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This is the third in a series of papers on microscopic theory of transverse 
dynamics in spin-polarized Fermi liquids. In the lowest order in polarization 
our exact general theory of Ref 1 reproduces the conventional Landau-Silin- 
Leggett theory of Fermi liquids. The next term in polarization expansion con- 
tains a zero-temperature attenuation with the magnitude that does not depend 
on polarization. This attenuation results in a finite relaxation time in trans- 
verse spin dynamics at zero temperature and is responsible for anomalous 
temperature behavior of spin diffusion. The zero-temperature attenuation is 
determined by two angular harmonics of the derivatives of the mass operators 
and the irreducible vertex in off-shell directions, and cannot be expressed via 
standard Fermi liquid harmonics. At high polarizations, the parameters of 
transverse spin dynamics are calculated as an expansion in polarization. The 
expansion involves complex values of interaction function and energy on a set 
of isoenergetic surfaces with the radii between the Fermi momenta for up 
and down spins, p~ and Pr" The results explain recent experimental data on 
spin diffusion in spin-polarized liquid 3He T and 3HeT-4He mixtures. The 
comparison with experimental data indicates that the superfluid transition 
temperature for 3He in 3He-nile mixtures may be much lower than the 
current estimates. 

1. INTRODUCTION 

It has been known for a long time that a straightforward extension of 
the phenomenologic Landau theory of Fermi liquids fails in the case of 
transverse (off-diagonal in spin) phenomena in spin-polarized Fermi liquids 
with high degrees of spin polarization. The reason is the contribution of off- 
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shell terms and spatial and temporal non-locality of the many-body Fermi 
liquid interaction. These effects are negligible for non-polarized systems and 
for longitudinal dynamics in polarized systems, but become important for 
transverse spin dynamics in highly polarized Fermi systems. However, the 
undeniable success of the Leggett-Silin theory of spin dynamics in weakly 
polarized Fermi liquids has, to some extent, masked a lack of understanding 
of spin dynamics in highly polarized systems when the difference of Fermi 
energies for up and down spins is comparable to the Fermi energy itself. 

In two previous papers of this series ''2 (referred below as I and II) we 
developed a general non-local microscopic theory of transverse dynamics in 
binary or spin polarized Fermi liquids, 1 and applied this exact theory to 
low density Fermi liquids. 2 Two main features of our exact non-local equa- 
tions at T=  0 are the existence of a peculiar zero-temperature attenuation 
in transverse spin dynamics and the strong retardation which results in 
doubling of equations in spin densities. We obtained closed microscopic 
expressions for all relevant parameters including the zero-temperature 
attenuation and the corresponding relaxation time. The results explain the 
intrinsic inconsistency of numerous semi-phenomenologic attempts to 
generalize the Landau theory and make it applicable to highly polarized 
Fermi liquids. 

Cumbersome and not very transparent general equations of Ref. 1 
express the characteristics of transverse spin dynamics through exact 
irreducible vertex functions and self energies of a Fermi liquid. Though 
these equations lead to several general qualitative conclusions applicable to 
all Fermi liquids, the vertex functions and self energies cannot be calculated 
explicitly for most of the systems even without spin polarization. Therefore, 
practical applications of the general results of Ref. I should involve either 
model calculations or approximations which can be justified only in some 
limiting cases. In II we simplified the general expressions of Ref. I for the 
case of dilute Fermi liquids, and obtained simple explicit expressions for 
the parameters of transverse spin dynamics at arbitrary spin polarizations 
as an expansion in density of the Fermi liquid. We also demonstrated how 
and with what accuracy the general expressions of Ref. I reduce to the 
conventional equations of spin dynamics in nearly ideal Fermi gases. 

Another natural limiting case is the case of low spin polarization when 
one should recover the well-known Landau-Silin-Leggett result. 3-5 This is 
discussed in the next Section. In Sec. 3 we go beyond the Silin-Leggett 
limit, and calculate explicitly the spectrum, zero-temperature attenuation, 
and relaxation time at low polarizations. In Sec. 4 we develop a general 
polarization expansion for transverse spin dynamics. In Sec. 5 we extend 
the results to finite temperatures, and compare our results for low polariza- 
tions with the recent experimental data on 3Her and 3Hel"-4He mixtures. 
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2. LOW SPIN POLARIZATIONS 

In this Section we will analyze the exact non-local microscopic equa- 
tions of Ref. 1 at vanishingly low spin polarizations, and reduce them to the 
Landau-Silin-Leggett equations. 

In the beginning we want to make two comments. In what follows we 
use as thermodynamic variables the external magnetic field H and the 
chemical potential #. This implies that we are dealing with a Fermi liquid 
in which spins are polarized by the so-called brute force technique, i.e., by 
the external magnetic field. However, practically all of the results can be 
applied to spin-polarized Fermi liquids in which the spin polarization is 
caused by any other means (see, e.g., review6). In these cases the adequate 
thermodynamic variables are the chemical potentials for particles with up 
and down spins, #1 and #~, rather than H and #. 

Second, we are interested in low-frequency (aside from the Larmor fre- 
quency, f~0=2//H, which may be arbitrary) and long-wave dynamics. 
More precisely, we assume that kvo (Vo is the Fermi velocity) and 
6co = co -  f~o are much smaller than the characteristic internal molecular 
field f2 i. [An oversimplified estimate for f2i is ~ i ~  --(4naerf/m*)(NT-N+) 
where c~e~ is some effective scattering length, NT,; are the densities of 
spin-ups and spin-downs, m* is the effective mass, and we assume h = 1 
throughout this paper. For more accurate expressions for ~i  in weakly 
polarized or dilute Fermi systems see Ref. 6. At present, it is not clear 
how to introduce a similar quantity in dense highly polarized quantum 
liquids; see the Summary.] This "hydrodynamic" regime for transverse spin 
dynamics covers spin diffusion, low-frequency spin rotation and long-wave 
spin waves. Below we will expand all the equations in kv/ffti and 6co/f~g. 
This is a standard procedure in spin dynamics which usually does not 
cause any problems. At low spin polarization we will also perform an 
expansion in polarization. Since f~t is proportional to spin polarization A, 
it vanishes when the polarization A goes to zero. Therefore, though the 
polarization and "hydrodynamic" expansions are formally independent 
from each other, these two types of expansion should be coordinated by 
keeping kv/f~i(A)~ 1. This means that with lowering polarizations our 
results should be restricted to more and more homogeneous systems, 
exactly i n  the same way as in the standard Silin-Leggett theory. Not 
accidentally, this will also take care of a formal singularity at A-~ 0 
(inherent to spin dynamics in all Fermi liquids, 36) in the spectrum of spin 
waves which is proportional to (kv)2/f~. 

