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This is the second in a series of papers on a consistent microscopic theory of 
transverse dynamics in spin-polarized or binary Fermi liquids. We demon- 
strate when and how the exact theory of Ref 1 reduces to the conventional 
theory of highly polarized degenerate low-density Fermi liquids and gases. 
In the lowest approximations, i.e. for an ideal polarized Fermi gas and in 
the first (Born) order, our theory assumes the standard form. In the next 
order in density and/or interaction, the main equations still have a fairly 
conventional form, though they already contain the peculiar zero-temperature 
attenuation which is missing in the standard theory. This attenuation can 
be incorporated into the standard Fermi liquid formalism by adding an 
imaginary part to a mixed spin component of the Landau interaction 
function. The souree of this imaginary contribution at T = 0 is a pole in the 
integral expression for the Landau interaction function (the situation is very 
similar to the case of collisionless Landau damping). In the next order, the 
standard theory fails completely, and even the form of the equations of 
transverse dynamics becomes very unconventional We calculated explicitly 
the parameters of transverse spin dynamics and the spectrum of spin waves, 
including the zero-temperature attenuation, and, as a by-product, the polar- 
ization dependencies of thermodynamic parameters. The calculation includes 
a possible non-locality of the interaction. An application of the results to 
3HeT-4He mixtures covers the non-locality in the direct interaction channel as 
well as the non-locality and retardation associated with a phonon-mediated 
part of particles' interaction. 

1. INTRODUCTION 

In the first paper of this series I (referred below as I) we have developed 
a general microscopic theory of transverse dynamics in binary or spin 
polarized Fermi liquids. 
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It has been known for many years that a naive straightforward 
approach in the spirit of the Landau theory of Fermi liquids cannot and 
should not be used for a description of transverse (off-diagonal in spin) 
phenomena in spin-polarized Fermi liquids with high degrees of polariza- 
tion. The reasons are associated with a strong spatial and temporal 
non-locality of the "exact" theory, influence of complex off-shell terms, and 
strong attenuation of all possible off-diagonal transverse spin states which 
correspond to transitions between noticeably shifted from each other Fermi 
surfaces for spin-ups and spin-downs. Unfortunately, as far as we know, 
all this information has never been published in a concise form, and has 
circulated mostly in the form of folklore (a very brief summary can be 
found, for example, in Ref. 2). As a result, one can see from time to time the 
attempts to describe the transverse spin dynamics in highly polarized Fermi 
liquids on the basis of the standard Landau theory. Such an approach has 
been very successful at low spin polarizations, 3 5 but becomes unjustifiable 
and fails completely when the polarization increases. 

In I we have confirmed that it is impossible to get a Landau-like mean 
field equation for an off-diagonal spin component of single-particle (or 
quasi-particle) distribution, n, , ,  from exact microscopic equations. Such a 
closed equation simply does not exist, and, therefore, cannot be derived 
with the help of any renormalization of relevant microscopic character- 
istics. The reason is a strong temporal non-locality, because of which the 
exact equation in the off-diagonal Green's function GTI(P ) has not a single, 
but two distinctly separate peaks on two different energy surfaces (i.e. for 
two different values of the temporal component of the 4-momentum P). 
Therefore, it is impossible to reduce the exact equation in G,s(P) to just 
one equation in a single transverse density nx+(p) which is a function of the 
3-momentum p and does not reflect any temporal non-locality. 

However, the situation is not completely hopeless. We have shown 
that the exact equation in G~+(P) can be reduced to a set of two coupled 
non-local equations in some partial transverse pseudo-densities. Because 
of strong intrinsic attenuation, these pseudo-densities do not represent 
any long-lived quasi-particles and are complex. The two transverse 
pseudo-densities, ~nT(p)-= 6nTS)(p) and 6n~(p)-= 6nTl~)(p), are, generically, 
the separate momentum distributions for transverse magnetic moments 
finT~(p)=Tr~6+6~,(p) originating from slightly tilted spins of spin-up 
and spin-down particles (ri~ is the single-particle density matrix). Taken 
separately, these transverse pseudo-densities 6n,(p) =- 6n~s(T)(p) and 6n~(p)- 

6n,+(~(p) do not reflect any observables: a corresponding observable is 
the momentum distribution of transverse magnetization which is a com- 
bination of these two pseudo-densities. For this reason, the equations of 
Ref. 1 cannot be considered as some macroscopic Landau-like equations; in 
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some sense, the fact that these equations resemble the doubled Landau 
equations is somewhat misleading. 

The only assumption of our microscopic theory is that the pure spin 
states obey the conventional microscopic Landau theory, i.e. that the 
equilibrium Green's functions for the pure states, G~ and Gt+, have 
singularities (poles) on their respective Fermi surfaces. [This means also 
that the description of longitudinal processes, not accompanied by changes 
in the direction of magnetization, keeps the standard Landau form for 
spin-up and spin-down quasi-particles.] This is quite a natural assumption, 
though, of course, it excludes different unconventional Fermi liquids. 

An important consequence of our theory is a more clear understanding 
of the nature of a peculiar zero-temperature transverse attenuation in 
transverse spin dynamics. Of course, there is no real relaxation at zero 
temperatures. Probably, the best qualitative description of such a zero- 
temperature attenuation can be given as a dephasing of inhomogeneous 
precession between the above partial transverse magnetic moments 
(pseudo-densities). This dephasing is caused by a difference in precession 
frequencies (or effective molecular fields) for tilted spin-ups and spin-downs 
which results in an inhomogeneous broadening. 

Another consequence of the doubling of transverse equations at high 
polarizations, as opposed to non-polarized (or slightly polarized) systems, 
is an increase in number of components of the transverse Fermi-liquid 
interaction function. What is more, the transverse spin dynamics is charac- 
terized not by one, but by a set of different transverse relaxation times. 
It turns out, that the transverse Fermi liquid interaction is described by a 
non-local 2 • 2 operator. In contrast to the conventional Landau theory, 
the components of this interaction operator are complex, and are not given 
as some limit of the full vertex, but are related to the exact irreducible 
vertex function via some complicated integral equation. 

Though Ref. I contains a consistent general theory of transverse spin 
dynamics in spin-polarized Fermi liquids, the corresponding equations are 
very cumbersome and not very transparent. Therefore, it is very important 
to understand how this theory reduces to a standard Landau theory in 
different limiting cases. It is also highly desirable to illustrate the general 
results 1 by some examples for which it would be possible to get the final 
equations in a compact and more transparent form easily accessible for 
experimental applications. Since one does not have exact general expres- 
sions for mass operators or vertex functions in dense Fermi liquids, one 
should turn either to model systems, or to Fermi systems with some 
inherent expansion parameters. Probably, the best choice is given by a 
study of low density Fermi systems. 

In case of low density Fermi liquids--basically, degenerate non-ideal 
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Fermi gases--one has a natural expansion parameter, namely, the density 
of fermions. What is even more important, the expansion in fermion 
density N (more exactly, N 1/3) formally coincides with the perturbation 
expansion making a perturbative approach applicable even for strongly 
interacting dilute systems (see, for example, the review6). The dimensionless 
expansion parameter is aN 1/3~apF/h (a is the bare s-wave scattering 
length, PF is the Fermi momentum), and one can consider a density expan- 
sion as if it is an expansion in a. The first two density corrections 
are proportional to a and a 2. However, the next term should contain not 
only a 3, but also a contribution proportional to the p-wave scattering 
constant, b. After two more density expansion terms, one should include 
the d-wave processes, and so on. 

As a result, one gets a density expansion which is constructed in the 
form of a perturbative series where higher order terms should include 
scattering lengths in channels with higher and higher angular numbers. The 
corresponding perturbative procedure is quite transparent, 7'8 and fails only 
if the interaction at large distances does not vanish fast enough to justify 
an angular harmonics/momentum expansion in higher orders. 

For  most of the practical purposes, it is sufficient to truncate such a 
density expansion for not too dense systems after the second order inter- 
action terms (i.e. to retain the terms which contain the parameter a and a 2 
exclusively). Generally, such an accuracy is sufficient to reproduce nearly 
the whole variety of phenomena in Fermi liquids. However, such an 
approach is not just a theoretical exercise which provides one with a 
reasonable model for an illustration of some phenomena in Fermi liquids: 
this approach gives an adequate description of observable effects in a gas of 
3He quasi-particles in not very concentrated liquid 3He]'-4He mixtures. 6'9 

In this paper we analyze our general equations 1 in case of low density 
Fermi liquids and gases with an emphasis on transverse spin dynamics and, 
especially, zero-temperature attenuation in spin-polarized 3He~'-HeII. The 
fact that the transverse relaxation time and transverse spin diffusion coef- 
ficient remain finite at T ~ 0, in contrast to the corresponding longitudinal 
parameters which increase as l IT  2, was predicted by one of the authors 
about a decade ago (see review 6 and references therein). Later the existence 
of this zero-temperature transverse attenuation was confirmed by varia- 
tional calculations for dilute systems in the Born approximation. 1~ We 
will get the values of the zero-temperature attenuation and transverse 
diffusion coefficient from the exact equations ~ in the low-density limit. 

