solving the phase equilibrium equations is usually caused by the lack of
information on the functions pt(P) for dense *He | phases.

At low temperatures *He is not soluble in solid “He. The demixing
temperature of the solid mixture into the pure components is about 0.1 K,
and the difference in chemical potential of “He atoms within “He crystals
and in pure nompolarized (solid or liquid) He is 8p, <01 K. *He
polarization does not significantly change the 3He chemical potentials in
golid phases, and at jow temperatures the solid *He | — *He mixture will
continue to separate into pure *He | and 4He crystals. Though the polariza-
tion leads to some decrease of the 3He melting pressure, this decrease is not
very large and is of the order of magnitude of the lowering of the *He
melting curve caused by the Pomeranchuk effect. Thus, the *He| crystals
melt at higher pressures than 4He. As a tesult we see one of the following
situations as the pressure decreases: the system consists either of two phases
(solid *Ie-liquid *He}) or of three phases (solid *He — liquid Hel -
concentrated YHe | —*He solution). In the absence of polarization both
situations are possible. Below, it is not very important which of these
possibilities is realized in the polarized system. What is important is that
the polarization change of the 3He chemical potential in liquid He ] orin
concentrated *He | —He TI solutions is of the order of several tenths of a
degree and is likely to exceed By~ 0.1 K. This means that rapid changes
of the pressure in some situations could result in the penetration of *He
atoms into the *He crystal. This unigue opportunity may give one a chance
to study for the first ume impurity quasiparticles m quantum crystals at a
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temperature comparable with the bandwidth and the interaction energy of
the quasiparticles.

There is an essential difference between the gas of *He quasiparticles in
dilute solid and liquid *He | —*He solutions. The bandwidth of *He impur-
ity quastparticles in *He quantum crystals is very small, A ~1073-10"* K,
and at not very low temperatures T > A the quasiparticle band is filled
uniformly. Therefore the characteristic momenta of the impurity quasipar-
ticles are rather high, p ~ i/a, (¢, is the atomic dimension) even at low
temperatures, leading to the violation of the quantum condition (1.4), (1.5)
and to fundamental differences between the properties of *He impurity gas
in solid and liquid “He. At very low temperatures T <A the situation
changes: all impurity quasiparticles in crystals are distributed near the
bottom of their energy band, where their velocities are small and the energy
spectrum is quadratic. This makes the properties of *He impurity gas in
*He crystals similar to those of *He gas in *He~He IT solutions.

The increase of the solubility of *He in He II as a result of polarization
widens the range of possible *He concentrations and provides means of
investigating the gradual transition from an ideal Fermi gas to a dense
Fermi liquid. The temperature of the *He superfluid transition in these
concentrated polarized solutions in the case of p-wave pairing may exceed
107> K. The properties of the corresponding superfluid phase would be
somewhat analogous to the A;-phase of superfluid *He and would be very
different from those of superfluid *He in nonpolarized or weakly polarized
*He-He II solutions. The main difference with the He A,-phase is related
to the simultaneous presence of two Bose condensates (*He and “*He) and
to the corresponding drag effects. The possible increase of the 3He solubil-

ity in liquid *He with polarization can even alter the superfluid properties
of “He.

7.3. CONCLUDING REMARKS

Spin polarization of *He-*He solutions leads to numerous interesting
effects in thermodynamics, hydrodynamics, kinetics and spin dynamics.
Some of these phenomena have already been mvestigated, some effects have
not been observed yet. The absence of thorough theoretical calculations in
the intermediate (between Boltzmann and degenerate) temperature region
still impedes the analysis of experimental data. The more complicated
theoretical problems are associated with a consistent evaluation of the
parameters of the transverse spin dynamics and with the development of
reliable appreoaches to concentrated solutions beyond the gas approxima-
tions. These approaches must not only help to obtain thermodynamic and
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kinetic results, but also to investigate énm._?no:ﬂ::m U:mzo.:..o:m - m.c_um_.m
fluid pairing of quasiparticles. New experiments on the spin dynamics 0

solutions also seem to be desirable in a wide range oa. ESB@.SE. Magneto-
kinetic effects and numerous related phenomena still remain Fm:ogn?&.
Without doubt, the main theoretical and experimental :.‘:n_dm.e is mﬁ.:mo:_wa
by the problem of *He superfluidity in 3He-"He solutions Eo._cﬂ_:m :N
case of polarized solutions. This question seems to be one of M_ ¢ mos

fascinating and promising problems of modern low-temperature physics.
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