Let us start from the equations of Ref. 1 and relevant notations. In I 
we have shown that the strong temporal non-locality does not allow to 
derive a closed Landau-like mean field equation for a mixed (off-diagonal) 
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spin component of single-particle (or quasi-particle) distribution nlT(p ). 
Instead, the exact equation in the mixed spin component of the single- 
particle Green's function GTi(P ) (P = (Po, P) is the 4-momentum) reduces to 
a set of two coupled non-local equations in some partial transverse pseudo- 
densities, cSn~(p)= 6n~)(p) and ~Sni(p)-cSn~(p). The pseudo-densities, 
taken separately, do not correspond to any observables, and are, generi- 
cally, the momentum distributions for transverse magnetic moments 
6nTl(p ) = Tr~#+6~(p)  originating from slightly tilted spins of spin-up and 
spin-down particles. These two coupled equations in partial transverse 
pseudo-densities, 6n~(p) and 6nl(p), are equivalent to the Dyson equation 
in bGTI(P) at T=  0, Eqs. (I.34): 

W~(K; p) 6ni(p)= �89 [Fii(K; p, p') 5ni(p') 

d3p ' 
+ F~r(K; P, p') 3nr(p')](0~(p' ) -  0r(p')) (2n)3 

WT(K; P) 6nt(P) = �89 1 [Eta(K; p' p') 6nl(P') 

(t) 

0 . . . .  d3p' 
+ F+z(K; p, p') fin~(p')](01(p' ) -  ~tP ~) (-~)3 

The transverse pseudo-densities, 6nT(p) and fini(p), are defined via the small 
off-diagonal component of the Green's function 6G+~(P) at two different 
frequencies Po as 

5nr(P) = g(PT), 5nl(P)= g(Ps 

kot) (2) 

where the 4-vector K =  (&o, k) characterizes temporal and spatial non- 
localities of the theory, the energy components P0 of the 4-vectors Pt and 
P+ are determined by the single-particle energy spectra ~T and el: 

+ .).+= .) 
+~ + ' 0 + + = 0 ( p , + k l  

and PT,I are Fermi momenta for up and down spins. Note, that in I and 
II the functions 0f,+ are defined in a slightly different way, namely, as 
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0(eT,~(p-T-k/2)-/~). The definition (3) is more consistent with the results of 
Appendix C in I. For most of the purposes, including the calculations 
in I and II, these two definitions are equivalent. Below, the difference is 
important. 

The functions We. + in the 1.h.s. of Eqs. (1) play the role of generalized 
Liouville operators. They are expressed through the single-particle energies, 
e x and ~, and some pseudo-energies, gX and g~: 

These energies and pseudo-energies are defined through the mass operators 
for pure spin-up and spin-down states of particles ~CTT(P ) and Yu+(P) as 
(I.3Z 40) 

pZ 
~T(P) = ~m + Y~T,(~T(P) -- U, p) --/~/4, 

p2 
~+(p) = ~ + ~+~(e+(p) - / ~ ,  p) + / ~ H  

g, ( p _ k ) _  (p -  k/2)~ 
2m +Y~XX(e*(p-k) 

-1~-&o+ Z(~,(p;k,H)-fl)H,p-k)-~H (5) 

k/2) 2 
~* ( P + ~ ) -  (P2m +Y~** (es ( P + ~ )  

k / -~,+&o-2(~(p; k, H)-/~Lr, p+g +/~H 

where the function ~I(P; k, H) determines the difference in energies between 
spin-ups and spin-downs, and describes the longitudinal susceptibility of 
the Fermi liquid: 

/~l(p; k, H) = ~H [e+ (p + k ) -  ~r ( p -  k ) l  (6) 

The renormalization coefficients ZT, ~ in Eq. (4) are given, according to 
Eq. (I.29), as 

1 1 C~ZTT'~+(P~ = eT'+(P)' P) (7) 
ZT, I(P) C3po 



794 A.E. Meyerovich and K. A. Musaelian 

The 4-component interaction function Fik in the r.h.s, of Eq. (1) serves 
as a generalized Landau function for transverse phenomena, and is equal 
to (I.36) 

( k )  ( k )  F~I(K;p,p')=Z ~ p + ~  Z,  p ' + ~  ~(K;P~,P~) 

k 2) Pt) F+~(K;p,p'):Z~(p+~)Z,(p ' - k  E(K;Pt, 
(s) 

k F,~(K; p, P')= ZT (P--~) ZI (P' +k) ~(K; P~, P~) 

F,T(K; p, p')= ZT (p-k)  z, (P'-k) ~(K; P~, P'T) 

where the generating function E(K; P, P') is related to the mixed spin com- 
ponent of the irreducible vertex function r'T,,,~(K; P, P') via the integral 
Eq. (I.23) 

r P, P') = ['TI,,T(K; P, P') + f ~'TJ"+T(K; P' Q) 

d4Q 
xqbr(Q+K/2, Q-K/2)~(K; Q, P') (27~)4 (9) 

and S r is the regular part of the Green's functions defined as 

Now let us reduce Eqs. (1) to the standard Silin-Leggett equation in 
case of vanishingly low polarization. If the magnetic field and polarization 
are low, then all the quantities with up and down arrow indices are close 
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to each other. What is more, the term 2(ill(p; k, H) - fl) H in the argument 
of the mass operators (5) is small. As a result, the pseudo-energies (5) are 
nearly equal to real energies and to each other: 

(11) 

With the same accuracy, we can rewrite the non-local Liouville operators 
W~,, (4) as 

W,(K; p) ~ [6~ + 2( f l -  ill(P; 0, H) H -kv~ +2 k v : j  ~ 

x Z r - I ( P - ~ ) Z ~ ( P +  k)  

(12) 

Wr(K; p)~  ~-[ 6co + 2( f i -  ill(P; 0, H)) H -kv+ +2 kv~.j7 

x Z ~  1 p + ~  Zt p -  

where we have used Eqs. (6), (7), (11). Two functions W,,z (12) differ only 
by the Z-factors. Since the terms in the square brackets are already small 
in polarization or k, the arrow indices of the Z-factors and the wave vectors 
k in their arguments can be dropped making the functions Wr,, identical 
to each other. Note, that in the linear approximation the sum of Fermi 
velocities for up and down spins v; + v+ is equivalent to 2vo (vo is the Fermi 
velocity in non-polarized Fermi liquid of the same density). 