In the next Section we will show how the equations I reduce to a 
standard theory of spin-polarized gases in the limit of very low densities. In 
Sec. 3 we will calculate all the relevant Fermi-liquid parameters, including 
the zero-temperature attenuation and the spectrum of spin waves, up to the 
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second-order perturbation/density terms. As a by-product, we will get 
the polarization dependencies of thermodynamic parameters. With this 
accuracy, the zero-temperature attenuation can still be incorporated into 
the Fermi liquid description. We will point out the terms which are respon- 
sible for a deviation from the "standard" picture in the next order. Sec. 4 
deals with an influence of spatial non-locality on a zero-temperature 
attenuation. The non-locality can be caused by a long-range interaction or 
by retardation effects which are associated with a phonon-mediated part of 
3He-3He interaction in 3HeT-4He liquid mixtures. The last Section contains 
a brief summary and a discussion of the results for 3HeT-q-Ie mixtures. 
Details of computational results are given in the Appendices. 

2. GENERAL THEORY IN THE LOW DENSITY LIMIT: 
A LINK WITH STANDARD EQUATIONS 

Of course, for very dilute gases the dynamics and transport equations 
can and should be written via a usual single-particle density matrix, and 
not some pseudo-densities, regardless of whether the gas is spin-polarized 
or not. This means that in this case our general theory should somehow 
reduce to a fairly standard kinetic theory for a degenerate Fermi gas. In 
this Section we will demonstrate how the general equations of Ref. 1 reduce 
to the standard Landau-like theory in the limit of very low densities. 

First, let us give the main equations of I and all relevant definitions. 
In I we started from the exact Dyson equation in the mixed spin compo- 
nent of the single-particle Green's function G~(P) at T= 0 and managed to 
reduce this equation to the following set of two coupled equations in 
partial transverse pseudo-densities ~n T and 6n~, Eqs. (I.34): 

W~(K; p) 6n~(p)= ~ f [F~(K; p, p') 6n~(p') 

d3p ' 
+ F+T(K; P, p') 6nT(p')](0+(p')- 0t(p')) (2~)3 

K 1 W e ( ; p )  6nT(p) = ~  f [F~.+(K; p, p') 6n+(p') (1) 

d3p, 
+ F,r(K; p, p') 6n,(p')](0,(p') - 0,(p')) (27c)3 

Here the eigenvectors are the transverse pseudo-densities, ant(p) and 
6n+(p), which are defined via the off-diagonal (mixed) spin component of 
the single-particle Green's function as 
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6n~(p) = g(P,), fins(p) = g(P;) 

where P = ( P o ,  P) is the 4-momentum, the wave 4-vector K=(co, k) 
introduces temporal and spatial non-localities in the theory, and the energy 
components of the 4-vectors P~ and P; are determined by the single- 
particle energy spectra e T and e+: 

K=(c~,k),  P , =  e, p + ~ - # - - ~ - - / ~ H , p  

((k) ) 
P , =  e i. p -  - # + - ~ - + / ~ H , p  , ,5o9=co-2~H (3) 

0;(P)-- 0 @~ (P + k ) - # ) ,  0,(P) = 0 (e, ( P - k ) - / ~ )  

The generalized Liouville operators, i.e. the functions W,,+ in the left 
hand side of Eqs. (1), are expressed through the single-particle energies, e T 
and e+, and some pseudo-energies, gT and g+ (here and below h = 1): 

while the energies and pseudo-energies themselves are defined with the help 
of mass operators for pure spin-up and spin-down states of particles I~,(P) 
and S,+(P) as 

p2 
e,(p) = 2~n + ZT*(e~(P) - #' p)  - flH 

p2 
~ ( P )  = ~mm + ~T~(e+(P + k)  - • - ~ o  - 2 /~g,  p) - / ~ H  

(5) p2 
el(p) = = ~ + E++(es(p) -- #, p) + / /H 

p2 
g+(P) = ~mm + Y%+(e,(p -- k) -/~ + &o + 2/~H, p) +/~H 

and the renormalization coefficients Zt. , can be expressed according to 
Eq. (I.29) as 
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1 C~ZTT,~(Po = eT,,~(P), P) 1- (6) 
Z~,t(p) 0p0 

The 4-component interaction function in the r.h.s, of Eq. (1) serves 
as a generalized Landau function for transverse phenomena, and is equal 
to (I.36) 

F~(K;p,P')=ZI(P+~)Z~(P'+k)~(K;P~,P~) 

F~T(K; p, p') = Z~ (P +k) z~ (p ' -k)  ff(K; P ~ , P'~ ) 

Ftz(K;p,p')=Zr(p-k)z~ (p'+k)~(K;PT, P ~) 

where the generating function g(K; P, P') is related to the mixed spin 
component of the irreducible vertex function Ft,,**(K; P, P') via the integral 
equation (I.23) 

if(K; P, P') = F'~j.,~r(K; P, P') + f F'r,4t(K; P, Q) (~r(Q -1- K/2, Q - 1(/2) 
d4Q 

x ~(K; Q, P') (2~z)4 (8) 

and ~br is the regular part of the Green's functions defined as 

_- P K i(gr( +~,P-~K~Ibc~ 

qks(p+K,p-~K)=rc[O(e~ (P + 2k--) - ,u )  - 0 (et ( P -  k)  - k~)] 
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Before turning to low density expansions, it is essential to analyze in 
more detail the difference between pseudo-energies and energies (5). One 
can rewrite Eqs. (5) in a slightly different form: 

k) 
+ 2(fl,(p;k, H)-fl)H, p---~ -fill 

(lO) 
g, ( p + k )  (p + k/2)2 + 

2m r~(q(P+k) -~+6~~ 

fl)H, p + k)  + flH 2(ill(P; k, H ) -  

where the function fll shows the energy difference between spin-up and 
spin-down states (including the interaction), and is, in some sense, the 
dressed magnetic moment, 

ill(p; k, H, : 2 ~  [~T (p--  k)  - ~; (p + k ) ]  (11) 

This function characterizes the magnetic susceptibility of the Fermi liquid. 
If the particle interaction and/or density are weak, then e~-e~-~ 2fill, 
and ill(P; k, H) is close to the bare magnetic moment ft. The comparison 
of Eqs. (5) and (10) shows that the difference between pseudo-energies and 
energies disappears only when (/~l--~)a is negligible. This can be true 
either when the polarization is low (small H), or the density and/or 
interaction are small and fll is close to its bare value ft. In either of these 
cases, the expansion of Eqs. (10) at small k and &o looks like 

gT(P-k)..~e,(P-k)+[2(,l(p;k,H)-fl)H-&oJ[1-Z~-l(p-k); 

(12) 
Then the non-local Liouville operators Wr. 1 (4) become equal to 

Ws(K; p)~[,5og + 2(fl_ fll(p; O, H))H_kV+ + kv,.]2 

x Z ( l ( p - k )  z + ( p +  k) 
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Wt(K;p) , ,~[&o+2(f l - f l l (p;O,H))H-kLt  2kvT ] 

and are very close to each other. Therefore, the main key to the collapse 
of two equations (1) into a single standard Fermi liquid equation is the 
smallness of the parameter (/~1 - ~)H. This parameter is small only in cases 
of low polarization or low density/interaction when fl~ is close to/~. 

Now let us demonstrate why and how the above equations reduce 
to a single standard equation of the Landau Fermi liquid theory of 
spin-polarized degenerate Fermi gases 6 in case of very low densities. More 
specifically, we will analyze how the set of equations (1) reduces to a single 
equation in a transverse density of quasi-particles (magnetic moment 
distribution). We will do it by a density expansion, which is formally 
equivalent to an expansion in the scattering length a, up to the second 
order terms proportional to a 2. We will denote different order terms in the 
corresponding equations by upper indices: the upper index co) will mean the 
zeroth-order term corresponding to an ideal non-interacting Fermi gas, (i) 
will correspond to the first-order density/interaction correction linear in 
aN1~3, (2) will stand for (aN1~3) 2 contributions, and so on. 

As we will see below (Appendix B), the renormalization functions for 
pure spin states ZT, , (6) differ from 1 only in the second order in density: 
Z,,~(~ = 1, Zr,;(1)= 0, ZT,,(2) oc a 2 r  0. Since f l l -  fl is also small in density, 
this means that the functions WT, ~ (13) are equal to each other up to the 
terms of the order a2: WT(~ = Ws/~ W~(I) = W+ ~ W~(2) = WT(2) (the exact 
expressions will be given below). Therefore, the left hand sides of Eqs. (1) 
are the same up to the second-order density terms. 

