
Journal of Low Temperature Physics, Vol. 100, Nos. 3/4, 1995 

The Solubility of Spin-Polarized 3He in 4He and the 
Superfluidity of 3He in 3He-4He Mixtures 

Lars P. Roobol,* Giorgio Frossati, Kevin S. Bedell, t 
and Alexander E. Meyerovich:~ 

Kamerlingh Onnes Laboratorium, Rijksuniversiteit Leiden, 
P.O. Box 9506, NL-2300 RA, Leiden, The Netherlands 

(Received September 26, 1994; revised March 20, 1995) 

We investigate the possibility of a large enhancement of the T = 0 finite 
solubility of  3He in 4He due to spin-polarization. The size of the effect 
depends on the fraction of SHe atoms in the system. We present two different 
approaches for the limits of a small and a large number of 3He atoms com- 
pared to the number of 4He atoms. Since the possible 3He superfluid phase 
transition depends' on 3He density, we calculate the consequences of this 
change in the solubility for its superfluid transition temperature. It is shown 
that for small fi'actions of SHe, the transition temperature is enhanced mostly 
due to the enlargement of the up-spin Fermi sphere. In the opposite limit the 
transition temperature is enhanced as a result of  the increased 3He solubility. 
PACS: 67.60.Fp, 64.75. + g, 67.75. + z 

1. INTRODUCTION 

A superfluid transition of the 3He sub-system in 3He-4He mixtures 
remains one of the most intriguing problems of low-temperature physics, as 
it would provide us with a unique mixture of two distinct superfluids. At 
present, not only the transition temperature and its dependence on ther- 
modynamic variables like pressure are unknown, but even the exact type of 
pairing and the symmetry of the order parameter are unclear. As a result, 
theoretical estimates for T c differ by several orders of magnitude. 
Nevertheless, all theories agree on the point that the properties of this 
mixture of superfluids should be very different from those of pure 3He or 
4He. This can justify the considerable experimental effort necessary to try 
to observe the 3He superfluid transition in 3He-erie mixtures. 
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Up until now, some laboratories have cooled mixtures of various con- 
centrations down to temperatures of 0.1-0.2 mK, 1-5 but none of them suc- 
ceeded in observing the 3He superfluid transition in mixtures. Because of a 
large number of experimental parameters (temperature T, pressure P, 3He 
concentration X and magnetic field B) it is necessary to investigate in 
which region of this parameter space one is most likely to observe this 
superfluid transition. 

We argue that one of the best strategies, from both the theoretical and 
experimental point of view, is to study 3He-4He mixtures with a relatively 
high degree of spin-polarization of the 3He component. Recent 
achievements in the methods of spin polarization 6-1~ can make such an 
approach feasible. 

As we will see, spin polarization can lead to considerable changes in 
either the limiting solubility of 3He in 4He or the effective (3He-) interac- 
tion, depending on the model chosen. Since the transition temperature 
depends on these quantities exponentially, the effect of spin polarization on 
the transition temperature can be rather dramatic. 

As examples, we will consider the relevanl effects in the frames of both 
the s-wave and the potential models. In some sense, these models are 
opposite to each other: the s-wave model uses an unrenormalized interac- 
tion and relates all the polarization changes to the change in density of 
states, while the main effect for the potential models is the change in effec- 
tive interaction. Therefore, the s-wave model predicts large changes in 
solubility with polarization which causes the transition temperature to 
increase exponentially. On the other hand, the solubility changes for the 
potential models are less significant than the exponential dependence of the 
transition temperature on renormalized interaction. Despite these major 
differences between the models, both predict that spin polarization could 
cause a very significant increase in transition temperature. The fact that 
both these opposite models predict a large increase in Tc signals that the 
study of spin-polarized mixtures can be very promising. 

As an example of the behaviour of a potential model, we will use the 
one originally proposed by Bardeen. Baym and Pines, 11 extended to finite 
polarization by van de Haar, Bedell and Frossati 12 for calculating the 
properties of the mixture. The corresponding properties of the pure phase 
are calculated using the "nearly metamagnetic model" put forward by 
Bedell and Sanchez-Castro 13 using the (3He-~ fit parameters of Sanchez 
Castro, Bedell and Wiegers. ~4 We were able to solve the equations for 
phase equilibrium in the case where the volume of the mixture is much 
larger than that of the pure phase. In the opposite case~ we were able to 
solve them using the dilute gas model. 

In the next section, we briefly review the results on finite solubility m 
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zero magnetic field, extending it to finite field in Sec. III, using several dif- 
ferent approaches. In Sec. IV we discuss the consequences for the transition 
temperature. It is shown that a possibly large enhancement of the solubility 
of spin-polarized 3He in 4He and the corresponding increase in density 
of states has a much larger effect on Tc than the increase in pairing 
interaction. 