The main source of polarization and field dependence of the r.h.s, of 
Eqs. (1) is associated with the 0-functions (3) in the integrand. In the 
lowest approximation in polarization, these 0-functions reduce to 

m2fll(p; k, H) H6(eo(p)-/~) 

I-2fil(p; 0, H) H + v "  k] 5(~o(p)-/z ) 
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where co(p) is the spectrum of quasi-particles without polarization. Since 
this term is already linear in polarization and k, the polarization 
dependence of all other terms in the r.h.s, of Eqs. (1) can be neglected. In 
practical terms this means that we can omit arrow indices of the interaction 
functions, and consider all four components of Fi~ equal to each other. For 
the same reason we can disregard the indices of the Z-factors (12) (and the 
wave vector k in their arguments). Then both Eqs. (1) become identical, 
and the set (1) collapses into a single equation, which, because of the 
6-function (13) in the integrand, involves only a single Fermi surface 

LPl = Po: 

[&o + 2(fl - f l l O )  H -  k ~ V0] 6n 

= [-2flloH+ k" Vo] f F(")(P~ PD) 6n(p~) do/4~ (14) 

with fllO = fll(Po; 0, 0). The usual antisymmetric component of the Landau 
function F (a) is related to the above interaction functions Fik and the vertex 
functions (8), (9) as 

, 4upom 
F(")(Po, Po) = ~ Z(Po) 2 E(0; Po, Po) (15) 

Eq. (14) is exactly the same as the Landau-Silin-Leggett equation. 3'4 
This equation describes the Silin spin waves with the spectrum 

1 k2v~ 
o9 = no + 3--~Z (1 + F~o~)) 

(16) 
(F (o  a) - -  F]a)/3 ) n o 

h i =  (1 + F~a~/3)(1 + F~o ~ 

where FCo ") and F~ a} are the zeroth and first angular harmonics of the 
Landau function F{al(p o, p;). Of course, with this accuracy, there is no 
zero-temperature attenuation, and the spectrum (16) is real. 

3. L O W  SPIN POLARIZATIONS: BEYOND THE 
LANDAU-SILIN-LEGGETT APPROXIMATION 

In this Section we will calculate the main term in the zero-temperature 
attenuation at low polarizations. To do so, we have to go beyond the 
Landau-Silin-Leggett approximation for Eqs. (1). Since we are not interested 
in higher order polarization corrections to the real part of the spectrum (16), 
we should leave all the real parts of the vertex function and mass operators 
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in the same form as in Sec. 2, and add only the lowest in polarization 
imaginary contributions to the vertex and self-energies in Eqs. (1)-(9). 

We will start from the r.h.s, of Eqs. (1). We will use a more accurate 
equation for the difference of the 0-functions, 0~-0~,  instead of a single 
0-function (13): 

1 0 ( p + k  - p ~ ) - O (  p - k  _ p T ) ~ [ b ( p _ p l ) + b ( p _ p 2 ) ] ( p 2 _ p , )  ' 

k p 2 _ k  
P l + ~  =P~,  = P ,  (17) 

Then the integration over dp' in Eqs. (1) is equivalent to substitution of 
p~ and P2 instead of p' in the integrand. In order to get a closed set of 
equations, we should consider Eqs. (1) only on the surfaces IP] = P l  and 
IP]----P2- As a result, the set (1) will reduce to a set of four equations in 
OnT.+(pl.2 ). Each of these equations is an integral equation in angles; these 
equations can easily be solved by expansion of the functions Fik in angular 
harmonics in the same way as it is done in a standard Silin-Leggett case. 
What is more, we will see that in the lowest approximation in polarization, 
these four equations still can be reduced to a single one. 

The mass-operators Z,T and ~ are real only on their Fermi surfaces, 
fPl =P,,+. Away from the Fermi surfaces the self-energies obtain imaginary 
parts which, close to the Fermi surface, are quadratic in the distance from 
the Fermi surface: 

1 
Im ZTT = ~  a(p - pT )2 sign(p - Pr), 

1 
Im Zl+ = ~-g a(p - p,)2 sign(p - p~) 

while the difference in coefficients a for up and down spins in Eq. (17) is 
insignificant at low polarizations (we introduced the factor 1/m* so that to 
keep the coefficient a dimensionless). For dilute Fermi systems, according 
to Appendix B of II, 

a = a2p2/Tr (18) 

where a is the s-wave scattering length. These imaginary parts should be 
added to the energies and pseudo-energies (5). 

If we keep only the lowest order polarization terms in real and 
imaginary parts of energies ~ and pseudo-energies g, the energies for up and 
down spins on the surfaces [p[ = Pl.2 can be written as 
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e+ ( P l +  k ) 

e t (P2-+ -k ) 

= e ~ ( p ~ ) ,  

= e+(pj.) + v+" Pl + k .  v L 

+ + + 
[_ m* 

= ~ ( p + ) ,  

= ~ + ( p t )  + v t ' p +  

- k ' v x - i a ~  (pT----p+)2 t- 2k 'vo(p t -p+) -+  (k 'v~ 
[_ m* povo _3 

Similar expressions can be obtained for pseudo-energies ~ using Eqs. (5), 
(11). Then the generalized Liouville operators W+.~ (4), (13) on the 
surfaces IP[ = PI,2 become equal to each other: 

W~,t(K; P,,2) ~ 6o~ + 2(fl -fl~o) H -  k" v o 

io- 
+~oo  [4/~l~176 + k " v~ + (k "v~ (19) 

where To is the Fermi energy p~/2m*, and we took into account that 
(po/m* )(pr - p+) ~ 2fllo H. 