On the other hand, the density expansion of the irreducible vertex 
function FT,,sT(K; P, P')  starts from the linear in interaction term, /~(~), 
while the regular part ~b~ of the Green's functions ~b~~ ~b~l)= 0. Therefore, 
according to Eq. (8), 

~ (1) . (g(~ P, P') = 0, ff(~)(K; P, P ) = F~,IT(K, P, P'), 
(14) 

( ~ ( 2 ) ( K ;  p, , _ ~ (2) . P ) - Fr,,sr(K, P, P') 

What is more, we will see below that the first order term in the vertex part, 
F(~), does not depend on momenta, F(~)(K; P, P ' )=cons t .  As a result, the 
difference between components of the Fermi liquid operator Fik (7) can be 
caused, up to the second order in density, only by some zeroth-order 
difference in arguments PT and Pt  for F(2)(K; P, P') (14). However, in the 
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zeroth order, tT(~ fill= e, (~ fill= p2/2m, and, with the same accuracy, 
Pt  and P~ in the arguments of F(2)(K; P, P') should be considered equal, 
PT ~~ - 1s = p +(O) + K/2. As a result, 

F(O)~. = F~)(K; _ r:(o)~. = F~)(K; p') = 0, ~ , ~ ,  P, P') P, P') - ~ T  ' ~ '  P, P') P, 

F~)(K; P, p ' ) =  F~)(K; P, p ' ) =  F~)(K; P, p ' ) =  F~)(K; P, p') 

- I~T~,~t(I)(K; P, P')  = const, (15) 

F~)(K; p, p ' ) =  F~)(K; P, p ' ) =  F~)(K; P, p ' ) =  F~)(K; P, p') 

= r'TI,~(2)(K; P, P') 

Therefore, up to the second order in density, the set of equations (1) reduces 
to a single kinetic equation in transverse density nt~(p ) = n~(p)+ nT(P): 

d3p ' 
W(K; p) 6nT+(p) = f r'~+,+~(K; P, P') 6nT+(p')(O;(p') - 0T(p')) (27z)3 (16) 

The explicit expressions for the functions W and r'~+,+T in Eq. (16) will be 
given in the next Section. This equation plays the role of the transport 
equation for the transverse spin density in a very low density limit (i.e. in 
the gas limit). 

Generally, the doubling of equations is associated with an up-down 
asymmetry (somewhat similar to a particle-hole asymmetry) for dressed 
particles, and appears only starting from the third order in density. In the 
third order 

F(3)(K. "~T t~ '  P' p') = t~(3)(K; p(O), pT(O)) 

+ [ZT~2) ( p - k )  + zT(2) ( p ' - k ) ]  r'T~.~,~I)(K; P, P') 

+ r,T+,,T(Z)(K; p(1), pT(~)) (17) 

and similarly for other three components of the matrix/-(3). One can also 
write the same type of equations for WT. +. Only the last term in Eq. (17) 
is different for different components of F~k. It is obvious that with this 
accuracy Eqs. (1) do not merge anymore (see Eqs. (25), (26) below). 

One should keep in mind that the calculation of the first term in the 
r.h.s, of Eq. (17) is not very simple: it should involve not only the standard 
third order s-wave scattering term, but also the first order p-wave term and 
the retardation to the first order s-wave term. 9 

Note, that the zero temperature attenuation shows up for the first time 
in the second order while the set of Eqs. (1) is still degenerate and reduces 
to the single Eq. (16) (see the next Section). 
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3. SPIN-POLARIZED LOW DENSITY FERMI LIQUIDS 
WITH SHORT-RANGE INTERACTION AT T= 0 

In this section we will calculate explicitly all the relevant parameters 
of transverse spin dynamics as an expansion in density up to the second 
order. 

The main order in density for dilute systems corresponds to an ideal 
non-interacting polarized Fermi gas, and is trivially described by the 
Stoner equations (see, for example, the reviews6'9). 

The first order density/interaction terms are also quite simple since 
with this accuracy the scattering amplitude--a is a constant which does not 
depend on momenta of interacting particles, 7 and the corresponding 
(irreducible) vertex is a constant, 6'9 r' ~ = -4na/m. Therefore, 

~ p 2  
X,~ ~~ = Xts ~~ = F,t,+, ~~ = 0, sT. (O)(p) = g,,+iO~(p) = ~m + flH 

ZT (~)(po, p) = 4ha N;, E,s(~)(po, p) 4ha N,, Fzs,~T(~I(K; P, P') 4~a 
m m m 

47~a (1)(p = eT,; _) gT.t(I)(p)= N~. T 
m 

V] .(~ = V i (~ = p~- , 
m 

VT(1) = V; ( 1 ) = 0  

(18) 

where N T and N, are the numbers of spin-up and spin-down particles per 
unit volume. In this approximation, the set of equations (1) reduces, as it 
was discussed in the previous Section, to a single equation (16), which, in 
turn, obtains the standard form 6 

( &o pk 4ha 
m m 

4za d3p 
(N t - NI) 6n,s(p) = m [07(p) -  01(p) ] f hn~t(p) (2n) 3 

(19) 

with the eigenvalue 6'9 

&o = cdl)k 2, c~ (x) - -  ( 6 9 2 ) 2 / 3  NTS/3 -- Nss/3 
20ham (N T-N;) 2 (20) 

Quite naturally, there is no zero temperature attenuation within the first 
order: this approximation corresponds to a uniform momentum- and 
energy-independent molecular field. Therefore, the molecular field for tilted 
spin-ups and spin-downs is the same, and does not cause any dephasing or 
inhomogeneous broadening. [Note also, that since the attenuation, i.e. the 
imaginary part of the spectrum, should have a definite sign; it should start 
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from an even power of the interaction and, therefore, from the even power 
of the scattering length a.] 

The calculations in the next order in density are much more cumber- 
some. Detailed calculations of the irreducible vertex and the mass operators 
in the second order in density are given in Appendices A and B. According 
to Eqs. (15), the generalized transverse Landau operators /~ik (2~ are still 
equal to each other within this approximation, and are determined by the 
irreducible vertex (21). The single-particle energies and pseudo-energies, 
which enter the generalized Liouville operators (4), are easily calculated 
with the help of the self-energies y(2~ from Appendix B: 

) (p_k' 2j__ZTT(2)( m (P-k) p k) 

p 

_ 2 1 gT(2)(p R)=]~$T( )(~m(pq-k)2-flH-~-O(-o,p-k ) 

g't(2)(Pffk) -]~- l'+(2) ( l  (p - k) 2 q - / J H - ~ 2 m  ~q-~(.o, pq-k) 

(21) 

G(Z) (p--~)=eT(z) (p--~)--( &O-- 2 P~km) ZT(Z)(P) 

(pk) 2 ~22TT~2)(eT~~ -- ~, P )  
+ 2 - -  

m c~e~ (~ 

g1(2) (p + k) = ~j(2~ (p + k) + (~co - 2 ~-) Z~(2)(P) 
(pk) 2 ~2Y~IS(2)(~ t(~ ) - #, P) 

+ 2 - -  
m (~,~$(0)2 

(22) 

The renormalization functions ZT.+ (2) (i.e. the residues of the Green's 
functions for pure spin-up and spin-down states, Eq. (6)) are given in 
Figures 8a,b (see Appendix B). 

Results of calculations of the irreducible vertex, mass operators and the 
single-particle spectra (21) are presented in Appendices A, B and Figs. 6-8 
in Appendix B. 