2. SOLUBILITY AT ZERO MAGNETIC FIELD 

Below 0.8 K, one cannot mix 3He and 4He in arbitrary proportions: 
above a certain limiting concentration x,(T)  of 3He, the mixture decom- 
poses, as first observed by Walters and Fairbank, is into dilute 3He-4He 
mixtures (dilute phase) and practically pure 3He (concentrated phase). 

While the 3He-rich mixtures are self purifying (their 4He solubility 
limit becomes vanishingly small upon approaching zero temperature16'17 ), 
the dilute mixtures have a finite solubility 18 even at T= O. 

In this paper, we consider a fixed volume V containing a phase 
separated mixture at T = 0 consisting of N4 4He atoms with N34 3He atoms 
dissolved, and N 3 atoms in the concentrated phase. We define the total 3He 
concentration X and the 3He concentration x ~< X in the mixture as 

N 3 -~ N34 
X -  (la) 

N3 .~_ N34 Af_ N4 

N34 
x (lb) 

N34 -k N 4 

2.1. The Chemical  Potentials  

In thermodynamic equilibrium, the 3He. chemical potentials of both 
phases must be equal, i.e., 

/[~3(n3, P3) ~]A34(///34, P34,///4) (2) 

where n 3 (n34) is the 3He density in the pure (dilute) phase, n 4 is the 4He 
density in the mixture and P is the pressure. Letting the pressure on both 
sides be equal fixes the density n,(P) at which Eq. (2) is satisfied. 

In a fixed volume V, the chemical potentials are linked through the 
Gibbs-Duhem equations 

dP3 = n3 dlz3 (3a) 

dP34 = n34 d/~34 -Jr- H e dlu 4 (3b) 
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The last equation can be simplified for low 3He concentration using 
d/a 4 ~dP/n~ with n o the density of pure 4He. The 3He chemical potential 
of the mixture contains three terms, 

p2 
l"/34 = e 0 ( ~ 4 )  -}- {- 'gint(/'14, ///34) ( 4 )  

2m*(kt4) 

where e 0 is a constant depending on the 4He chemical potential #4 (or 
pressure), the second term is the Fermi energy of a gas of free particles with 
mass m*, and Fermi momentum p F = h k F  = h(37~2/~34) 1/3. Finally, eint is a 
term due to the interaction between the 3He particles. This interaction term 
can be approximated by various methods. We will compare the results of 
three of such methods: 

1. A fit to experimental data of Seligman etal. ,  19"2~ compiled in 
Ref. 21. Here it was assumed that the chemical potential can be expanded 
in the 3He density as 

-L. ~ ~2/3 .~ r~5/3 
//'/34 = CO - -  ~1'~34 q- c 2 n 3 4  -}- ~3'~34 ~- ~ (5) 

Since this approach also fits the two lowest order terms of expansion (4) 
in n34 , we do not have to use assumptions for the values of e o and m*. 

2. The s-wave approximation, a microscopic approach in which the 
energy spectrum is calculated using perturbation theory. At all concentra- 
tions up to the demixing line, mixtures form a system of slowly moving 
quasi-particles with the interaction rapidly decreasing at large distances. In 
this limit, the scattering of quasi-particles reduces effectively to s-wave scat- 
tering. 22'23 Then all the interaction processes can be described using only 
one parameter, namely the s-wave scattering length a 0. The value of a 0 has 
to be obtained experimentally. For 3He-4He mixtures, the interaction 
between 3He quasi-particles is effectively attractive, so the s-wave scattering 
length is negative, ao= 0.088nm. 24 The interaction term of Eq. (4) is 
given by 25 

F4 (6) eint = ~  kN 2 + 4  (11 - 2  ln(2)) )~2 + " j 

1/3 is assumed to be where the dimensionless parameter ,)~=peao/=h oc n34 
small, which is equivalent to the condition n34~ [ao1-3, and the single- 
particle impurity effective mass mi is defined as 

m i =  lim m * ( ~ 3 4  ) ( 7 )  
~ 3 4  ~ 0 



The Solubility of Spin-Polarized 3He in 4He 343 

while the effective mass caused by quasi particle interactions is 

m* 8 
- - = 1 +  2 2 ( 7 1 n 2 - 1 ) + - . .  (8) 
mi 

3. The local effective potential model of Bardeen, Baym and Pines, I1 
where it is assumed that the quasi-particle interaction can be described by 
an effective potential veff(~7) = Vo cos(q/ks), where k~ is the effective range of 
the potential with strength v 0. The lowest Legendre moments of the scatter- 
ing amplitudes were calculated by van de Haar, Frossati and Bedel112 
(hereafter referred to as HFB) in the thermodynamic limit. (1) An attempt 
to obtain better agreement with experiment was made by defining 
ks(n34 ) =k~(1 .-~-flH34/l/ls), with fl a dimensionless parameter allowing for a 
stronger dependence of veff on/'/34. With the interaction parameters we can 
obtain the Fermi liquid interaction parameter f p S  =f}~ '  + ~cr'fpi', with 
I p l  = I p ' l  = PF. The moments o f f H  enter the expression for gin t at T=  0 as 
follows, 26 