Similar parametrization should be done in the r.h.s, of Eqs. (1). Here 
we can keep the Silin-Leggett form for the real parts of all functions, except 
for the 0-functions for which we should use Eq. (17) instead of Eq. (13). 
Since the imaginary part of the mass operators is quadratic in distance for 
the frequency from the mass surface, the imaginary part of its derivative on 
the mass surface, and, therefore, the imaginary parts of the Z-factors (7), 
are equal to zero. Therefore, in the lowest approximation in polarization, 
the sole source of imaginary terms in the r.h.s, of Eqs. (1) is the renor- 
realized vertex function ~ (8), (9). These imaginary terms are linear in 
]Pl - k/21 - Pt and IP2 + k/2L - p+. Then the introduction of imaginary 
parts into the r.h.s, of Eqs. (1) is equivalent to substitution 

2i~ 2 [ k ]  
Fik(p,p')-~ Fek(p,p')+p2m,Z2(po) ?(p,p' ) p t -p+  +p'o-~o (20) 

with the same function ? irrespective of the arrow indices of the functions 
F. In the low density limit (see Appendix A of II), 

?(Po, P~) = 7(0) = a2p2/2n cos(0/2) (21) 
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Finally, after the integration over momenta with the help of Eq. (!7), 
the set of Eqs.(1), (19), (20) reduces to a single equation in fin= 
[6n+(pl) + anT(p2)]~2 which differs from Eq. (14) only by small imaginary 
term s: 

&o + 2(fl- fl,o) H - k  " vo + ~o  ( 4flloH(~loH + k "vo) + (k " vo)2 ) 6n 

E2flloH+ k" Vo] f [F(a)(po, p~) 
.2flloH+k'v~ 

+t  
2~o 

Y(Po, P;)I an do____~'4rt 

The integration over the angles in the r.h.s, of this equation is performed 
by introducing the angular harmonics of the functions F (a), 7, and an = 
no + k" Von ~" 

&, + 2(p -/~,o) H -  k. Vo + ~ o  (4~lO~r(~oH + k. vo) 

+ (k. vo)~) 1 (no + k. von~) 

= E2flmH+ k'vo] F~oa)+i 7o + t - ~ o  -f~ no 

1 ( ~ o  H ) +~k 'vo  F]a)+ i 7t nl 

\ k2v~ 

Eq. (22) is solved in a standard way. First, we integrate Eq. (22) over 
the angles: 

i G /  2 2 l k2vo~)l I6~ H+~o~4~m H +~ .~n~ 

-lk2v2 ( 1 -  2ia 

= 2flloH F~o'a+i 70 no*-~-~oY,no 

1 k2u2 ./F(a)l iflloH(yl+ yo))n, 
+5 o~--~-+ To \3 (23) 
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In I we showed, using the method similar to Ref. 7, that at k = 0 the eigen- 
value of Eqs. (1) is always &o = 0. This means that 

The real part of this equation is equivalent to a standard expression for the 
magnetic susceptibility of a Fermi liquid: 

fl,o 1 + F~o 0) (24) 

while the imaginary part is simply 

a =  7o (25) 

In the case of low density Fermi systems, this equation can be easily con- 
firmed with the help of Eqs. (18), (21) for a and 7. As a result, Eq. (23) 
reduces to 

1 k2v~ 1 + nl 
- 5  5 2To(l+F~o a)) 7 0 -  = 0  (26) 

where f~0 = 2fi l l  is the Larmor frequency. 
The second equation can be obtained by multiplying Eq. (22) by k ' vo  

and integrating over angles: 

1 k2vg (1 + F~o a ) -  if~o(7o - 7,/3)~ 
3 _ 2To( 1 + F~oa)), ] no 

I k2 2 So IFtoO) - 1 F],) . i~o(7o-71/3) ]  +3 v~176 5 +2-- 0 17 jn1=0 (27) 

The eigenvalue of Eqs. (26), (27) is equal to 

~1 l+F(o~l[l+F~oa) if2o(7o--71/3)] 
& ~  k2v2 f,2o 2To(1 + V(o")) J 

1 + F]a'/3 - if~o(7o - ?,/3)/2To(1 + F~o a)) 
• 

F~o ~ - F]')/3 + if~o(7o - 71/3 )/2To(1 + F~o a)) 

k v o 

3 2To 7 o -  (28) 
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or, since f2o/To ~. 1, 

60)- 1 k2v~ (1 + F~o~)) 2 (1 + F~)/3) 
3 f2 o F (a) -- F (a)/~ 

- - 0  - -  1 / J  

x l  1 if~o(7o-- 71/3) { 1 1 
2To( l+ r (o  ~)) l + r ( o  a) I - l+r~a) /3  

1 (.r~)-r]a~/3) ~ 
+F(g)-F~'~)/3-~ (1 + F(o~))(1 + F]")/3)JA 

---3 ( l+F(0  a)) 1 hi-r• ~ 

where the term in the square brackets in Eq. (29) determines the zero- 
temperature attenuation of the Silin spin waves (16), and r• is the 
characteristic relaxation time for the zero-temperature attenuation, 

fl02(7o - 7,/3)(1 + 2F(o ~ ) -  F~a)/3) 
22~ = 2To(1 + F(o~)) 2 (1 + g]~)/3) 2 (29) 

We will use Eqs. (28), (29) in Sec. 5 for comparison with experimental data. 
In stable systems the imaginary part of the frequency &o should be 

negative and 3• - positive. Since the interaction always results in attenua- 
tion of single-particle states, the coefficients a =  70 are positive. The 
standard stability condition with respect to a ferromagnetic transition has 

") p ( a )  - -  F ( a ) / 2  the form 1 + F ~ ) > 0 .  Then, if 1 + - - o  - i  / ~ > 0 ,  the stability of the 
polarized Fermi liquid means that 7o-71 /3  > 0. In essence, this condition 
is equivalent to the natural requirement of positive transport cross-section 
for particles in the transverse channel. A more interesting question is what 
happens if 1 + 2F(o a) - F~a)/3 changes sign. 