As one can see from Eqs. (21), the difference between pseudo-energies 
g and energies e in this order in density disappears when k = 0 (note, that 
&o oc k 2). Therefore, the pseudo-energies are equal, up to the k2-terms, to 
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As a result, the Liouville operators W (4) obtain the form 

pk 
W(~ p) = W+(~ p) - 

m 

4~a N N ) W t(~ (K;  P) = W~.(1)(K; P) = ~x~ + ( ,L - T 
m 

( k )  (pk)2 c32Y~++ ~.i.(2)(g, 13~ - ,u, p) 
- 3o0Z~., ~2~ p+__~ + 2  ' ' 

m OgLT (~ 

Though all the terms in the r.h.s, of the last of Eqs. (23) are formally of the 
same order of magnitude in a, the last three terms are of the higher orders 
in k. It is quite obvious, that, eventually, the terms of the order a2k will 
contribute to the spin-wave spectrum e in the same order as a3-terms 
without k, while the contribution from the terms a2k 2 is of the same order 
as from the fourth order terms a 4. Therefore, if we are interested only in 
two first terms in the spin-wave spectrum, Eq. (23) should be rewritten as 

WT(2)(K; p)  = w t(g)(K, p)  = g?f2)(p) - -  g , L ( 2 ) ( p )  -[- c~(2)k 2 (24) 

The terms 

(25) 

as well as 

3F(2tt;,+t(K; P, P') P= P(I) 
6F(3)ik -- OPo e(% k 

63F(2)T,~,,tT(K; P '  P ' )  p ,0 )  
+ ap;  ,,,= p,% 

(26) 

in Eqs. (17), (23) are the only ones responsible for the differences between 
W t and W; and different components of Fik in the third order in density 
when the set of equations (1) does not collapse into a single equation (16). 
These terms are easily computed with the help of data on Z (2) and p(2) in 
Appendices A, B. 
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Now let us return to Eq. (16) which we will rewrite, with the same 
accuracy as Eq. (24), in the form 

I VT+V ~ f l l (p))H]  ~nT~(p ) 6~o-- k - - - ~  + 2 ( f l -  

d3p' (27) 
= f ~r+,+t(K; p(O), p+(O)) 6nT+(p,)(O+(p, ) _ O T ( P , ) )  (2rt) 3 

where we used the fact that components of the generalized interaction 
functions Fik in the first and second order in density are equal to each other 
and are given by the irreducible vertex, Eq. (15) (the neglected terms in 
Eq. (27) are of the higher orders in density). On the other hand, in case of 
a homogeneous precession, k = 6~o = 0, one has (cf. Eq. (I.51)) 

~ d3p' (28) 2 ( f i -  f l l (p))H = f F(2)%,+,(Ko; p Co), priO))(Ot(p,) _ 0z(p')) (2~) 3 

with K o = (2fill, 0). 
We are interested in the eigenvalue of Eq. (27), aoJ, up to the terms of 

the order k 2, 6~o=(a{1)+a(2))k 2. With this accuracy, we can restrict 
ourselves only to the linear in k term in the expansion for 6n,~ (here, as 
always, it is enough to know the eigenvectors in the first order if one 
is interested in the eigenvalues up to the second order): anT+(p)= 
1 + kp 6v(p). Then integration of Eq. (27) over momenta with an additional 
factor IOn(p)-O~(p)] yields 

d3p 
~569(NT-Nt)-f(kV-L-?)(kp)bv(p)(O~ .(p)-OT(p)) (27r) 3 

= f ~.T+,+z(K; p(O), p+(O)) kp' 6v(p')(0~(p) - 0,(p)) 

d3P d3p' (29) 
• ( 0 , ( p ' ) -  0T(P')) (272)3 (2~)3 

where one should put k = 0 in the arguments of the P-functions (3). As we 
will see below, the density expansions for cr and 6v start from the term 1/a. 
However, the expansion for the integral in the r.h.s, starts only from the 
term linear in a: the term with ~.r (18) does not depend on k and vanishes 
after the angular integration, while the non-vanishing term r'r is linear 
in a. Since we are interested only in the first two density/interaction terms, 
Eq. (29) reduces to a simple expression 

1 ~ kv+ + kv, kp d3p (30) 
c~-(N+-N~)J ~ k 6v(p)(O+(p)--OT(P)) (2n) 3 
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while the eigenvector 6v is equal to (see Appendix D) 

2• 
! 

a l j ( 2 )  = - -  ( 6 ( e , ( p ) - - # ) + 6 ( e T ( p ) - - # ) ) - - ( 4 r c a ) 2 ( N T _ N ~ ) 2  

x f ( p -  p')k ~ p(o), d3p' 
pk F (2)~'H(K~ P'(~ i2rc) 3 

Finally, the spectrum of spin waves (30) obtains the form 

( 6 7 Z 2 )  2/3 N.~ 5/3 --/V~5/3 at - oc{ 2) 
co= 2flH + o& 2, c~- - -  

20rcarn (N  T - N~) 2 

a (2) 0~' + io(', ~' rc A ~" -- 27/3~ F2(A ) 
= =6 - -~  Fx( )' 35m 

(31) 

(see Appendix D), where 

A -= Ni" - N~ 
N+ + N~ 

is the degree of spin polarization. The functions F1.2(A ) are given in Fig. 1 
(cf. Refs. 10, 11). Note that 7" (31) does not contain a and is a universal 
function. 

The divergence of the spin waves spectrum (31) at low polarizations, 
N T - N+ -+ 0, or at low density/interaction, aN ~/3 ~ 0, is purely formal and 
is insignificant. The spectrum is quadratic, 609 ~ k 2, Eq. (31), only as far 
as the wave vector is small, k ~ a ( N + - N + ) / N  ~/3 and becomes linear (or 
disappears completely because of the Landau damping; see Ref. 9) at 
higher wave vectors. This inequality effectively removes the singularity at 
a ( N  T - N ~ ) / N  2/3 ~ 0 .  In principle, such a formal singularity is present in 
some form in all expressions for the spectrum, >6'9 and reflects a simple fact 
that it is impossible to have a transition from a quadratic spectrum in 
polarized systems to a linear spectrum in non-polarized systems without a 
formal singularity at a ( N  T - N + ) / N 2 / 3 ~  O. 

The imaginary part of the coefficient ~, Eq. (31), gives the zero-tem- 
perature attenuation. As it was discussed in some detail in Ref. 1, the origin 
of this attenuation at T =  0 is not a hidden relaxation process, but rather 
an inhomogeneous broadening caused by a dephasing of inhomogeneous 
precessions for tilted spin-ups and spin-downs. This dephasing is explained 
by the fact that the effective molecular fields acting on inhomogeneously 
tilted spin-ups and spin-downs are somewhat different leading to a 
difference in precession frequencies. 
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Fig. 1. Functions F l and F 2 for the spin wave spectrum c~' and e" in the second order in 
density, Eqs. (31), (D.5), (D.6). 

The appearance of the zero-temperature attenuation already in the 
second order in the density/interaction can also be easily understood from 
the following argument. As it was demonstrated in the previous Section, 
the spin dynamics equations (1) up to the second order in density collapse 
into a single equation (16). As a result, the corresponding transverse spin 
dynamics can be discussed not in terms of partial pseudo-densities, but in 
terms of a single transverse spin density fin u which should include all inter- 
action renormalizations up to the second order. Then the corresponding 
Landau interaction function in the second order can be given by a standard 
expression (cf. Ref. 7, 9), 

32~2a 2 f d3p'l nT(___ppl) " + n+(P2_____) (32) 
m J ( 2 ~ ) 3 p l Z + p z Z - - p ~ a - - ( p l + p z - - p ' ~ ) 2 + i O s i g n ( p ~ - - p ~ )  

The imaginary part of this integral is zero in case of zero polarization, or, 
for spin-polarized systems, for longitudinal processes. Therefore, the term 
i0 in the denominator (31) is usually neglected. The situation is different in 
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case of transverse processes in spin-polarized systems: then the imaginary 
(pole) part in Eq. (32) is non-zero and is equal to 

8a2f {n+(pl) nT(p + p ' -  pl) + (1 - n+(pl))(1 - nT(p + p'-- pl)) } 
m 

X 0(p  2 ..[_ p,2 __pl 2 _[_ (p + p,__ pl)2)  d3pl (33) 

(see Appendix A). Detailed calculation of the cumbersome integral (33) is 
given in Appendix A. If one uses the Landau interaction function with the 
imaginary part (33) (and the corresponding equations from Appendix A) 
for the standard equations of the Fermi liquid theory, 6'9 one will get 
exactly the same value of the zero-temperature attenuation as in Eq. (31). 
The term with i0 in the denominator (32) plays the role of the source of 
the collisionless Landau damping. This pole was missing in all previous 
calculations in the second order. 

From the practical point of view this means that one can still use all 
the general equations of the Landau theory of low-density spin-polarized 
Fermi liquids, 9 but with one important modification: the transverse part of 
the Landau interaction function (A.3) should include, in addition to the 
expressions of Ref. 9, an imaginary part (33), (A.7-11). 

Though the main purpose of this paper is the description of transverse 
spin dynamics and not of longitudinal effects (which obey a conventional 
Landau theory), our calculations of the vertex and the mass operators allow 
us to calculate the interaction renormalizations for the thermodynamic 
parameters. Therefore, as a by-product, we calculated the second-order 

. 
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- 1  
0.0 0.2 014 0.6 0.8 1.0 
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Fig. 2. Renormalization functions R T and R+ for the effec- 
tive masses in the second order in density, Eqs. (34), (C.2). 
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density corrections for the effective masses for spin-ups and spin-downs 
which are determined by the self-energy operators for the pure spin states 
in the second order, Eq. (21) (see Appendix C): 

1 1 & T ( P : P * )  1 (poa)  ~ 
= _ - +  r e 2  RT(A) mr* Pr @ m 

1 1 c~e~(p = p~) 1 (poa)- 
- - - - +  7z 2 R+(A) 

m~* p; @ m 

(34) 

The functions R1,2(A) are plotted in Fig. 2. At zero polarization these 
results coincide with Ref. 12. 