f ~  s dgP ' 
~int = 2  (f~F)[pl=P~(27~h)3 

= v o n 3 4 ( 1 + ]  1-cos(2K)K 4 

3 cos(2K) sin(2K) 
+ 2  K ~ - + 3 ~ - + . . . )  (9) 

.1/3 In this approach, m* is defined as where K = kF/k  s = pF/hks oc "o34" 

m* F~ 
- 1 + - -  ( 1 0 )  

m i 3 

where the Landau parameter F~ can be calculated from the scattering 
amplitude a~ given in Ref. 12. 

In principle, similar calculations can be done using other model 
representations for the effective potential (see, e.g., reviews25'27). 

~Note a misprint just after their equation 24 d): 

Sx = sin(2K) and Cx = cos(2K) 
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TABLE I 

Mixture Related Experimental Constants. The Digits Given in Brack- 
ets are Given for Smoothness Only. 

P = 0 MPa P = 1 MPa P = 2 MPa 

mi/m 3 2.34 2.64 2.89 
n 3 (mol/m 3) 271(20) 329(89) 361(15) 
v~4 (m3/mol) 28.0(97). 10 -6 25.6(67). 10 .6 24.0(96). 10 6 
x~ (%) 6.65 9.49 8.55 
/z 3 (J/mol) -20.56(15) +12.76(13) +42:02(61) 
eo (J/mol) -23.09(64) +9.82(29) +39.17(48) 

2.2. Comparison of the Expansions in Density 

In Table I, we have given all the experimental mixtm'e-related 
parameters used in this work. In bo th  the s-wave approach  and the theory 
of  HFB,  there are parameters which are not known to very high accuracy. 
In  the s-wave picture, we took  (for zero pressure) the most  up-to-date 
value for ao, 0.088nm, and a more  than twice larger value, -0 .180nm.  
which gives a more  accurate number  for the experimental value of  the 
demixing concentrat ion,  21 see Table II. However.  one should always keep 
in mind that  the s-wave scattering approximat ion rapidly loses its accuracy 
when the concentrat ion exceeds several percent. 2s'27 At concentrat ions close 
to x, ,  the s-wave approximat ion works qualitatively in thermodynamics ,  
but  becomes very unreliable for numerical estimates of  T c.  There are 
indications 28 that  the effective interaction at higher concentrat ions is 
weaker than the extrapolat ion of  the low-concentrat ion results in the 
s-wave approximation.  

On  the other hand, the H F B  theory is formally applicable at all 
concentrat ions,  but  operates with a model interaction potential with 
several fitting parameters. It is unclear how reliable the use of  the same 
model  potential for helium mixtures at different polarizations and with 
different densities of  states is. 

TABLE II 

Scattering Lengths Used in s-wave Calculations 

P=OMPa P = I M P a  P=2MPa  

Set 1: a o (nm) -0.180 -0.166 -0.138 
Set 2: ao (nm) -0.088 -0.088 -0.088 
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TABLE II I  

HFB Model Fit Parameters 

P = 0 MPa P = 1 MPa P = 2 MPa 

v0 (Jm 3) -1 .39 .10  -51 -1 .10 .10  -51 -0 .96 .10  -51 
ks (m -1) 4.0.109 4.4.109 5.8.109 
/~ 0.0 0.5 0.7 
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Instead of comparing malay different interaction potentials, we decided 
only to show results on one particular set of parameters for one particular 
potential, namely the one given by HFB, with the parameters given in 
Table III. This set of parameters is essentially the fit made by HFB to 
magnetostriction data,12 with the range parameter k~ adjusted to reproduce 
the experimental value of the solubility limit. Using the original fits of HFB 
did not change our results for x~ by more than 5 %. 

It is instructive to compare the different expansions of the chemical 
potential as a function of the density. The experimental data and the HFB- 
expansion show the same functional dependence of/_t34 on F/34 , Eq. (5). The 
s-wave picture gives rise to an additional term proportional to n34-4/3. In 
Table IV, we compare the different terms for P = 0 MPa. The model of 
HFB is in good agreement with the experimental fit. The lowest order 
terms of the s-wave approach, especially for ao = -0 .088 nm, also agree 
with the experimental data. Because the functional dependence on //34 is 
different, it is better to compare the chemical potentials graphically, see 
Fig. 1, where we plotted chemical potential curves at P = 1 MPa for several 
models. 

