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We present a simple method describing transport processes near rough boundaries.

By a proper

coordinate transformation we reduce a transport problem with rough walls to an equivalent problem
with smooth flat walls, but with some random bulk inhomogeneities. In many cases the last problem
can be treated perturbatively, leading to simple expressions for relevant transport coefficients via the

correlation function of surface inhomogeneities.

We calculate diffusion and conductivity in films,

phonon, and photon diffusion, quantum corrections to conductivity, and the single-particle diffusion

coefficient.
PACS numbers: 72.10.Bg, 73.50.Bk, 79.20.Rf

The study of transport processes near the boundaries
is important for all branches of physics. The roughness
of boundaries with random inhomogeneities of different
scales leads to a considerable complication. The scatter-
ing by rough walls is described either by a complicated
exact boundary condition (see, e.g., Refs. [1-5]) which
leads to a practically unsolved integrodifferential trans-
port problem, or by an oversimplified condition with some
balance between specular and diffuse reflection. The per-
turbative methods [4] have a rather limited applicability.
Below we demonstrate an alternative general description
of the effect of surface inhomogeneities on transport near
the surface.

The problem of scattering of particles by rough walls has
two parts. The energy spectrum, including the potential
relief and energy bands, changes near the walls; this effect
exists for perfect walls. Roughness of the wall, i.e.,
randomness in the exact position and the direction of the
boundary, leads to randomness in phases and directions of
reflected particles even in the absence of energy changes.
These two groups of effects can often be separated.

In many metals or semiconductors, or in systems
with boundary adsorption, the particle energy experiences
dramatic changes near the surface; then such changes
dominate the scattering. In many problems of wave
propagation, gas dynamics, electrons in simple metals,
etc., the change of energy near the surface plays the
secondary role with respect to the effects of surface
roughness. Then the distortion of energy near the walls
can be addressed after the effects of surface roughness
are well understood. We are interested in this class of
problem.

The boundary roughness causes an additional diffusion
along the boundaries. The problem is how to express
this extra chaotic motion by the boundaries via the
correlation function of surface inhomogeneities. Usually,
the solutions are different for different classes of systems.

Below we present a simple and versatile approach to
transport problems near the rough walls. Originally we
developed this method for the particular case of trans-
verse spin diffusion in spin-polarized quantum gases [6].

It turned out that this method is very general, and is use-
ful for a wide variety of transport problems. We will
apply it to diffusion and conductivity of electrons, diffu-
sion of phonons and photons, calculation of quantum (lo-
calization) corrections for conductivity, and the classical
problem of chaotic motion of a bouncing ball (i.e. single-
particle diffusion). In all these, and many other cases, the
effects of boundary can be described in a uniform way.
Another advantage is a relative simplicity of calculations.

The idea is to perform a coordinate transformation
(similar to the Migdal transformation in nuclear physics)
so as to make the walls flat. This is possible if the bound-
aries have no cavities and are described by single-valued
functions. As a result of this nonlinear canonical transfor-
mation, the bulk Hamiltonian acquires additional random
terms which depend on initial boundary roughness. If the
amplitude of the boundary roughness is not large, these
corrections to the bulk Hamiltonian can be treated within
the perturbative transport equation leading to transparent
expressions for the transport coefficients. For simplicity,
we neglect all bulk scattering processes, and consider the
scattering by random surface inhomogeneities as a sole
source of chaos and formation of the mean free path.

We consider a film of average thickness L with the
boundaries x = L/2 — &,(y,z) and x = —L/2 + &(y,2).
[For 2D problems one should disregard z.] The inhomo-
geneities are small, ¢, £, < L, and random, (&) = (&) =
0. The results should be expressed via the binary corre-
lation functions i (Is; — s2l) = (&i(s1) €k(s)) which de-
pends only on the distance between s; and s, (usually,
the inhomogeneities from different boundaries are uncor-
related, {1 = 0). For simplicity, we consider the impene-
trable walls with the boundary condition ¥ = 0. The
shift of inhomogeneity from the boundary to the bulk is
achieved by the coordinate transformation similar to [6]

Lix — 3[&£0(.,2) — &,
L —[&0,2) + &G6,2]

X = Y=y, Z=z.

(1)
This transformation makes both boundaries flat X =
+L/2.
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Canonic transformation (1) requires a conjugate trans-
formation of momenta p — P. The bulk Hamiltonian
should be expressed through }he new variables {R,P}.
If the initial Hamiltonian is H = p%/2m, then in vari-
ables {R, P} it obtains random “perturbation” V, (V) = 0,
which, after expansion in £/L, has the form
H=P/2m+V,

; / @)
po L (-25133 cxP 2R o xp R H)
where ¢ = £, + &;. As aresult, the problem of transport
within a system with rough walls is reduced to a com-
pletely equivalent problem of transport in a system with
ideal smooth walls, ¥(L/2) = ¥(—L/2) = 0, but with
the perturbed bulk Hamiltonian (2).