4. ARBITRARY POLARIZATIONS:  P O L A R I Z A T I O N  
E X P A N S I O N  

In I we gave a formal solution of spin dynamics equations (1) at 
arbitrary polarizations, and determined the spectrum of spin waves 
including the zero-temperature attenuation. However, these expressions are 
extremely cumbersome, and are not convenient for practical applica- 
tions. Below we will outline another method of solving Eqs. (1) which is 
equivalent to an expansion in polarization. This method may be useful for 
numerical and model calculations for spin-polarized Fermi liquids. 
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One of the main differences between Eqs. (1) for polarized Fermi 
liquids and Eq. (14) for vanishingly small polarizations is the presence 
0-functions in the kernel of the integral equations instead of 6-functions 
(13). This makes integral equations (1) not only equations in angles, as 
for non-polarized Fermi liquids, but also integral equations in absolute 
values of momenta. There is no simple general procedure of solving such 
equations. Therefore, in contrast to low polarizations, the general results 
cannot be expressed via angular harmonics of some interaction ftlnctions. 

There are two ways to deal with this difficulty and to solve Eqs. (1) in 
form of an expansion in polarization. The first one is to continue the 
expansion (13) as an expansion in derivatives of the 6-functions, 

= 1  k . 2p P ~ (P~-PY s")(P-P~ ,,= 1 2nn! 

+ ~ (P*-PY6("-l)(p-po)[1-(-1)n ] (30) 
= l 2 " n  ! 

Then the integration in the r.h.s, of Eqs. (1) over dp' will reduce these 
equations to a large set of angular integral equations in 6n~[(po) with a 
series of derivatives of the interaction functions (s) , Fik (P0, Po) in the kernel. 
As a result, the spectrum of spin waves can be represented as a series in 
polarization with the coefficients that contain all the derivatives of the 
interaction functions up to the corresponding order. 

We use an equivalent, but slightly different method in the spirit of 
Eq. (17): 

1 
=O(p--p,)-,O(p--px)+~pk'p[6(p--p,)+6(p--pT)] (31) 

We split the interval p x - p s  into small segments @, and, instead of exact 
integration in the r.h.s, of Eqs. (I), perform a Newton-Cotes expansion 
with coefficients as. This is equivalent to changing the momentum integra- 
tion between p, and PT into a summation over a set of intermediate values 
of momenta Ps with the distances @ between them. Then the set (1) 
reduces to a set of angular equations in 6nT,~(ps ). 

The eigenvectors of Eqs. (1) with the kZ-accuracy can be written as 

6nT,+(ps ) = 1 + k "Ps 6n~l,[(Ps) (32) 

The functions 6n~l.[(p,) satisfy the equations 
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~P P~ w(1)(rd . w~l)(go;  Ps) (~r/~l)(ps) -- T ~ a l p 7  a r l)ft ~-a~'O' ; s ,  Pl) ~H~I)(Pl) 

~lI3lZ'~r \l~O,t.s, pl)  

1 ~F(O)~K . ,  ~(o)~w . + - - t  ~0t o , , , s , P ~ ) + - u ~ o , P s ,  PT)), (33) 
P, 

where the upper indices indicate the harmonics of the functions W, F in 
angular Legendre polynomials, the double arrow indices {It, 1}) take the 
values T and $, and 

W~ = Wu(ps), Fu~,=  F~(p~, p',), F~ . t  = F~(p~,  p~), 

_ k , ; ~ K o ;  P), K o = (2fin,  0), p.  k w~k)(p) -- , 3'k 

0Fu(K0 ; P, p') 
p . k F~?(p, p')= k ak 

The solutions of two equations (33) can be written in the matrix form as 
~ ( ~ ) - - X "  ~ (1) ^ ( 1 )  3 - 1  

l,(t 

[ I/r "~ff ~'(k)'(1)'q 2 1 1 x - , , u ,  + ~ P.  + ~ t#(~ + f.(o) (34) 
~,n 

The substitution of Eqs. (32), (34) into Eqs. (1) leads, after some straight- 
forward, though cumbersome algebra, to the spectrum of spin waves in the 
form ~o = ~0 + ~k2 with 

Z~ff 6p a 2 t l ( w ~ P " I 2 ' ( p s )  W~P"(~ 
l),~,s 

~k),O)~ r; �9 ,-O)(Ko, p , ,  p,)(6n~l)(pt)  + - - u  ~,~o,P~,PT) P~ + r u ,  " 
2- g;'(k),(l)~'~ �9 n + 6n~)(Pr))  PT " - - u  ~,-o, ~',, P,)  P, 

+ (l) . (1) 3n~l)(p+))p z F u (Ko, p~, p~)(fn~ (Ps) + 
(35) 

�9 ' ~ - F t ~)'( )~K �9 L3-U' , - o ,  p s ,  m ~ -  3 u t o,  v , ,  pz) 

z e . l =  1 N T - N +  ~ a , p ,  L-" P~ '+  
l),r 

l 1 
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The real part of the spectrum ~' and the zero-temperature attenuation 
~" are expressed via the zeroth, first and the second angular harmonics of 
the functions W and F on a set of isoenergetic surfaces with the radii 
between p+ and PT" The number of these intermediate isoenergetic surfaces 
is determined by a desired order in polarization expansion: each additional 
order in polarization means a decrease in 6p and involves an extra iso- 
energetic surface. For  example, in the zeroth (Silin-Leggett) order one 
needs only the values of all functions on the surface with the radius Po, in 
the next order (as in Sec. 3 ) - -on  two surfaces with the radii p~ and PT, the 
next order involves the surfaces p+, Po, and p~, and so on. Of course, this 
expansion is equivalent to the expansion in the derivatives of the functions 
W and F based on Eq. (30). 

The energies and the scattering amplitudes are real only on the proper 
Fermi surfaces, and become complex away from these surfaces. The zero- 
temperature attenuation, i.e., Im ~ in Eq. (35), has two major sources: 

(i) Non-zero imaginary parts in single-particle energies e(p) and 
pseudo-energies g(p) between the Fermi spheres p+ and pr result not only in 
non-zero Im WI. r on all intermediate isoenergetic surfaces pc, but also in 
imaginary parts of energy components of the 4-vectors P~ in generalized 
Landau functions Fu~(Ko; p, p') (8) and renormalization functions Z~(p) (7) 

(ii) Derivatives of vertex functions in off-shell directions that reflect 
spatial non-localities similar to those in Ref. 8. 

Generally, when polarizations and densities are not very low, the 
imaginary terms in ~ are of the same order as the real ones, and spin waves 
are strongly damped. This means that the main parameter of the transverse 
spin dynamics f ~ r •  1. As a result, the transverse spin dynamics 
reduces to spin diffusion of transverse magnetic moment with a simul- 
taneous rotation with a similar speed. 