The steepest curve is the one for a Fermi gas without any interaction, 
which is equivalent to taking the a0 ---, 0 limit in the s-wave model or taking 
the Vo ~ 0 limit in the HFB model. At concentrations up to a few percent, 
the Fermi gas model and the s-wave model with ao = -0 .088 nm fit the 

TABLE IV 

Comparison Between Different Expansions of the Chemical Potential 
of 3He in Mixture #34 (J/tool) at P = 0  MPa in the 3He Density n34 

(10 6 mol/m 3) 

O2 n 2/3 o2 n o2 n 4/3 o2 n 5/3 

experimental 194.6 -201  0 - 1.04.104 
s-wave, ao = -0.18 nm 194.4 --387 1110 not listed 
s-wave, a o = --0.088 nm 194.4 - 189 266 not listed 
HFB model 181.9 - 2 3 4  0 -1 .10.104 
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F i g .  1. T h e  d i f f e r e n c e  i n  3He  c h e m i c a l  p o t e n t i a l  b e t w e e n  p u r e  3 H e  a n d  3He  i n  3 H e - 4 H e  

m i x t u r e s  a s  f u n c t i o n  o f  c o n c e n t r a t i o n  a t  P = 1 M P a .  F u l l  l i n e :  e x p e r i m e n t a l  c u r v e ,  d o t t e d  l i n e :  
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l i n e :  s - w a v e  a p p r o x i m a t i o n  w i t h  a 0 = - 0 . 1 6 6  n m ,  d a s h - d o t t e d  l i n e :  H F B  m o d e l .  

experimental data best, while the other curves lie below experiment. At 
higher concentrations, up until 15 %, deviations are smallest for the HFB 
model and the s-wave model with a 0 = -0 .166  nm, while the ones men- 
tioned before keep on increasing steeply. This behaviour is seen at all 
pressures. 

At concentrations higher than x~, the HFB curve is less steep than the 
s-wave curves. This means that in the s-wave picture it is more difficult to 
increase the concentration, because the energy needed to do so is higher. 

The experimental data are extrapolated from 25 700 m K  to T = 0 I see 
Ref. 21, and references therein). This means it is also possible to plot the 
chemical potential of mixtures of concentration above the T =  0 solubility 
limit (xs(T) = x~(0)(1 + flrT2)),  up to X =  16 %. As we will see in Sec. IIIE. 
the solubility limit can be as high as 25%; theoretical curves lose their 
accuracy when extrapolated to such high concentrations. 

Recent analysis 28 of experimental data 29'3~ on spin dynamics in 3He- 
4He mixtures provides an additional confirmation that the effective attrac- 
tion between 3He particles at high concentration is strongly suppressed m 
comparison with data at low concentration. 
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3. SOLUBILITY IN FINITE MAGNETIC FIELD 

3.1. The Relative Amount of 3He 

In a magnetic field B, the total system, the concentrated phase and the 
dilute mixture will have polarizations A, A 3 and A34, respectively, where 

A - N3A3 + N34A34 (1 la) 
N3 + N34 

N ~ - N ~  
A, U~+U~ ( l ib)  

Here ]" (+) stands for spin-up (down) particles and the index i is either "3" 
or "34". The relation between polarization and magnetic field is given by 
the susceptibility 

8m 8A 
X =/A0 ~-~ =/20/A3Nn ~ (12) 

where/10 = 4~. 10 7 j/(Am 2) is the magnetic permeability of the vacuum, 
/~3x = 0.778 mK/T the 3He nuclear magnetic moment and n is the number 
density of 3He particles. The susceptibility has only been measured in ther- 
mal equilibrium at low field; in the pure phase the measurements have been 
done by Ramm etal. ~L'32 and in mixtures by Ahonen etal. 33 Using the 
rapid melting technique, the susceptibility of pure 3He along the 
(depressed) melting curve has been measured by Wiegers, Wolff and 
Puech, 34 for polarizations up to A = 0.6. Otherwise, we have to estimate the 
susceptibility theoretically. 

There is a distinct difference between polarization obtained in ther- 
modynamic equilibrium by applying a large external field (the so-called 
brute force technique) and polarization determined by the history of the 
system, as in rapid melting experiments. This non-equilibrium polarization 
can be very long-lived, 7'8'35'36 and the evolution of the system, in this case, 
takes place at constant total polarization A, Eq. (lla). This imposes an 
additional constraint on the thermodynamic variables A3 and A34. In such 
a situation, one should describe the distribution of the 3He particles and 
polarization between the pure and dilute phase as a function of overall 
polarization A, the total number of 3He particles in the system, 
N =  N3 + N34 and the total number of 4He particles N4. As a result, the 
solubility limit x, at T =  0 and the polarizations A 3 and A34 of both phases 
depend on A, N and N4. Then the corresponding value of xs(A, N, N4) dif- 
fers from the thermodynamic equilibrium value xs(A34, N34/N4) which does 
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not depend on  N / N  4 . Therefore, one should carefully specify the 
experimental conditions under which the system demixes into a pure and 
a dilute phase. 