4. E F F E C T S  O F  NON-LOCALITY IN TRANSVERSE 
SPIN DYNAMICS 

Another important source of the attenuation is the nonqocality of the 
particle interaction. This source might be especially important for the spin 
dynamics in 3He-4He mixtures where 3He-3He interaction is to a large 
extent mediated by phonons with long mean free paths thus increasing the 
range of interaction. 

The non-locality corresponds to a dependence of the exact vertex 
part r' on the momentum transfer k. The irreducible vertex part can be 
expressed through the scattering amplitude as 

F(2]~H, k; co, p, co', p') 

=4rCf (k ;p ,p , )_ (4~m)2  f d3q 
m ( 2 ~ )  3 

x f ( p  - q + k/2; p/2 + q/2 + k/4, p' + p/2 - q/2 - k/4) 

x f (q  - p + k/2; p/2 + q/2 - k/4, p' + p/2 - q/2 + k/4) 

I 1 - nt(q) - n,(p + p' - q) 
;< 

cox + co2 + #, + #~ - (1/2m)[q 2 + (P + P' - q)2] + i0 sign(q - p , )  

- Pp2 +p,2 _ qa _ (p + p, _ q)2 (35a) 

where the bare scattering amplitude f (k ;p ,  p ' ) - f ( p  + k/2, p' - k/2; 
p - k/2, p' + k/2) depends on the transferred momentum k and the relative 
momentum of colliding particles p -  p'. In the pure s-wave approximation 
without any non-localities, f =  - a .  

There are two sources of non-locality. The first one is associated with 
the finite range of the direct particles' interaction, while the second one is 
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caused by the non-locality and retardation of the phonon-mediated part of 
the interaction. 

The non-locality in the direct interaction channel assumes that the 
range of the interaction r o is large in comparison with the scattering 
length a. Then the density expansion for the amplitude has the form 

a 
f(k; p, p') = l + l p _ p , 1 2 r ~ + i [ p _ p , i a  (35b) 

In this paper we are not interested in non-local renormalizations of the real 
part of the spin-wave spectrum; we will calculate only the main non-local 
contributions to the zero-temperature attenuation leaving only the largest 
term in density in the expression for the real part c((31). 

There are two types of direct non-local contributions. The largest comes 
from the terms s fill, p)-X~(po  + fill, p) and Ft~,~r(2flH, 0; P, P') 
[G+~(po +fil l ,  p) -G~t (Po- f lH,  p)] in Eq. (19) with the vertex part (35). 
Though we will not present here the detailed calculations, it is worth 
mentioning that the resulting expression for c(' differs from the integral 
(D.4) by the additional factor ro2(pl- p2) 2 in the integrand 

" 21~176176 F3(A ) (36) 
nt 35m 

where the function F3(A) is given in Fig. 3 and Appendix E. This term in 
attenuation is small in comparison with ~" (31) to the extent ro2pt2~ 1. 
Note, that Eq. (36) as well as Eq. (31) do not contain the scattering length 
a in the expressions for the attenuation. 

There are also non-local terms which originate from the derivatives of 
the vertex function ['. Though such non-localities play a dominant role at 
high temperatures, Ref. 13, their contribution to the zero-temperature 
attenuation is smaller than (36). 

Generally, the non-local contribution to the zero-temperature attenua- 
tion is not negligible for dilute Fermi systems only if the interaction range 
ro is larger than the scattering length a. This may be true for 3He quasi- 
particles in 3He-4He mixtures: the 3He-3He interaction is mediated by 
long-lived phonons and has a relatively large range for slow 3He particles, 
while the force constants and, therefore, the scattering length a, are small 
because of not very large difference between 3He and 4He atoms. The 
simplest approximation for the phonon-mediated interaction vertex is 

&ra* c2 q 2 
I'?Ph(Q; P' P') = m(qo 2 - c2q 2 + iO) (38) 

where the 3He-phonon interaction parameter a* ~ -(0.1 +0.3)A (see, 
e.g.,~4), c~2.36 • 10 4 cm/s  iS the sound velocity in 4He, m ~2.3 m3 is the 
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effective mass of 3He quasi-particles, P and P '  are the incoming and outgo- 
ing 4-momenta of 3He quasi-particles, and Q = (q0, q) is the 4-momentum 
transfer corresponding to the internal phonon line for the two-particle 
vertex function. The interaction parameter  a* in Eq. (38) is written in such 
a way so that to provide a phonon contribution to the s-wave scattering 
length a. 

Since we are interested in the case of low densities of 3He fermions, the 
interaction (38) can be treated perturbatively with VF/C~ a N  1/3 serving as 
an additional expansion parameter  (VF is the Fermi velocity). Then, in the 
lowest orders, the phonon contribution to the attenuation of spin waves is 
given by the equation 

,, 97z2a*pi .2 F4(A ) 
o~ p h -  35am3c 2 

(39) 

(see Fig. 3 and Appendix E). Though this contribution is small, it might be 
important  for a better experimental evaluation of the scattering length a. 
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Fig. 3. Functions F 3 and F 4 for the nonlocal contributions to the zero temperature attenua- 
tion for the finite range potential eft', Eqs. (36), (E.6), and phonon mediated interaction %h", 
Eqs. (39), (E.3). 
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5. DISCUSSION 

In this paper we applied our exact microscopic theory I of transverse 
phenomena in spin-polarized Fermi liquids to low-density Fermi systems 
such as a dilute gas of 3He quasi-particles in 3He]'-4He liquid mixtures. For 
the first time, the results take consistently into account the inherent spatial 
and temporal non-locality of the fermion interaction (such as, for example, 
retardation). We calculated all the relevant quantities as an expansion in 
the fermion density. For degenerate Fermi systems such an expansion 
formally coincides with the expansion in the fermion interaction. 

The spatial and, especially, temporal non-localities lead to a peculiar 
non-zero collisionless attenuation in t ransverse  spin dynamics of polarized 
Fermi gases even at zero temperature. This zero-temperature attenuation is 
important when the degree of spin polarization is of the order of or larger 
than the ratio T I T  F. 

As expected, the results in the lowest order in density and interaction 
coincide with the results of standard approaches which are based on 
the conventional Landau theory or transport equation. 6'9 Within this 
approximation, the exact irreducible vertex is always a constant, and does 
not contain any non-localities. Of course, within this accuracy, the zero- 
temperature attenuation vanishes. 

The first unusual effects start to show up in the second order. Here 
the main equations still resemble those of the Landau theory, though the 
analog of the t ransverse  component of the Landau interaction function has 
an imaginary part. These imaginary contributions come from off-shell 
terms in the exact vertex (or, if one uses a purely transport approach, 
from a pole in the interaction function which has the same origin as the 
collisionless Landau damping in plasma). This is the main source of the 
zero-temperature attenuation in spin-polarized low-density Fermi systems. 
With this accuracy, it is still possible to use the equations of the Landau 
theory of spin-polarized low-density Fermi liquids, 9 but the transverse 
component of the Landau interaction function of Ref. 9 should be sup- 
plemented by some imaginary part. We calculated this imaginary part 
explicitly. In the lowest order the results are similar to the variational 
results, lo 

The calculated value of the zero-temperature attenuation can be used 
for evaluation of the transverse relaxation time r_ at T =  O, which in the 
main approximation has the following form15: 

9 7c2h 4 pt 5 --p,t 5 

"r•  - -  20 a 2 Im o~ (pt 3 - - Y , L  
- - - -  ,,~ 3)3 ( 4 0 )  



270 A.E.  Meyerovich and K. A. Musaelian 

This transverse relaxation time r• (T=0)  can be used either for kinetic 
equation in r-approximation, or for the macroscopic equations of spin 
dynamics (the Leggett equation, see Ref. 6). Since the transport equation 
up to the second order in density/interaction has the standard form, the 
Leggett equation is still valid. 

In spin-echo experiments 16-19 one usually recovers the ratio of the 
quality factor f2i~• and the transverse diffusion coefficients D• (notations 
from Ref. 6). This ratio can be expressed via the spectrum of spin waves as 6 

1 0~" D•  • 
c( (41) 

s • ~"  1 + f2i2z ~ 2 

The ratio f 2 i z •  ) can be given, according to Eq. (31), as 

(2 ) f2iz• 3pFam l +  pFaFI(A)  (42) 
D •  7rT F 

If taken into account, the second term in the brackets will slightly lower 
the absolute value of the scattering length a for 3He-4He mixtures which is 
given in Ref. 20. 