In thin films the transverse motion is quantized with
distinct quantum numbers n. In thick films (classical
or WKB transverse motion) these quantum numbers are
large, and this quantization is irrelevant. The following
calculations can be easily performed for both cases; for
brevity, we present the results, except for the density of
states in thin 2D films, only for the cases when one may
neglect the transverse quantization.

The transport coefficient should be calculated from the
transport equation. The effective collision integral on
the right-hand side of the transport equation for particles
contains the transition probabilities between different
states:

Leon = f W(P,P)) (n' — n)Vd*P'/ 2mwh)’

[n(p) and n’ = n(p’) are the distribution functions, V is
the volume]. The transition probability is the square of
the matrix element of the bulk perturbation (2) multiplied
by the & function of energies

W(P,P') = Qu/h)|V,p, .l 8(e — €)

and, after averaging, becomes proportional to Fourier im-
age ((q) of the correlation function of surface inhomo-
geneities {(Is; — s2|) = (£(s)) £(s2)) (@ = P, is the com-
ponent of momentum along the walls).

Other transport problems, e.g., the single-particle dif-
fusion between two rough walls, require the use of the
Fokker-Plank equation instead of the Boltzmann equation.
The tensor of diffusion coefficients in momentum space in
the Fokker-Plank equation is equal to (Q = P — P/)

DY = — f 0:0:W(P.P) d*Q

The electrical conductivity is determined by the lin-
earized Boltzmann equation which can be solved at ar-
bitrary degree of quantum degeneracy of the (electron)
system:

__4 272 [ 9mo (2me)~'2  de d cosf
7 7 ° f¥ (o — &) cos?0 a + 4tan*f’
3
where @ is the angle between P and the plane of the wall,

no(€) is the equilibrium distribution, ¢;, n; are the Fourier
harmonics of the functions {,n over the angle ¢, and

a=(no— m)/ (% — &),
(P,6,¢) = {(Pcosh, p)[1 — cosp]* .

The Oth Fourier harmonic of the correlation function of
surface inhomogeneities, {(¢)[1 — cos¢], plays the role
of the transport cross section for particles. For degenerate
electrons at 7 — O,

4 eszf d cosf
T pr b — & 00520 a + 4tan‘d’

¢ = {(prcosb, p)
while at high temperatures,

e2L*h3 [ exp(—x) x 2dx  dcosf
m2T? lo— &1 cos? a + 4tantf’

= g’((me)'/2 cosf, ¢).

o = 8w

The diffusion coefficient differs from o by the density
of states. Only the diagonal diffusion coefficients D,, and
D,, are nonzero:

2ﬁ3 8"0
Dy = Dz = 2me? /f

By the order of magnitude,
~ (f/m)x"**(aL/IR)*(TF/E),

1/2de

where x = a3N is the atomic (dimensionless) density of
the gas between the walls, /> = £(0) and R are the average
height and correlation radius of surface inhomogeneities,
and the characteristic energy F is the larger of temperature
T and the bulk degeneracy temperature 7. This should
be compared with the standard bulk diffusion with the
particle cross section o:

~ (ﬁ/m)x*2/3(az/a)(TF/E)‘‘/2(1~:/T)2 )

A different problem is diffusion (Brownian) motion of
a single particle between random rough walls (a classical
“bouncing ball”). This is equivalent to the diffusion
problem for a particle with random bulk Hamiltonian (2)
between specular flat walls. Some distinct features of the
Hamiltonian (2) (e.g., tl}e momentum dependence of the
random “perturbation” V) make it different from random
Hamiltonians used in typical diffusion problems. It may
well be that these particular features are responsible for
some anomalies of motion of particles between random
walls which were observed in computations. We will not
discuss this problem here, and will assume that the motion
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is diffusive. Then the single-particle diffusion coefficient
can be trivially derived from the diffusion coefficient in
the momentum space D?). This coefficient depends on
the energy of a particle € (e is an integral of motion),
and the average x component of the momentum P,. The
diffusion time is determined by D(?) as the time in which
the component of momentum along the walls changes
from q to —q. The single-particle diffusion coefficient
resembles the integrand in D and o, Eq. (3):

_ 2mh3L? € — P2/2m
(lo — &1) a(2me — P2)* /4 + P4’

Even if the motion of a bouncing ball does not have
diffusive asymptotics, our approach may be very con-
venient for verification of computational predictions: A
numerical study of particle with a random bulk Hamil-
tonian is easier and more straightforward than a study of
reflections from random walls. In classical mechanics, the
Hamiltonian (2) is equivalent to a particle with a random
coordinate-dependent anisotropic effective mass,

mt = (1 + 2¢/L)/m,
m:;] = X¢,/mL, my = XE&/mL

p#4

(the rest of the components do not change).