In a magnetic field, the Gibbs-Duhem relations, Eqs. (3) change to 

dP3 =//3 d/z3 + m3 dB (13a) 

dP34 =//34 d,t-t 34 q- t/4 d//4 + m34 dB (13b) 

where m =/z3NnA is the magnetization and B the magnetic field. Although 
Eqs. (13) are coupled by the condition dP3=dP34 in order to keep the 
pressure equal in both subsystems, many parameters can change in reac- 
tion to a change in, say, the external magnetic field. 

A possible simplification is to restrict oneself to certain limits of X. For 
example, in the limit of X ~  1, when most of the system is in the pure 
phase and the amount of mixture is very small, the presence of the dilute 
phase with polarization A34 and concentration x, practically does not affect 
the volume of the pure phase, nor its polarization A 3 ~, A, which is con- 
stant. Then the polarization A34 and the 3He density n34 depend only on 
A 3. The calculation of xs(A3) for these conditions is performed in Sec. IIIB. 
The opposite case, leading to a different solubility, corresponds to a system 
with a small amount of pure phase. In this case  A34 ~ A is constant, and the 
polarization A 3 is a function of A34 while xs depends only on A34 and is not 
sensitive to A 3 . 

Another possible approach is to reduce the number of parameters by 
demanding that certain boundary conditions must be met. In Sec. ItlC for 
example, we restrict ourselves to the case where d#4 = 0 and dP 3 = dP34 = O. 
Both approaches limit themselves to specific experimental arrangements, 
which makes it a priori difficult to compare them to each other. 

3.2. XT1 

The polarization dependence of the chemical potential #34 was 
calculated by Bashkin and Meyerovich 25 in the s-approximation using 
second order perturbation theory. In general, if the total polarization of the 
system is constant, the chemical potentials of the 3He Fermi liquids in the 
pure and dilute phases at T=  0 can be written as 

(37"C2//3) 2/3 
/A3(//3, A) - (1 + o'A) 2/3 

2m* ~(A, n3) 

(3~2n34) 2/3 
/A~4(n34, A) = -e0(A,/~4, n34) -t- 

2m*4,a(A, H4~ /734) 

(14a) 

(t +~rA) 2/3 (i4b) 
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If we assume, as was suggested in the previous Section, that the amount of 
4He in the system is very small and the system consists mostly of pure 3He, 
X ~  1, A3~A, we can equate /z~(A) and /z3~4(A) without having to use 
further equations for the polarizations. Restricting ourselves to the simplest 
realistic approximation in which eo is a constant and the effective masses 
do not depend on the signs of their spins, we get 

I (Xs2(0)) 2/3 1 2/3 x,(A) = • +~2/3 (15a) 

/1 V/3 / m 4(A) m].(0/] 
~ = \ 2  n3v~') _(l +aA)Z/3m*(A) m*(0)j  (15b) 

where x = 19atn34, with ~)atn34, with v~ = 1/(n34 -}- 174) the average volume per 
atom in the mixture. This approximation is quite accurate for mixtures of 
not very high concentration; the error caused by the assumption rn~ -~ rn~' 
is unknown and should be higher than the error caused by the assumption 
eo = constant. 

3.3. XJ, xs 
Imposing the conditions d#4=0  and dP=O on Eqs. (13) gives us the 

simple relation 1 

d/~i= -/13N Ai dB (16) 

where i s  { 3, 34}. Integrating this at constant density ni gives 

B 
/ti(ni, B)-/ti(ni, O)=-/t3~ fo Ai(B')dB'=-Ii(ni, B) (17) 

Then we set n34 = n~(B), the saturation density of the mixture in a magnetic 
field B and we use the phase equilibrium condition ,tt3(n3, B ) : -  

/z34(ns(B), B) for both B = 0  and finite B which, combined with Eq. (17) 
and i = 3, 34 gives 

,u34(///s(B), 0)-//34(iV/s(0), 0)= I34(ns(B), B ) -  13(Yt3, B) (18) 