5. EXTENSION TO FINITE TEMPERATURES AND 
COMPARISON WITH EXPERIMENTAL DATA 

In this Section we will discuss recent experiments. 9'1~ Since the degree 
of spin polarization in both experiments was very low, we can apply the 
results of Sec. 3. 

At low spin polarizations the zero-temperature attenuation is small, 
and the transverse relaxation time should be long, f~ir• >> 1. The relaxa- 
tion time ~• for the zero-temperature attenuation is given by Eq. (29). The 
corresponding limiting value of the transverse spin diffusion coefficient is 

D•177  =1 2 gVor• + F(o a)) (36) 



Zero-Temperature Attenuation and Transverse Spin Dynamics 805 

This transverse relaxation time r io  (29) can be used either for kinetic 
equation in r-approximation, or for the macroscopic Leggett equations of 
spin dynamics at T =  0. 

The results for the spectrum, r• and D• are based on exact  equa- 
tions of Ref. 1 at T =  0. Comparison with experimental data requires the 
information at finite temperatures. At finite temperatures our results should 
be modified in two ways. First, the logarithmic singularity in the particle- 
hole channel at small energy transfer, which is extremely important for the 
Fermi liquid theory and is responsible for the form of our Landau-like 
equations, obtains a finite temperature cutoff and smears out. However, at 
low temperatures, T,~ To, the peak is still sharp, and the form of the equa- 
tions is to a large extent preserved. This change can be easily incorporated 
into the theory of Ref. 1. The second change concerns an appearance of 
the temperature attenuation that manifests itself in a shift of all the poles 
away from the real axis. This involves a collision integral in the transport 
equation. Technically this means that one has to start from the finite tem- 
perature diagrammatic equations like, for example, Keldysh or Kadanoff- 
Baym techniques rather than from the Dyson equation as in Ref. 1. This 
can be done consistently only for very dilute Fermi gases as in Refs. 12-14. 
Similar calculations at higher densities are still to be done. 

In our derivation we use the fact that both the temperature-driven and 
polarization-driven attenuations are small at low temperature and polariza- 
tion, and the sources of these attenuations can be included in the spin 
dynamics equation independently from each other. What is more, at low 
polarization the temperature-driven transverse relaxation time should be 
equal to the well-known 15'16 longitudinal relaxation time. Then the tem- 
perature-driven relaxation r a t  can be incorporated into Eq. (22) by adding 
the following collision integral I (n)  to the r.h.s.: 

i 
I (n)  - (1 + F~a)/3)(6n(p) - 6n(p) - 36n(p) cos ~b cos ~b) 

r•  

i 
- (1 + F ] a ) / 3 ) k ' v n l ( p )  (37) 

~LT 

Of course, this term does not show up in the r.h.s, of Eq. (26), and appears 
only in Eq. (27). Finally, the spectrum obtains the form 

6co=~ f~e - ~ , , \ r i o  T•  

where one should use as r •  a standard ("longitudinal") spin diffusion time 
in non-polarized Fermi liquid: 15,16 

321z2 ( (1 - cos 0)(1 - c o s  ~b)) 1 
z •  m3T2  W(O, (J) cos 0/2 Co (39) 



806 A.E .  Meyerovich and K. A. Musaelian 

Here W(O, q)) is the (quasi-)particles' scattering probability on the Fermi 
surface, CD is the Brooker-Sykes coefficient for spin diffusion, and (... > 
means the angular average. In dilute systems W=8~3a2/m 2. It is con- 
venient to introduce an effective scattering length a* and a dimensionless 
function s(O, fb) instead of the scattering probability W(O, ~b), 

647z3a .2 s(O, ~) 

W(O,O)-  3m 2 <s(O, fb)(1-cosO)(1-cos(~)/cos(O/2)> 
(40) 

so that for dilute systems a* = a, and s(O, ~b) = 1. Then the relaxation time 
Eq. (39) obtains the form similar to that of dilute systems 6 

3CD 
"C • r-- 81rma,2T 2 (41) 

The effective transverse relaxation time is a combination of r~0 (29) 
and r• (41) 

1 1 1 r• T2 
+ - - ,  z• - -  (42) 

z~c~ Z• z• T ~ + T  2 

where lea is the temperature at which the finite-temperature attenuation 
v• gives place to the zero-temperature attenuation r• According to 
Eqs. (29), (41), (42), 

3CD~o2(7o- 71/3) (I + 2Ufl ) -  F~a~/3) 
V~= S~a,2po2(1 + r(oa))2 (I + r]a)/3) 2 

Both the function W(O, (~) (i.e., the effective scattering length a .2) and the 
harmonics 7o,1 are determined by the exact vertex function, and should be 
related to each other [-7o determines the attenuation of particles near the 
Fermi surface associated with the scattering of particles on the Fermi sur- 
face with the probability W(O, r the link between 71 and W(O, O)/a .2 is 
less obvious). At present the exact relation is unknown, except for dilute 
systems, and we are forced to consider them as independent parameters. 

In case of dilute Fermi gases, ~o -  71/3 = 4aZpZ/3rc, 1 > F(o~)> F~ a), 
a * =  a, and T a reduces to 

T a = ~ ~ o C I D / 2 / % ~  ~ (43) 

with CD =0.8 (see [-6]). The expression (43) is very similar to the result of 
Refs. 12-14, T~ = f~0/2rc; the difference is explained by the fact that the 
results of Refs. 12-14 are based on a variational solution of the transport 
equation, while Eq. (43) is based on the exact transport results ~'2'6 in the 
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low-density low-polarization limit. Following the results at low densities, 
we can parametrize the coefficients 7o,~ by introducing another effective 
length ay, so that in the low density limit a * =  a 7 = a: 

2 2 71 4Poa~ 
7o 3 3re 

Then 

C1/2c~ o (1 + 2F(o "~ - F]~ ''z D ~ 0 ~ 7  

i ra-  x/~ ~a,(1 +r(0 ")) (1 +/]~)/3) (44) 

The existence of the zero-temperature relaxation (29) and the trans- 
ition from the temperature-driven attenuation (37), (41) to the field-driven 
attenuation (29) at T= Ta (44) have been recently confirmed in experi- 
ments 9 on spin-polarized 3He in magnetic field 8T. The corresponding 
degree of spin polarization is extremely low, and our equations can be 
applied without any additional assumptions. 