The drastic changes occur in the next order in density/interaction. 
Here the result of the temporal non-locality is not only the zero-tem- 
perature attenuation, but the change in the form of the main equations 
themselves. With this accuracy, it is impossible to describe the transverse 
spin dynamics using any type of a closed transport equation in the fermion 
density as it is done in Ref. 10. The corresponding equation splits into two 
coupled equations in some complex pseudo-densities. The reason is the shift 
between different spin-up and spin-down shells for the vertex which is 
caused by retardation. In some sense, the effect reflects the spin-up--spin- 
down asymmetry which manifests itself only starting from this order in 
interaction. We calculated the leading terms which are responsible for this 
split of the equations. 

We calculated all relevant microscopic characteristics (such as vertex 
functions, mass operators, etc.), and on their basis--the parameters of 
transverse spin dynamics, including the zero-temperature attenuation. 
As a by-product, we calculated also the effective masses of spin-up and 
spin-down fermions. The results include non-localities in direct, as well as 
in indirect, interaction channels. The latter one is especially important for 
3Heq'-4He mixtures because of a strong retardation of a phonon-mediated 
part of interaction. 

Needless to say, that all unconventional effects disappear for 
longitudinal spin dynamics or in a case of low spin polarization. 
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These results clearly demonstrate how and when the standard proce- 
dure of a derivation of the transport Boltzmann equation for degenerate 
spin-polarized Fermi gases breaks down. Later we plan to demonstrate this 
effect on the example of Kadanoff-Baym or Keldysh diagrammatic techni- 
ques of derivation of the transport equation for spin-polarized Fermi gases. 

Another unclear question which should be studied separately, is the 
applicability of the macroscopic Leggett equation of spin dynamics at high 
spin polarizations in higher orders in density. 

Some preliminary results have already been published in Ref. 15. 
We are grateful to F. Laloe for helpful discussions. We are also grate- 

ful to D. Golosov for pointing out a numerical error in one of the results 
in Ref. 15. This work has been supported by NSF DMR-9100197 and 
INT-9015836. 

A P P E N D I X  A 

The irreducible vertex in the second order in the density expansion 
is given by a set of diagrams presented in Fig. 4 (cf. Refs. 7, 8). The corre- 
sponding analytical expression on the mass surface is: 

['tl,+t(2)(K;p, p') 

-- [ , l = n ~  (pl---~) - n?(p + p' - pl) 
32~2a2m f l _ p 2 + p 2 - p 2 - - ( p + p ' - - p l ) 2 + i O s i g n ( p l - p + )  

1 ] d3pl (A.1) -Pp2+p'2-p12-(p+p'-pl)2 (2~) 3 

Isolating the real part of the irreducible vertex and integrating we get: 

Re r'T~'~T~2)(K; P' P') = 2a-~2m ~ =~,; ( qlnpnq+p#2-pp'p~q _p2 + pp, 

2P~2-P2-P'ZlnP~r+P~2+PP' ) (A.2) 
- 4r p~r-p2-pp' P~ 

where r = Ip + p'l, q = [p-p ' [ .  It is not surprising that this equation leads 
to a standard expression 9 for the Landau interaction function of a spin- 
polarized dilute Fermi gas in the second order in density. In notations of 
Ref. 9 (see Eq. (4.1.7) and below), a general Landau interaction function of 
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Fig. 4. Second order Feynman diagrams for the irreducible vertex l"~;.w 

any polarized Fermi liquid of particles with spins 1/2 with an exchange 
interaction has the form 

+ [q~(p, p') a~/~6.~ + ~b(p', p) ~,a/~]. e 

+ r p ' ) (a~-e)(a ,~ .e) (A.3) 

where the Greek indices denote the spin states, and e is the unit vector in 
the direction of polarization. The transverse spin dynamics is described by 
the functions ~(p, p') and ~(p, p'). According to direct standard calcula- 
tions, 9 the function ~(p, p') in the second order in density/interaction is 
given exactly by Eq. (A.2), while r 0. This equation is usually used for 
description of transverse spin dynamics in spin-polarized low-density Fermi 
liquids. 

However, this does not provide the full description: the irreducible 
vertex (A.1) is complex with a noticeable imaginary part. The imaginary 
part of the integral (A.1) for the irreducible vertex on the mass surface is 
determined by i0 in denominator and, therefore, is equivalent to the 
following integral with a a-function in the integrand: 
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a~2~ 
I m [  "(2) 'K" '~ J {n~(pl)nT(p-t-p'--pl ) T~,~ , P , P ' ) =  m 

+ ( 1 - - n , ( p l ) ) ( 1 - n T ( p + p ' - - p x ) ) }  

x 6(p2+p'2-p~2-(p+p'-p~)2))d3p~ (A.4) 

Making a transformation s = p ~ - ( p + p ' ) / 2  and using spherical coor- 
dinates for s, one can integrate (A.4) over ds: 

Im 1~ (2~ (K; ~*,*T P, P') 

7za2q ( P + P ' - - s )  
2m 2 , 

+ ( 1 - n , ( P @ - s ) ) ( l - n T ( ~ - + s ) ) } d c o s O  (A.5) 

Here 0 is the angle between p + p '  and s, and [sl = q/2. To perform the 
remaining angular integration, one can formally take the density functions 
at finite temperature, and then take the limit T--+ 0 after integration. 
Integration at a finite temperature T yields (cf. Ref. 11): 

Im P (2) {K" ,~,,~v , P, P') 

2T~a 2 1 
r 

= x ln  

1 +p,2 --p~-2)l -- l exp ~ (p2 __p2 

1 2 ;2 2 1 ({exPl4-~-~(p  +p +rq-2p,  ) ] + l }  

l x { e x P E 4 ~ ( p 2 + p ' 2 - 2 p * 2 ) l + e x p l - 4 r q ] }  

({ ' ]}) exp [~-~  (p2 + p 2 -- rq -- 2p {2) ] + l } 

ex 1 2 ,2 2 rq 

(A.6) 

The limit T-+ 0 is reached differently for different regions of the variables 
p and p'. For the sake of simplicity we will consider only one region which 
is relevant to our calculations: p, <p, p' <PT (in most of low frequency 
physical phenomena, the zero-temperature attenuation comes from the 



274 A.E. Meyerovich and K. A. Musaelian 

region between the Fermi spheres for spin-ups and spin-downs). Other 
regions can be treated in the same way. Then the imaginary part of the 
irreducible vertex in the second order in the density expansion is given by 
the following set of equations: 

P2"4-P'2<P• 2' I cOs 01 < p ~ . x / r 2 + p ' Z - - p +  . 
pp' 

~ 7ca 2 
Im F ~2~,~,1~(K; p, p') =2-~m (2p~2 + r q - p 2  _p,2) (A.7) 

pT2 <p2 + p,2 < p 2 + pT 2, ICOS 0[ <Pz x/P2 + p,2 _ pT 2 . 
pp' 

Im r" (2) t K. na2 ( 2 %,+T~ ' P ' P ' ) = - -  P+ +pZ__p2__p'2), (A.8) 
rm 

p 2<pZ+p,Z<psZ+pT2 

PT x/P 2 +p,2 _ p 2  < Icos OI <Pr ,,/p2 +p,2 _p+2. 
pp ' pp ' 

Im r "~2) IK" ~a2 _p,2) %,~T, , P, P') = 2~m (2p+2 + rq--p2 (a.9) 

pZ+p'2>pS2+pT2 ' IcosOI<P+x/P2q-p'2--P+ 2 �9 
pp' 

2 
Im i ~ (z) tK" I"+,*T~ , P, P') = rta- (p2 +p,2 _p12 _p,t2) (A.10) 

rm 

Pg4-P '2>p$2q-P{  2, p ,  ~ / p 2 + p , 2  p$2< I cOS 0l <PT ~/P2q-p'2--pT2 . 
pp' pp' 

7~a 2 
Im['(2)T~.;;r(K;p,p')=~rm(p2+p'2+rq--2p~ 2) (A.11) 

In all other parts of the region Pl <P, P' <PT the imaginary part of the 
vertex function is equal to zero. 

In principle, with this accuracy, the transverse spin dynamics can be 
described by the equations of the Fermi liquid theory 9 with the interaction 
function (A.3) which should include, in addition to (A.2), the imaginary 
parts (A.7-11) in the transverse part of the Landau interaction function 
~(2)(p, p,), Eqs. (33), (A.3). 
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A P P E N D I X  B 

Interaction corrections to the single-particle energies in a dilute Fermi 
gas appear in the first order in the density expansion. However, these 
corrections do not depend on momenta, 

4rcah 2 42zah 2 
8T(1) = N~, e+(1)= N T (B.1) 

m m 

are always real, and do not lead to any deviations from a standard Fermi 
liquid behavior. 6 

Since the first-order corrections are momentum independent, the only 
second-order corrections to the single-particle energies are given by the 
self-energy operator in the second order taken at the frequency correspond- 
ing to the energy of a free particle: 

(P2 PT.12 ) 
e(2)T'~(P)=Z(2)Tr'+~ ~m 2m ' p (B.2) 

Here Z (2) is the part of the self-energy which ensures non-trivial contribu- 
tions to the spectrum and which is given by the second order diagrams 
presented in Fig. 5. The rest of the second order diagrams contribute to the 
chemical potential # as well as to the spectrum, and, therefore are always 
cancelled from ~ -  #. 