Allowing/z 4 to vary would lead to a more general result than the one presented here, where 
we keep it fixed. One could e.g. write 

d, tA4 = ((~//4 ~ ( 0/'/34 ~ d, u34 = f(gt 34) d# 34 
\0n34/~ \0/134/~ 

Then Eq. (16) would read 

( 1 + F(n34)) d#34 = -#3N A34 dB 

with F(n34 ) <0.  Thus including the osmotic pressure effect tends to decrease the solubility 
enhancement. We thank Dr. G. Vermeulen for pointing this out to us. 
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With the help of the magnetic susceptibility we change from magnetic 
field to polarization, and use the identity 

:(B) A' 
I(,% B) =#o# Nn Z(a'---) da' (19) 

in order to calculate the limiting density G(B) self consistently from 
Eq. (18). In this approach, we need to know only the zero field chemical 
potential of the dilute phase, and do not need to know the chemical poten- 
tial of the pure sub-system at all. In this calculation, the ratio of 3He to 
4He particles enters the result only if we try to calculate the concentration 
x instead of the density %4. Here we assume that we have the same relation 
between x and n as in the unpolarized case, which is only true in the case 
X--~ X s. 

3.4. Low Polarization (Thermodynamic Limit) 

Phase separated mixtures have a rather low susceptibility, 3~ 33 which 
results in a very low polarization when placed in experimentally available 
fields (brute force polarization). For this reason, we derive approximations 
for the limit of low polarization, where the system is in thermodynamic 
equilibrium with an external magnetic field. Expanding the Gibbs function 
in the magnetization yields 37'3s 

G(A) = G(0)+ �89 A2 -,U3NNBA (20) 

The second term on the right side of the last equation represents the 
change of pressure of the system due to the magnetization (dPV/dM) at 
constant density, while the third term is the Zeeman energy. The magnetic 
Grfineisen parameter Gm is defined as 

Gin=\ 01nn3 /.4 

\ X ~/'/3//14 \X ~X//u4 

with E** = (1 +F~)  E* = ((1 +F~)/(m*/m)) EF. G~ was calculated for 
helium mixtures by Bedell and van de Haar. 39 

From Eq. (20) it follows 37 that the limiting solubility x~(B) can be 
expanded as 

x.(B) = Xs(0)(1 + tiM B2 + "" ) (22) 
with 

1 -1  23) l M-2 o x&4 . 3 /  
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In the calculation of Dalfovo and Stringari, 37 which includes the 
magnetostriction effect, A is equal to the magnetic Grfineisen parameter, 
Gm. To compare with this thermodynamic calculation, we expand the 
integral given in Eq. (19) in the magnetic field: 

I(n, B) = 1_~ X B2 + ... (24) 
2#0n 

which, although the present work does not include magnetostriction, leads 
to an equation for tim of the same form as Eq. (23), with A = 1. 

Expanding Eq. (15) in the magnetic field and making the further 
assumption m~*(A)= rn~*(0) leads to 

~M=~x[~Q2)--l/3--Q2)I/3tQ@)2 (25a) 

m~ 4 [ r/3 ~2/3 
C~=rn~34 + n4 ) (25b) 

In the limit of a gas of Fermi particles with mass m* and susceptibility 

2 3 n m*/m 
ZFL = I~O#3N 5 EF ; + F~ (26) 

all models give similar expressions for tiM- This is to be expected, since they 
all agree on the first terms of the expansion Eq. (4) of #34 in n34 (eint = 0): 

3 2 1 IMP4( f/~3~ 2/3 A34-- d3] (27) 
flM=to~13N--J~,3E~',34 l m* \naeJ  

with * EF,3(34 ) the Fermi temperature of the pure (mixture) system using the 
effective mass m*. 

The values of A3 and A34 are summarized in table V. It should be kept 
in mind though, that according to Fig. 1, the Fermi gas limit is a poor 
approximation for the chemical potential. Solving Eq. (18) with the 
approximation (24) gives A = 1, while the thermodynamic expansion (tak- 
ing the concentration derivative of a not well known mixture susceptibility) 
yields A = G,~ = 0.53. For a Fermi gas, including the magnetostriction effect 

2 gives A = G m = x. 
For the result obtained using Eqns. (18-19), the sign of fie4 is deter- 

mined by the sign of (X34/n34-x3/n3), which changes sign between 0 and 
1 MPa. At P = 0, A > 0.78 ensures f ly  > 0, explaining the difference in sign 
between the thermodynamic expansion and the model for X+ x,. At high 
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TABLE V 

The Value of A3 and A34 , Defined in Eq. (27). All Coefficients are 
Obtained in the Limit of Low Polarization Using a Fermi Liquid 

Susceptibility 

X T 1 thermodynamic X + x~ 
Eq. (25a) expansion Eq. (24) 

K 3 1/(F~(3)) 2 3(1 -x)/(F~(3)) 3(1 -x)/(F~(3)) 
K34 1/(F~(3)) 2 3G,,,(1 -x)/(F~o(34)) 3(1 -X)/(F~(34)) 

pressure the parameters change such that both approaches agree on the 
sign again. 

