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A microscopic theory is proposed for transverse dynamics and zero-temperature attenuation in polar-
ized Fermi liquids. The transport equations are a set of two coupled equations in two “partial transverse
densities,” which do not reduce to a single equation in a mixed component of a single-particle distribu-
tion. The effective interaction is linked to an irreducible vertex by an integral equation, and cannot be
given as a limit of a full vertex. A framework for a generalized nonlocal Landau theory is established.
The spectrum of attenuating spin waves is calculated at arbitrary polarizations and densities.

The shortcomings of the Landau theory are, at present,
some of the most widely discussed problems in condensed
matter theory. Disturbingly, one of the oldest examples
has remained unresolved for several decades: Landau
theory fails to describe the transverse phenomena when
the interlevel gaps are comparable with the Fermi energy.
Furthermore, an adequate kinetic equation is still miss-
ing.

Transverse dynamics and relaxation are inherent
features of any multilevel system. The transverse dynam-
ics describes the behavior of off-diagonal (mixed) ele-
ments of a single-particle density matrix responsible for
transitions between energy levels. If these levels corre-
spond to spin states, then the transverse processes cover
the motion of transverse components of magnetization.
The transverse relaxation may be defined either as an at-
tenuation of off-diagonal single-particle states, or as an
attenuation of a collective mode reflecting coherent tran-
sitions of particles between energy levels (spin waves for
spin systems). Such modes exist in all multilevel systems,
at least in rudimentary form.! If the transverse relaxa-
tion is large, the mode should be considered as a diffusive,
rather than a coherent collective one. These descriptions
of the transverse attenuation merge only for dilute sys-
tems.

The low-temperature transverse dynamics is important
not only for traditional fields like spin dynamics and spin
waves in Fermi liquids or spin-polarized quantum sys-
tems,! itinerant magnetism, but also for less conventional
systems like heavy fermions, marginal Fermi liquids,
high-T, systems, and other objects with at least two-band
carriers (see Ref. 2). General results presented below are
applicable to many of these systems. For simplicity, we
consider two-level particles (the pseudospin 1), and use
the terminology originating from magnetic systems. The
generalization to other multilevel particles is straightfor-
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ward. The only constraint is that the bare energy gap be-
tween the levels for noninteracting particles should exhib-
it an insignificant momentum dependence. Such an as-
sumption, being quite natural when dealing with spin
states, is not always valid for levels of other nature like
multiband solid-state quasiparticles. A momentum
dependence of energy gaps will be considered elsewhere.

The problems of the Landau theory lie in an unclear
nature of off-diagonal quasiparticles and temporal and
spatial nonlocalities involving complex off-shell terms.
The same factors are responsible for a zero-temperature
transverse relaxation 7, which does not increase as 1/7>
like the longitudinal one remaining finite at T—0.> Un-
fortunately, an adequate transport equation for trans-
verse phenomena is still absent encouraging the use of a
Landau-like semiphenomenological equation* for systems
similar to highly spin-polarized Fermi liquids. Such a sit-
uation is very unsatisfactory.

Below we report the exact microscopic results for
transverse dynamics which generalize and completely
redefine the Landau theory. The general transport equa-
tion takes the form of a set of two coupled equations in
some ‘“‘partial transverse densities.”” The transverse relax-
ation is simply a dephasing between precessions of these
densities in inhomogeneous systems resulting in an inho-
mogeneous broadening. We will also illustrate the gen-
eral results in limits of low densities and polarizations.
The detailed results will be published elsewhere.

At T =0 the Dyson equation for a small and slowly
varying mixed spin component of the Green’s function

SGH(P,t,r)Zg(P)[GH(P+K/2)—GM(P—K/Z)]
Xexp(—iwt +ik'r)

reduces to
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where P =(p,,p) is the four-momentum, the energy-
momentum transfer K =(w, k) is the cause of spatial and
temporal nonlocalities, o=w—Q,, Q, is the bare gap
between the levels (the Larmor frequency 28H for spin-1
particles), 21, £, and T';, |; are the mass operators
and the irreducible vertex in a particle-hole channel. The
arrow indices mark the internal states (up and down
spins).

In a homogeneous system k=0, the eigenvalue @ of
Eq. (1) is equal to the bare gap , without any attenua-
tion. The eigenvalue is quadratic in small inhomo-
geneities k, ©=Q,+ak? In cases when the densities are
not too high and the interactions not too strong, the
transverse relaxation 7 ! is proportional to Ima:!
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where p; | are the Fermi momenta for particles on upper
and lower levels, and a is the particles’ scattering length.
This expression can also be used for estimates at higher
densities since 7| is always related to Ima.