According to experimental data, the transition temperature T~ is 
16.4 + 2.2 mK. This is much larger than an extrapolation 9 T~ ~ = 6.5 mK 
from the variational dilute-gas results 12 24 with an heuristic substitute 
f~o ~f~o/(1 +F(o ~)) which was supposed to take care of the anomalously 
high magnetic susceptibility of 3He where 1/(l+F(oa)),~3.4, T(~~ 
~0/2~(1 +F(o")). The missing factor should be recovered from Eq. (44) 
which yields a very reasonable numerical value for the combination of 
previously unknown parameters: 

C /2n (1 +2F(o~)-F]a)/3) 1/2 D ~y 
- 1.72 + 0.23 

a* 1 + F~a)/3 

The second experiment 1~ concerns the measurements in spin-polarized 
3He'~-4He mixtures with 3He concentrations 0.5% (To,-~76mK), 1% 
(T o ~ 120 mK), and 3.8% (To"~ 290 mK) in an external magnetic field up 
to 8.8T (f~o=2flH~ 13.7 mK) at temperatures T>~ 13 mK. The experi- 
ment 1~ displayed a relatively strong field dependence in spin dynamics at 
3He concentrations 3.8 %. Here the explanation is somewhat different from 
the pure 3He. 

Our results cannot be applied directly at 3He concentration 3.8% 
because of the following anomaly. According to an experimental observa- 
tion 17, the parameter F~o a ) -  F~a)/3 becomes zero at some critical concentra- 
tion xc between 3% and 5%. At this critical concentration, the spectrum 
of Silin spin waves (16) has a singularity and should be reexamined. This 
has been done in Ref. 18 in the frame of the Silin-Leggett approximation, 
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In this approximation, the spectrum 600 near the critical concentration 
becomes linear in the wave vector k even in a long-wave range instead of 
standard quadratic dependence (16). As we will see below, the existence of 
the zero-temperature attenuation modifies the results 18 and helps to preserve 
the quadratic form of the spectrum in a wide range of wavelengths. 

Near the critical concentration xc one cannot neglect the term with 
60) in the 1.h.s. of Eq. (27) in which we also include the term with the 
temperature-driven attenuation (38), (39) (cf. Ref. 18): 

l k v 022( 1+ F(~)- i f2~176 
3 o 2To( 1 + r(oa)) j 

{ n~  I IF]~) x fi00 -t 1 + r(o a) F~) - 

ino(7o- 1/3)-] i(1 + 
+ 2To' l+ F ' ) ' ' + t ; ) _ I  ---Z• J n l = 0  (45) 

Then the expression for the spectrum obtains the form which is somewhat 
different from Eq. (28): 

i k2v~ 

1 key2 1 + F(o ") [- if~o(Yo - y l / 3 ) q  
- - -  1 + f(o ~) 

3 f~o L 2To(1 + F~)) J 

1 + F]")/3 - if~o(7o - 71/3)/2To(1 + r(o ~)) 
x (46) ( F~o " ~ -  F]o~/3 + if~o(7o - ~,F3)/2To(1 + F~o a~) "~ 

+ (&o + i(1 + F]~)/3)/Z• + F~o~))/F~o,] 

Everywhere, except the denominator, we can assume that we are exactly at 
the point xc and neglct the difference between F(o ~) and F]o)/3 as well as the 
small terms with attenuation 7. Then, instead of Eq. (29), the spectrum (46) 
reduces to 

k21)2(1 § F(oa))2/3 

6o9 = \(~~176 i(1- F~")/3+F~")/3)/Z• + F(o a)) + i~q~(yo - 71/3)/2To(1 + F(oa)) 2) (47) 

Near the critical point [x-x~[  ~ 1 the small difference F(o a)-  F~a)/3 in the 
denominator of Eq. (47) should be parametrized as 

[ T2] 
~ 0 k T .~o0 S(o")- F~a)/3=(l + F(o"l) f (Xco-- x )+kH-~o+ (48) 
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where x,. o is the critical concentration at T =  H--0 ,  and the terms with 
kH. r describe field and temperature dependencies of the real parts of 
characteristic parameters [here these corrections are important because the 
principal term is anomalously small]. The critical concentration depends 
on temperature and external field as 

x~(T, H)  = x,. o + kH~o/To + k r T 2 / T ~  (49) 

Finally, the spectrum (47) obtains the form 

& o -  
kZv~(1 + F~o"))2/3 

f 2 o f ( X  c --  x )  + if22(7o - 7 ~/3 ) /2To(1 + F(oa)) 2 + i(1 + F(o~ ~ r + &o 

(50) 

In the long-wave limit, 

1 n o f ( x A r ,  kv~ ~ 1 + F(o ~ H)  - x) + 
iflZ(yo-?,,/3) i(1 +F(o ")) + (51) 
2ro(1 + F~~ ~ 

the spectrum is always quadratic, 

1 k2vo2(l + F(o")) 2 
~(.0 = - -  (52) 

3 f~of~(x~.- x) + if~(7o -: Y~/3)/2To(1 + F(oal) 2 + i(1 + F(oU))/zar 

The spectrum becomes linear, as in Ref. 18, 

&o = kvo(1 + Ftoa))/xf3 

only for short waves when Eq. (51) is invalid. In contrast to the prediction 
of Ref. 18, the presence of the zero-temperature attenuation makes the 
range (51), (52) finite even at critical concentration and T = 0  when 
Eq. (51) reduces to 

no2(~o- ~,,/3) 
kvo ~ 2ro(1 + F(o~ 3 (53) 

As one can see from Eq. (52), the spectrum near the critical point (49) 
is very sensitive to the magnetic field. At the critical point itself the spec- 
trum is purely diffusive, 

6o) = -;n(c~/~2 n(c~ 1 v2( 1 + F~o a~) ~• 
o~rf . . . .  ~rf = 5  1 + r •  7,/3)/2To(1 + f~oa)) 3 

(54) 
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Close to this point the effective diffusion coefficient Doff (54) obtains a small 
spin-rotation part, 

(1 +F o ' 
(55) 

Far away from this point the spectrum returns to the form (39). 
In experimental conditions l~ the spin-rotation part was virtually 

unobservable. This means that the spin diffusion coefficient is described by 
Eq. (54). According to the experimental data, the temperature dependence 
of the diffusion coefficient is 