Above we evaluated the mean free path formed
by collisions with random rough walls. This allows
us to calculate the quantum (localization) corrections
to conductivity associated with the walls. In a 3D case

(7],

T _ 87T2ﬁ2

- = _[, vAX(Dyy 1) dr = “mz—pg

(A is the de Broglie wavelength; in the last equality the
phase relaxation time 74 — ©).

Quantum corrections for a 2D film with random
linear boundaries are different. We can calculate the
localization gap and the density of states when the dis-
tance between the boundaries is so small that transitions
between quantized levels P, = wnh/L for transverse
motion are impossible. For §-correlated boundary in-
homogeneities, (£(y1) é(2)) = (B*L*3/m?L8) 6(y1 — y2),
the density of states for the motion in the y directions is
(8] [(L*)3 = n412R]

I/ZL* ® 4 3
) T F4 z
=2~ [ &£ - —F),
v B = g |, ﬁexP< % ¢ )
F_ EmL? L? '
A2 L7

Up to now, we considered particles with quadratic
energy spectrum, p2/2m. The results can be extended
to arbitrary spectra, e(p), e.g., “relativistic” particles
(phonons or phonons) with the spectrum € = cp. After
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the transformation (1), this Hamiltonian obtains the form

A ~ A~ A \1/2 A
H, = c,/2m(H + V) == c(2mH0) + 6Hy,
51/}1 = c(m/2)'? ;10_1/2\7 ,

with ;10 and "; from (2). Sincg the plane waves are
the eigenstates of both operators Hy and unperturbed Hj,
the square of the matrix elements of the “perturbation”
8H, in the scattering probability W(P,P’) differs from
|Vep/|? only by the factor ¢2m?/P2. The diffusion coeffi-
cient is

wh3c2L? €*/c* — P?

Dy, = D,, = .
» “ P — &) a(e/ct — P2)*/4 + P}

In summary, we calculated transport coefficients for
different quantum and classical problems of particle
and wave transport near the rough walls. All transport
coefficients are expressed via the correlation function of
surface inhomogeneities. The method is astonishingly
simple computationally and is very versatile. Note that
the transport coefficients contain not only the correlation
of inhomogeneities from the same wall, but also the
correlation of inhomogeneities from the opposite walls.
This correlation is important only as far as we neglect the
bulk relaxation processes, and should disappear from the
expressions with an increase in bulk relaxation.

The incorporation of bulk relaxation is an obvious way
to continue this work. We can also include the change of
the potential relief near the walls, U(x — L/2 + £;) and
U(x + L/2 — &), into the Hamiltonian. This will add
to the Hamiltonian (2) regular terms, U(X + L/2), and
small random parts, SU (X, &1/L, é&2/L). The regular part
will change the wave functions for calculation of matrix
elements, while the random part §U should be treated in
the same way as and simultaneously with the perturbation
V (2). The procedure and the implications for the results
are obvious.

One more extension is the modification of the boundary
condition ¥ = 0 (infinite boundary barriers for particles
or waves). The results for finite barriers will describe
the diffusion in layered media and the transmission and
reflection coefficients for layers with rough walls.

An interesting application can be the effect of surface
roughness on the boundary slip. There are experimental
and theoretical indications [9] that part of the boundary
slip is caused by and has the scale of the boundary
roughness. Our method can express this part of the slip
length via the correlation function of boundary roughness.

All these extensions are rather straightforward. A
nontrivial application of our method is the problem
of the onset of chaos in the motion of a classical
particle which is repeatedly reflected by rough walls (a
“bouncing ball”). We discussed this problem assuming
the diffusive character of the particle motion. There are
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some numerical indications that the asymptotic motion of
a ball deviates from the diffusion behavior / « Df2. Tt is
not clear whether this deviation is an intrinsic property
of the system, or a result of insufficient accuracy of
computations. Our method can answer this question by
reducing the computational problem of scattering by a
random wall to an equivalent, but much more transparent,
bulk computational problem. If the deviation from a
diffusive asymptotic persists, it will mean that either
the Hamiltonian (2) has some very special properties
separating it from other random potentials, or that the
diffusion chaotic motion in a random bulk potential is
more complicated than is usually assumed.

Details of the calculations will be published elsewhere.
This work was supported by NSF Grant No. DMR-
9100197.
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