The integral equation (1) contains, as all similar expres-
sions in the Fermi-liquid theory, a singularity associated
with the poles of the Green’s functions. Splitting the
difference of two Green’s functions into a singular and
regular parts, ¢, and ¢,, one can transform Eq. (1) to the
equation with a regular kernel:
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The function C(K ;P,P’) serves as a generator of the
transverse Fermi-liquid interaction. At zero polariza-
tions the Landau function I'“ is defined by either of two
equivalent relations:

F?l,lT(PmP'F):})Ln})giE{)FN,u(w,k;O,PF;O,p'p) , (3a)
L9, 11(P,P)=T¢, (P, P")
+fTri,H(P,Q)¢r(Q)F‘?1,H(Q,P')

4
> (—‘;W—% . (3b)

At higher polarizations, when the poles of the Green’s
functions move away from each other, the Fermi-liquid
interaction is defined exclusively by Eq. (2). The effective
interaction resembles a nonlocal version of Eq. (3b), and
cannot be related to a full vertex I' using any analog of
Eq. (3a). This was one of the main obstacles which hin-
dered previous attempts to derive a Landau-like theory
for transverse processes (see, e.g., Ref. 4, and references
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therein).

Equation (2) is still a four-dimensional (4D) integral
equation in the Green’s function g (P). We have to sim-
plify it into a 3D transport equation, in some density
8n(p), eliminating the energy component p, of the four-
vector P =(py,p). It turns out—and this is one of the
main results—that Eq. (2) can be reduced only to a set of
two coupled 3D equations in some partial transverse
“densities” 6n; and 8n :

1 ¢ d’ ) '
W (K;p)sn|(p)== [ (2:)3[9l(p )—6,(p’)]

X | S FH(K;p,p’)Sn"(p’) ,
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where the open arrow indices { |, |} take the values 1
and |,

F|(K;p,p)=Z] pi% Z) p'i% C(K;P|,P]),
Wu(K;p)

= w?su pi% i’éngﬁu pi% Z“ pi% ,
Bnu(p)=g(Pﬂ),
P”= g| pi% ——,u?%,p s
01(p)=0c| [pt5 [—u |,

2
su(p)=-£%+2ﬂ | (e (p)—u,p)EBH,

2
B(p)=L—+3| ()4 | (pTk)—pto,p)EBH ,

the Z functions are the residues of the Green’s functions
in their poles, and (+) in () corresponds to |. This dou-
bling of the kinetic equation (4) is a result of the temporal
nonlocality and is explained by an up-down asymmetry
(resembling a particle-hole asymmetry) for dressed parti-
cles. It means that by turning down the spin of a spin-up
particle and shifting its energy, one does not go into a
spin-down state € (p), but into some different pseudostate
€,(p). The partial densities 6n, and dn | should be inter-
preted as two separate contributions to the off-diagonal
distribution 8N, (the transverse magnetization) from
slightly tilted spin-up and spin-down states &n|(p)
=8N I )(p).

The splitting of transverse density into two results in
2X2 matrices of transverse interaction operators F| |
and relaxation times .| |. These matrices become de-
generate and the set (4) collapses into a single equation
only at low polarizations or densities. Generally, all four
components of F|| and 7| are different (the off-
diagonal ones satisfy the Onsager relations).

Integral equations (4) constitute the analog of the Lan-
dau kinetic equation for transverse phenomena. An
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equivalent phenomenological theory should be formulat-
ed in the same way as Ref. 1 for longitudinal phenomena
using an analogy between a polarized system and a binary
mixture of spin-up and spin-down components. For lon-
gitudinal processes such an analogy is transparent. We
do have two sorts of (quasi-)particles, N;;(p) and
N, (p), with different energy spectra, €4(p) and €,(p),
and with separate equations of motion coupled through
the Landau interaction and the collision operator. These
(quasi-)particles remain near the Fermi surfaces
throughout the interaction processes. Surprisingly, the
same analogy holds for a description of transverse effects
involving mixed states Ny, (p). One usually assumes that
there is only one type of off-diagonal state. This assump-
tion would be valid when dealing with bare noninteract-
ing particles without an up-down asymmetry. Then it is
of no interest whether a spin-up or spin-down particle got
flipped onto an xy plane. This is not so for dressed parti-
cles. The particles are dressed differently depending on a
spin projection, and the frequency and response depend
on the type of the particles flipped even for the same den-
sity perturbations 8N; (p) [E,(p)#¢€,(p)]. When the
spins are untitled, we have two types of particles—spin
up and spin down. If we tilt the magnetization, the
molecular fields acting on tilted spin ups and spin downs
are different at k50 resulting in doubling of equations
and dephasing (i.e., inhomogeneous broadening) of pre-
cession. The microscopic equations (4) involve not only
the states €;(p) and €,(p), but also some pseudostates
£+(p) and E|(p). These four types of states give us a
four-component nonlocal generalized Landau operator
F | ‘L(K ;P>p’) (4) for transverse processes.