In the case of X~ 1, the sign of tiM depends only on the ratio of the 
effective masses and the densities, which at all pressures yields a positive 
sign. 

In table VI, we have listed the values of/?M at three different pressures 
using the different chemical potentials calculated with the various models, 
with the susceptibilities taken from experiment. 3~-33 

3.5. Results for Arbitrary Polarization 

In Fig. 2, we plot the limiting solubility xs as a function of total 
polarization as calculated from Eq. (15). Because we here consider the case 
XI" 1, the variable of interest is A3 ~ A. As it turns out, there are only minor 
differences between the two sets of scattering lengths given in Table IL In 
this calculation we have assumed that the effective masses as well as e are 
independent of polarization and equal to their zero field values, effectively 
reducing it to a free Fermi gas approximation. Depending on the pressure, 
the solubility limit is enhanced by a factor 2-4. Also, the zero pressure 
curve intersects the other two, indicating that one should be in the right 
pressure range if one aims for the highest solubility at a given polarization. 
Though at high concentrations (xs(A = 1) ~ 0.2) the s-wave model loses its 

TABLE VI 

The Coefficient of the Quadratic Term in the Expansion (22), ,8 M 

0 MPa 1 MPa 2 MPa 

X'~ 1, Eq. (25a) 9.9.10-7 1.1 �9 10-6 5.4.10-7 
J(~, xs, Eq. (24) 1.9- 10 .6 - 4 . 8 . 1 0  - s  --3.5- 10 .5 
Dalfovo and Stringari --1.5 �9 10 -6 - 4 .  t0 -6 - 6 . 1 0  -6 
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Fig. 2. The limiting solubility x, as function of polarization A ~ A3, for a Fermi gas, in the 

limit J f g  1. Full line: P = 0 MPa, dashed line: P = 1 MPa, dotted line: P = 2 MPa. 

accuracy and cannot be applied quantitatively, it, nevertheless, indicates 
that the solubility may experience dramatic changes with polarization. The 
densities and zero field solubility were taken from Ref. 21, while the effec- 
tive masses were taken from Ref. 40 (pure phase) and Ref. 33 (mixture). 

Fig. 3, which plots the limiting solubility as function of the polariza- 
tion of the dilute phase, is the result of solving Eq. (18) numerically for the 
density H34(A ). In this case (X~,xs) the mixture polarization /~34 ~ A is the 
proper variable to use. For 2'3, the susceptibility of the pure phase, we used 
the nearly metamagnetic model (an extension to finite polarization of 
Fermi liquid theory), put forward by Bedell and Sanchez-Castro 13 and 
worked out in the case of liquid 3He by Sanchez-Castro, Bedell and 
Wiegers. 14 For the properties of the dilute phase, we used the potential 
model of van de Haar, Frossati and Bedell, 12 as discussed above. Because 
the susceptibility is a function of 3He density, is necessary to evaluate the 
integral/34, Eq. 17 each time the density is changed, which makes the com- 
putation rather time consuming. In order to calculate the concentration x 
from the density ivt34 , we assume that the relation between density and con- 
centration is independent of polarization. We also see that in this model 
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Fig. 3. The limiting solubility x, as function of polarization A ~A34, as calculated using the 
HFB model for the mixture and the nearly metamagnetic mode! for the pure phase, in the 
limit X~ xs. Full line: P = 0 MPa, dashed line: P = 1 MPa, dotted line: P = 2 MPa. 

the zero pressure curve intersects the P =  1 M P a  curve, but  that the 
changes in solubi l i ty  l imit  are not  near ly  as d ramat ic  as in the s-wave 

model .  Only  the P = 0 result  shows an increase of  30 % in x s at A = 0.95. 
whereas the curves at  1 and 2 M P a  go through a shal low minimum.  
approach ing  more  or  less the zero field value at full polar iza t ion .  

In  Fig. 4 we p lo t  the po la r iza t ions  A 3 and A 3 4  a s  a funct ion of  
magnet ic  field, along the demixing line at a pressure of  1 M P a  Because the 
susceptibi l i ty  of the near ly  me tamagne t i c  model  goes th rough  a m a x i m u m  
at B ~ 1 0 2 T ,  ]4 the slope of  the po la r iza t ion  curve decreases, while the 
po la r iza t ion  of  the dilute phase  cont inues to increase more  or  less l inearly 
in the H F B  model .  This results in the fact tha t  at A oc 0,7, the polar iza t ion  
curves intersect  and  at  higher  magnet ic  fields, A34 > A 3. 