The analytical expressions for the diagrams in Fig. 5 are: 

2~2)~(~o, p) 

~.2m09 + p r  2 + q2 _p,2 _ (p + q _ p,)2 + i0 sign(p -PT)  

n,(q) q _ p,)2} d3q d3p' 
Pp2 +q2_p _ (p+ (2n)6 (B.3) 

P P 

o,..~176 ........... " . ,  . \ 

p, p p \... p, Q ..i p+Q_p, 

""',,. .......... .~176176176 

Fig. 5. Second order Feynman diagrams for the mass operator IL 
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and 

s p) 
f (1 -n~(p')-nT(p+q-p'))(n~(q)-n~(P')) 

n~(q) q _ p,)2} d3q d3p' (B.4) 
-- Ppz+q2 p 2 (p+ (2/r)6 

First we will give the results for the imaginary part of energy (B.2-3); the 
corrections to the real part will be discussed in the end of this Appendix 
and in Appendix C. Using Eqs. (B.2-4), the imaginary part of the 
corrections to the spectra can be expressed as follows: 

I m  e , ( p )  = -m f {nl(q)(1-n~(p+q-p'))(1-nT(p')) 

- (1 - n , ( q ) )  n , ( p  + q - p ' )  n T ( P ' ) }  

,,2, d3q d3p ' x 6(p2+q2 p,2 ( p + q _ p ; )  - ~  

(B.5) 

Im ~+(p)= -m f {n~(q)(1--nT(p+q--p'))(1--nl(P') 

- -  (1--nr(q))n,(p+q--p')nl(p')} 

x 6(p 2+cl 2-p '2-  (p+q_p , )2 )  d3q d3p ' 
(2~) 5 

As in Appendix A, it is easier to calculate these integrals for Fermi 
distributions n(p) at finite, but very small temperature, and then take the 
limit of T-* 0. Here, too, the calculation gives different results for different 
regions of momenta. We will not give the details of rather tedious, but 
simple calculations, and will present the results. 

For Im e ,~)  with p <PT, one has to consider two cases: PT >P* ~ 
and P,<Ps ~2. For the former case calculations give the following 
expressions for three different ranges for variablep: 

P ; > ~ P ~ ,  P<P~ 
a 2 f l  2 22 1 Im z t ( p ) = ~  ~ (p -p+ ) +~  (PT 2-p2-p+2)(p2+p+2) 

1S/ [ + -  qdq (y+~-y t)(p,2+p~2--p2-q 2) 
p pT2 p2 
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1 
+ 6 ((q+p)3__(q_p)3_y+t +Y-r) 

.~_ 2 (2p,2 _p2 _ q2)(2p -Y+r +Y-T) 

y + r = x/pZ + q2 + 2P t q x/p 2 + q2 -- p t 2 

Y - t  =N/P 2 + q2 __ 2PTq x/p2 + q2 _p,2 (B.6a) 

Pr > X/~ PI'  ZP.~ "(P < N/-PT 2 __p$2 

' ) + ~ ( 2 p t 2 - p 2 - q 2 ) ( y + ~ - y  ~1 

+ J/pr2 p2 qdq (pT2+p~Z--pa--q2)(y+T--y_,) 

1 
-- -~(y+T3--y_T3--y+Z3 + y_s  3) 

--I(2p~2--P2--q2)(Y+T--Y-~--Y+~+Y-*)]}2 

y+g= x/p2 + qe + 2p, q x/p2 + q2--p, 2 

y _ , = X / - ~ + q Z - 2 p , q  px /~q2-p ,  z (B.6b) 

P* > x ~  P~, .,/~2 2 x/PT --P~ <P<P,  

Im 

1 -k ~ (y+l  3 --y_,t 3 __y+].3 q_y_T 3) 

+ ~ (2p*2--p2--q2)(Y+s - Y - *  -Y+T +Y- t )  (B.6c) 

In the second case, when pT<p+x~,  integration gives the following 
expressions: 
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p T < ~ p , t ,  p < ~ 1 2 - - p  2 

a2 {~ - 2)2+ 1 p2 2,, 2 lmsT(P)=2-~m (pi-p,t  ~(Pr 2 -  -P,t )[P +p+2) 

I[pT [(Y+~ Y r)(pTZ +p,Z-p  2 + p J./p~2 p2 q dq _ - 
q2) 

1 +_~((q+p)3 (q_p)3_y+,+y_ , )  

1 2 2  ]} + ~ (2p~ - p  - q Z ) ( 2 p - y + ,  + y  T) (B.7a) 

/ 2  p2  P~<x/2P+, ,,/PT - * <P<P, 

a 2 {~ _ 2)2_1_1 pr [-( 2+ 2 2 
ImsT(P)=2-~m (pi--P'L PfPi qdq[  p, p, _p  _q2)(y+ _y_ , )  

1 2 2  z + ~( P+ --p --q2)(2p-y+,+y_ t) 

+ 6 ((q +p)3 _ (q _p)3 _y+T 3 _y_ t3 )  (B.7b) 

P T < ~ P * ,  P~<P<PT 
a 2 

~ _p2_  Im st(p) = 2--~mp f qdq l_ (pr2+p2 qZ)(y+,_y_r) 
"p.t 

1 
+ -~ (2p+2-pZ-q2)(Y++-Y-+-Y+T+Y-O 

, ] + g ( y  +,3 _ y + ,  3 _ y _ ,  3-. y_,3) (B.7c) 

When p >p , ,  the final expressions for Im eT(p) are the same for both cases: 

PT <P < x/772 +P+ 2 

a 2 (1 2 2). 3 Im er(p) = - zr-~p 3 (p _p~2_p+ [p+ _ (pr2 +p2_p2)3/2) 

, ) + 5 (p s_ (pT2 +p~_p~)S/~ / (B.8) 

p > ~ 2  

a 2 {1 2 2 3 1 5\ 
ImeT(P)= 2rcm ~,3(P _p2_p~  )pl +~Pl ) 
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The remaining integrals (B.6-8) can be evaluated numerically: 

279 

(poa) 2 
I m e , ( p ) -  2 ~ F d T ( p ) ,  Po = (3n2(N~ + N;)) */3 (B.9) 

Functions FdT(p ) for three polarizations are given in Fig. 6a. 
Analytical integration over all variables except for q 

following expressions for Im e+(p) in four ranges of p: 
gives the 

P<P+ 
a 2 

Im e+(p) = ~ (p2 _p2)2 (B.10a) 

Im e+(p) - 

P~ <P  <PT 
a2 /p [ 

2romp T2+p+2_p2qdq (PT2 +pj'2--p2--qZ)(Y+J'--Y-'t) 

1 2 +~(p  +q2-2pr2)(Y+r-Y_T-Y+t +Y_+) 

1 3 y 3 +y 3 ) ]  (B.lOb) + 6 (Y+T +l --Y-T 3 

Im e~(p)= - - -  

p~ < p  < x~-i,2 + p  2 

E 2~mp i qdq (pZ+q;-p,2-p12)(y+l-y_s)  

1 
+ 2 (p2 + q~_ 2pT2)(y+r -Y -T  -Y+,  +Y- , )  

+ -~ (y+ ' r3 - - y+~a- -y+T3+y+~ 3) 

2 ~ 2 p 2~(p 3 + 3 (p2_~,r - ~ J ~ _ (pr2 +p,2_p2)3/2) 

2 5 2 2 _p2)S/2)~ 
+ ~(P* - (PT  +P~ ) (B.lOc) 
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Fig. 6. Functions (a) FaT Eq. (B.9), and (b) Fd, Eq. (B.ll) for the imaginary part of the 

fermion spectra Im %,1 for three polarizations A. 
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Imet(p)= - - -  

p > N~pT2 +p]2 

2~rnp , qdq (p2q-q2--p,~.2--1)~2)(.y+,t--y_[) 

1 + ~(p2+q2-2prZ)(y+T-y_r-y+s+y_+) 

1 3 + y +  3)1 + ~ (Y+t __y+3 __y+3 

(B.lOd) 

Numerical integration over the remaining variable q yields: 

(poa) 2 
Ime+(p)= 2gm F<(p) (B.11) 

Functions Fdz(p ) for three polarizations are given in Fig. 6b. 
The real part of e(2)~.+(p) is given by: 

nT(p') n+(p + q - p') 
- n~(q)(nt( p ) + n+(p + q -  p'))] d3q d3p ' 

Ree(2)t(P)=2m(~--~)2f P p2+q2 p2 (p+q_p,)2 (2~z)6 

(n+(p')nt(p+q-p') ) 
(4~c~)2\__  ~ -n,(q)(n~(p )+n~(p+q-p')) d3qd3p ' 

Re e(2),(p) = 2m P p2+q2 p2 (p+q_p,)2 (2~z)6 

(B.12) 

Analytical integration over q gives the following intermediary equations: 

Reg,2,,,~(p):2rn(4~)2;[nr,+(p,){P,22U21n p,,~+u +uP~'t } 
p+,t-u 

+ (n,(p')+ n,(p')) -P~"r 2 In + vp,,, p+.,-v 
1 d3p ' • - -  

I p -  p'l (2~z) 5 

p~ _ p. p, p,2 _ p. p~ 

u= IP-P'I ' v= [P-P'I (B13) 
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Eq. (B.14), for three polarizations A. 
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The remaining integral over p' can be evaluated numerically. The result for 
different polarizations is given by: 

Re g(2)L,t(p)= ~ (poa) 2 ~ G a,,+(p) (B.14) 

The functions Gd~(p) and Gu+(p) for three different polarizations are 
plotted on Figs. (7a and b). 