e solved Eq. (4) and found the expression for the ei-
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genvalue spectrum (spin waves) @ =Q,+ak? The main
obstacles to writing the solutions of (4) with k2 accuracy,
dn | =1+k-pdn (”“(p) via Fermi-liquid harmonics are 6
functions in the kernel instead of 6 functions as in an un-
polarized case. One can calculate these integrals by a
Newton-Cotes expansion with coefficients a,, and write
the solution in the operator form as

on (”1) = [ W(ul )8
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where the upper indices (0),(1) denote the angular har-
monics, and p; changes with the index s from p, to p;
with the step 8p. Finally, the eigenspectrum takes the
form
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As a result, the real part of the spectrum and the zero-
temperature attenuation are expressed via the zeroth,
first, and the second angular harmonics of the functions
W and F and their derivatives. The attenuation has as its
sources (i) imaginary parts in single-particle energies &(p)
and pseudoenergies E(p) away from Fermi spheres; (ii)
imaginary parts of energy components of the four-vectors
P| in generalized Landau functions F| [ (Ky;p,p’) (4)

(Ko3Ps>p1)— ZF“
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and renormalization functions Z | (p); (iii) derivatives of
vertex functions in off-shell directions which reflect spa-
tial nonlocalities. Basically, for not very low polariza-
tions and densities, the imaginary terms in a are of the
same order as the real ones, and the (spin) waves are
strongly damped. It is interesting to see how the spec-
trum behaves, and the imaginary terms disappear, in sim-
ple limiting cases.
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Low density Fermi liquids. Here we have a density ex-
pansion in x =aN'!”? (a is the s-wave scattering length)
which coincides with an interaction expansion. In the
zeroth and first orders in x the energies € | (p)=% | (p) are
real, while the set (4) is degenerate and reduces to a stan-
dard gas equation' with only one transverse relaxation
time. The imaginary parts and the zero-temperature at-
tenuation show up beginning with the second-order
terms. However, for dilute gases, in the second order the
set (4) still reduces to a single equation. The split be-
tween ‘é”(p)#su(p) (both with imaginary parts) and the
doubling of kinetic equations with four characteristic
times appear starting from the third-order density terms.
These effects are missed in previous theories based on
some form of a Landau or Boltzmann kinetic equation.*>
The calculation in the main orders yields

w5 Er (a=d> 1 14d 9 Fld
6ma ny (1—d?*? 3m 1—d  om (1—d?)?
. 4 Fl(d)

@ T 105m (1—d)

>
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where d =p, /p;; the functions F|(d) and F,(d) are
given in Fig. 1 (cf. Ref. 5). These results assume a locali-
ty of the interaction. The nonlocality also leads to some
zero-temperature attenuation but in a higher order in
density than a'’ above. Such nonlocal attenuation is im-
portant if the range of interaction r( is larger than the
scattering length (which may be the case for *He-*He
mixtures):

a,,=4p21r(2) F(d)
" 105m (1—d3)3

Low fields and/or polarizations. Most of the interesting
effects vanish in an approximation linear in the field.
Then & and € are real, system (4) is degenerate, and re-
tains the classic Leggett-Silin form. The doubling of the
equations, multiple transverse times, and the zero-
temperature relaxation show up in the next order in H,
when the corresponding term in a is field independent
with an imaginary part—originating from all the terms
in (4)—of the same order as the real one. The equations
reduce to two subsets of three linear equations involving
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FIG. 1. Functions F,(d), F,(d), F;(d).

the values of the F matrices on three Fermi surfaces Dts
Py, and py. This result for a has a simple structure, but
is too cumbersome to be given here.

In summary, we have derived microscopic equations
for the transverse dynamics and relaxation in polarized
Fermi liquids at zero temperatures. The exact theory in-
cludes unavoidable spatial and temporal nonlocalities.
The closed analytical expressions give the spin-wave spec-
trum with the zero-temperature relaxation at arbitrary
polarizations. The main difference from phenomenologi-
cal and semimicroscopic approaches is an unexpected
doubling of transport equations as a result of temporal
nonlocality. An analog of the Landau theory for trans-
verse dynamics becomes rather peculiar with two sets of
off-diagonal terms in spin particle and pseudoparticle
states. The elements of the four-component nonlocal
Fermi-liquid interaction operator for transverse processes
are expressed via an off-diagonal element of the irreduc-
ible vertex, and do not reduce (as for unpolarized sys-
tems) to any limit of a full vertex. At low polarization or
low density, the theory reproduces the well-known ex-
pressions though in a nontrivial way. The results are
applicable to transverse dynamics in any Fermi liquid of
two-level particles. The detailed results will be given else-
where.
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