A T  2, 
D T  2 (56) 

T 2 + T 2 

(with Ta ~ 14 mK), which is identical to Eq. (42). We will again write za r  
in the form (41) and use the same parametrization for the coefficients 
?o-7~/3 as above. Then the temperature T~ (55), (56) obtains the form 

~ o [ C D ' ~  1/2 a 7 1 
T~ 

a *  (1 + f(oa)) 3/2 iT) 

Since f~o ~ 14 mK, the experimental result 1~ ira 

t"  1/2 
a7 ~ D  

17(a1~3/2 ,,~ 4.5 
a* (1 + - o  , 

14 mK means that 

This value seems to be quite feasible though relatively large. 
The fact that the parameter a~/a*(1 +F(oa)) 3/2 is relatively large at 

x = 3.8% may be very important especially if one remembers that at this 
concentration F(o " ) -  F]~)/3 ~ O. Both facts signal a strong deviation from a 
simple extrapolation of a low concentration behavior for which F~o ") is 
positive and increases with concentration proportionally to x 1/3 while F] ") 
is much smaller and is proportional to x2/B. 6 Therefore, the most probable 
conclusion is that at concentrations x > 2 + 3 % the Fermi liquid harmonic 
F(o a) in helium mixtures is effectively suppressed with respect to its low 
concentration value. This, in turn, means that the effective (attractive) 
interaction at relatively high concentrations is much weaker than its extra- 
polation from low concentrations when the s-wave scattering length 
a ~ -1A.  6'19 If this is true, all current attempts to observe 3He superfluidity 
in 3He-4He mixtures become hopeless. 



Zero-Temperature Attenuation and Transverse Spin Dynamics 811 

SUMMARY 

In this paper we applied our exact microscopic theory I of transverse 
phenomena in spin-polarized Fermi liquids to Fermi systems with low spin 
polarizations such as liquid normal 3He T or not very dilute 3HeT-4He 
liquid mixtures in any currently accessible magnetic fields. For the first 
time, the results take into account the inherent spatial and temporal non- 
locality of the fermion interaction, and attenuation of single-particle states 
away from the corresponding Fermi surfaces. We calculated explicitly the 
parameters of transverse spin dynamics as an expansion in polarization. 
The results are expressed via the angular harmonics of mass operators and 
interaction functions on a set of isoenergetic surfaces with the radii between 
p~ and Pt' 

The results display the sources of peculiar collisionless attenuation in 
transverse spin dynamics of polarized Fermi gases at zero temperature. This 
zero-temperature attenuation is important when the degree of spin 
polarization is of the order of or larger than the ratio T/To. 

Our general microscopic results can be simplified considerably at low 
spin polarizations. As expected, the results in the lowest order in polariza- 
tion coincide with the results of the standard Silin-Leggett approach which 
is based on the conventional Landau theory. 3 s Within this approximation, 
a set of exact equations in partial transverse spin pseudo-densities collapse 
into a single standard equation in transverse spin density. Of course, within 
this accuracy, the zero-temperature attenuation vanishes. 

The zero-temperature attenuation shows up in the next order in 
polarization. A simple expression (29) gives this attenuation through, apart 
from standard Fermi liquid harmonics, angular harmonics of the imaginary 
parts of derivatives of the mass operator and interaction function in off- 
shell directions at the Fermi surface. These harmonics cannot be expressed 
via any Landau parameters of the conventional Fermi liquid theory. There- 
fore, in the frame of phenomenologic theory of transverse spin dynamics, 
these quantities should be viewed as independent parameters. Our equa- 
tions express these new parameters through the microscopic characteristics 
of the Fermi liquid. More compact relations between these parameters and 
the parameters of the standard temperature-driven attenuation remain 
unknown except for dilute systems. 

Our results give a good quantitative description of recent experimental 
results on transverse spin dynamics in liquid 3He T and 3HeT-4He mixtures. 
The equations reproduce correctly the observed temperature dependence of 
the transverse relaxation time and spin diffusion coefficient. Our descrip- 
tion of the transition from the temperature-driven to the zero-temperature 
attenuation is in good numerical agreement with experimental data. The 
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data on spin diffusion in 3He-4He mixtures with 3.8% 3He suggest that 
the superfluid transition for the 3He component is strongly suppressed in 
comparison with estimates that are based on extrapolation from the low 
concentration limit. 

In this paper we made the first attempt to incorporate the finite-tem- 
perature effects into our exact theory at T=0 .  This was done assuming 
that the inverse transverse relaxation time z Z 1 is an analytic function of 
both the temperature and the external magnetic field and combining the 
first terms in the corresponding expansions. A more consistent study of the 
finite-temperature effects is yet to be done. On the other hand, the fit of 
experimental data 9'1~ to Eq. (56) is not perfect. At present, it is not com- 
pletely clear whether the reason is the quality of the experimental data, or 
the accuracy of the theory (in ,particular, the finite-temperature effects or 

the applicability of the macroscopic Leggett equation for the calculation of 
the spin diffusion coefficient from the spin-echo experiments). 

The question of applicability of conventional macroscopic equations of 
transverse spin dynamics (the Leggett equations 4'6) at high polarizations is 
not settled. It seems that the Leggett equations are applicable at low spin 
polarizations which correspond to the results of Sections 2 and 3. In this 
case the only difference from the conventional theory should be the 
presence of zero-temperature attenuation (36) and transverse spin diffusion 
(37) which renormalize the parameters in the Leggett equations and, to 
some extent, change their meaning. 

At higher polarizations, the split of microscopic equations of spin 
dynamics into two equations in two partial transverse pseudo-densi t ies  1 can 
change the situation. It is not clear whether the corresponding macroscopic 
equations will remain as equations in a single magnetic moment and a 
single spin current, or will also split into a set of two coupled equations in 
partial moments and currents. In the former case, the equation of motion 
will definitely keep the Leggett form. 

The answer to this question is unknown. This problem is very impor- 
tant, since the macroscopic equations of spin dynamics are the sole basis 
of theoretical interpretation of experimental NMR data. 

We are grateful to D. Candela and J. Owers-Bradley for numerous 
discussions of experimental situation. The work was supported by NSF 
DMR-9100197. Some preliminary results were published in Ref. 11. 
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