In the second order the renormalization factor Z is given by: 

�9 cgZ{2)i"T'H(c~ P) (B.15) 
Z,.+(p) = 1 + -~o o~:~(%,~(p)-, 

Using Eqs. (2), (3) and performing the integration over q in complete 
analogy with the previous case one obtains: 

[ , ,, d [ p 2  _ U 2 " p$ . ,  q- u u p L t ]  
Z,,+-- l + 2mZ ( ~ - ) 2  f Lnt,stP )-d-~u ~ ~  ,n + J P.L,, - -  u 

d p+,, - v  2 
+ (nT(p') + n+(p')) dvv - 

1 d3p ' 
• 

[P - P'I ( 2 ~ )  5 
p 2 _ p . p ,  

u P 
[ P -  P'] ' 

In p+,T+v +vp+,T}] 
P+,T - -  v 

p , 2 _ p . p ,  
(B.16) 

lp-p'l 

The remaining integral over p' can be evaluated numerically. The result for 
different polarizations is given by: 

Zt,;(p) = 1 - ~ 2  (poa) z Hur.s(P) (B.17) 

The functions HaT(P) and Hai(p ) for three different polarizations are 
plotted on Figs. (8a and b). 

A P P E N D I X  C 

Effective masses of spin-ups and spin-downs in the second order in the 
density expansion are given by: 

1 =---~1 1 ~a(2)T(p=pT ) 1 1 + 1 0a(2)+(p=pl ) (C.1) 
m~* m PT @ ' m~* rn Pl @ 
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Here m is the bare mass of the particle (effective mass of an isolated 
3He atom in 3He-4He mixtures). Taking the derivative of the integrand 
(B.13) with respect to p and evaluating the integral numerically, one 
obtains: 

1 1 (P~ o ,(A) 
mr,;* m ~ - ~ ' ~ T ' ~ '  , (C.2) 

Here A is the polarization, and functions RT,+(A ) are presented in Fig. 2. 

A P P E N D I X  D 

In the lowest order in the density expansion, the eigenvector 
6n = 1 + kp ~v can be found from Eq. (19) by keeping only the terms which 
are of the first order in a and zeroth order in k, and the terms which are 
of the first order in k and the zeroth order in a. With this accuracy, 

1 
6v (1) - (D.1) 

4ga(Nx - N t )  

This solution corresponds also to the lowest order expansion of Eq. (29). 
The next term in the expansion for the eigenvector 5v can be obtained from 
the next order of the density expansion of Eq. (29) with the help of 
Eq. (D.1). 

1 1 
6v(2) = - 2m (5(e~(p) - #) + 6(~.(p) - / 0 )  (4ua)2 (N T _ N~)2 

x f ( p -  p')k - p(O), d3p ' 
pk F(2)TL{~(K~ P'(~ - 0T(P)) (2rt) 3 (D.2) 

Substituting Eqs. (D.2) and (D.1) into Eq. (30) and separating the real 
and the imaginary parts, one obtains the following expressions for the 
spectrum e(2): 

1 a3p3 a p4 
-m2(N.r - - N I )  3 f (27r) 9 

x 6(p~ + P2 - P3 - P4)(PJ" k ) ( (p~  - P2)" k )  

x P  
81At-g2--83--84 

(nit n21.(1 -- n3~)(1 -- n4+ ) 

1 (1 -'~-A)I/3-[ - (l - A )  1/3 
+ nl~n2+(1--n3~)(1 --n4,[.)) 3m (1 +A)  1/3- ( l - A )  1/3 (D.3) 



286 A.E. Meyerovich and K. A. Musaelian 

1 (" d3pi d3p2 d3p3 d3p4 
rn2(Nt - N~) 3 (2re) 9 

x 6(p~ + P2 - P 3  - P4)(P~ k)((p~ - P 2 )  k)  

x 6 ( e l + ~ z - e 3 - e 4 ) ( n l t n 2 t ( 1 - n 3 t ) ( 1 - n 4 1 )  

+ nli.n2+(1 -- n3;)(1  --  n4+)) (D.4) 

Numerical integration in Eq. (D.3) yields: 

7Z 
e' FI(A) (D.5) =6WX 

where A = ( N T - N + ) / ( N t + N + )  is polarization, and function FI(A) is 
presented on Fig. 1. 

A detailed analytical calculation of the integral in Eq. (D.4) one can 
find in Ref. 11. The result can be given as: 

Off' 27/37r F A 
= 3~m 2( ) (D.6) 

with F2(A ) presented on Fig. 1. 

A P P E N D I X  E 

Interaction of 3He impurities in 3He-HeII liquid mixtures is, to a 
large extent, mediated by phonons in superfluid HeII (see, for example, 
reviews6'9). The phonon (sound) velocity c is much higher than the 
characteristic Fermi velocity VF of impurity particles which is proportional 
to the 3He concentration N 1/3. Therefore, in the main approximation 
the impurities can be considered as immobile (or the sound velocity as 
infinite), and phonons do not cause any retardation. The retardation effects 
caused by phonons appear in higher orders in VF/C. The phonon-mediated 
interaction vertex (Eq. (38)) can be expanded in series of VF/C as ___(+q~ 

Fph(Q;  P, P ' ) =  4rca* 1 (E.1) m c2q2~ 

The parameterization of the vertex (E.1) is chosen so that the first (main) 
term in the brackets provides the phonon renormalization of the scattering 
amplitude, while the second term is responsible for the (small) retardation 
effects. We are interested in the latter, and assume that the scattering length 
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a in all of the equations of this paper is already renormalized by the 
phonon-mediated interaction, i.e. that a already includes a*. 

Then the contribution to the imaginary part of the spectrum due 
to phonon-induced retardation can be evaluated by substituting the 
retardation term from Eq. (E.1) instead of the local vertex in the diagrams 
for the irreducible vertex part (Fig. 4). Simple calculations yield: 

,, 1 C d3pl d3p2 d3p3 d3P4 
O; 

ph -- 4rn4c2(Nr _ N;)3 j (2z)9 

• 6 ( p l  + P2 - P3 - P 4 ) ( P ~  k) ( (p~  - P 2 )  k )  

x ( (p12-p32)2  ' (P22--p32)2'~ 6(a 1 +e2--~3--~4) 

x (n l tn2T(1 - -n3T) (1 - -n4+)+nl ,n2 , (1 - -n3~) ( l - -n4+) )  (E.2) 

After numerical integration in (E.2), we get the following expression for 
the phonon contribution to the non-local part of the zero-temperature 
attenuation: 

9Tc2a*p~ F4(A) (E.3) 
O~ttph = 35rn3c2a 

where the function F4(A) is plotted in Fig. 3. 
In the same way, the non-local contribution to the vertex part in 

Eq. (31) can be written as 

~,z(Q; P, P') = 4~_a r~ 2 Ip - p,12 (E.4) 
m 

The corresponding contribution to the attenuation takes the form: 

2/"02 f d3pl d3p2 d3p3 d3p4 
Ct"nl = m2(Ny -- N l) 2 (2g)  9 

• 6(Pl ~ - P 2 - - P 3 -  P4)(Pl ' k ) ( ( P l - - P 2 ) - k )  

X [pl -- P212 6(~1%- g2-- ~;3 -- ~4) 

x (n lTn2~(1- -n3r) (1- -na+)+nlTn%(1--n3+)(1- -n4+))  

Numerical integration yields: 

21~ 2 
c~""l 35m F3(A) 

(E.5) 

(E.6) 

with the function F3(A ) in Fig. 3. 
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