Fig. 5 shows the magnet ic  energy s tored in the mixture  and the pure 
phase as function of  magnet ic  field B at  P = 1 MPa.  The energy shift is 
a lmos t  2 J /mol  at  A----1, which is to be c o m p a r e d  with Fig. 1. The  dif- 
ference between the curves (see Eq. (18)) however  is quite small,  mak ing  
the sign of  ( x s ( A ) -  x~(0)) not  very certain,  but  we can conclude tha t  at  
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Fig. 4. The polarizations A 3 and A3~ in the dense and dilute phase, respectively, as a function 
of magnetic field B at a pressure of 1 MPa along the demixing line, using the HFB model for 
the mixture and the nearly metamagnetic model for the pure phase. Full curve: A3, dashed 
curve: A34. 

elevated pressures this model predicts the change in limiting density to be 
small. 

4. THE SUPERFLUID TRANSITION TEMPERATURE 

Superfluid 3He dissolved in superfluid 4He is one of the "Holy Grails" 
of (ultra-) low temperature physics. It would provide us with a unique 
binary mixture of different superfluids which has never been observed 
before. As was mentioned in the introduction, different theoretical models 
give vastly different predictions not only for the transition temperature 
itself, but also for the type of superfluid pairing. Whatever the mechanism, 
the superfluid transition temperature can be enhanced by either enlarging 
the interatomic (attractive) interaction, or by increasing the density. We 
now, for the first time, calculate Tc taking into account that the 3He 
density in the mixture is affected by the polarization. 
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Fig. 5. The magnetic energies 13 and I34 stored in the pure and the dilute subsystem, respec- 
tively, at a pressure of 1 MPa, along the demixing line. Full line: pure phase, dashed line: 
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4.1. S-wave Pairing in the Weak Coupling Limit 

The interaction between 3He particles in the s-wave channel is attrac- 
tive, making the s-wave superfluid transition one of the most probable 
scenarios for dilute mixtures. 12'27 In the case of s-wave pairing, the pairing 
particles have opposite spin projections. The spin polarization makes the 
Fermi momenta of particles with opposite spins, p~ and p~, different from 
each other. If the polarization is low, s-wave pamng is still feasible, though 
the corresponding Cooper pairs have non-zero momentum, while the trans- 
ition temperature Tc(A34 ) is much lower than the transition temperature 
Tc(O ) in the absence of polarization. When the polarization becomes higher 
so that the difference of the Fermi energies for up- and down spins 

2 :~ 2 p,/2m, -p,/2m, becomes larger than the pairing energy {oc Tc), s-wave 
pairing becomes impossible. In other words, to expect standard s-wave 
superfluidity, the polarization should not exceed Tc ( A= 0  ) TF. Since 
according to experimental data the value of Tc(0) is much less than 1 inK, 
even a polarization A34 less than 1% makes s-wave pairing impossible. 
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4.2. Standard p-wave Pairing in the Weak Coupling Limit 

If the pairing particles have equal spin projections, the splitting into 
two Fermi spheres is not crucial since the onset of superfluidity first occurs 
on the larger sphere. The radius of this Fermi sphere increases because of 
polarization and could also increase if the 3He density is enhanced. This 
phase will have properties similar to the superfluid A1 phase of pure 3He 
in high magnetic field. 27 The expression of Tc can be written as 

T~: -~ T ) e x p ( - y / x )  (28) 

where 7 ~ b/ao characterizes the strength of the interaction in the p-wave 
" - T F ( 1  + aA) 2/3. Since there is insufficient information on the channel, T v -  

interaction in the p-wave channel, it is very difficult to give a reliable 
estimate for y. This makes the numerical estimates for Tc (Eq. 28) not very 
accurate even by order of magnitude especially because y enters the index 
of the exponent and y/x ~> 1. 

In the approach of Ref. 41, 

= 3x/N~(O) a7 ~ (29) 

where N~(0) is the density of states for particles with spin a, and a~ ~ is one 
of the Fermi liquid scattering parameters. The maximal possible density of 
states, and therefore, the highest transition temperature is determined by 
the maximal solubility of 3He in 4He. 

The results for T c with 7 (Eq. 29) calculated with the help of the HFB 
model are given in Fig. 6. We see an enormous increase in Tc, from 2 to 
4 orders of magnitude, depending on the pressure, with polarization. 
Unfortunately, the highest increase in T c is predicted for P = 0, which gives 
a far lower Tc than in the case P = I MPa. The estimate for 1 MPa, starting 
at a modest 10 ~tK, approaches the millikelvin regime at full polarization. 

In Fig. 7, we plot the ratio of the Tc computed in this paper to the 
Tc's found in the original paper by HFB, a2 when the change in solubility 
was not taken into account. We see that including the polarization 
dependence of the solubility enhances the value of Tc by a factor of 4 only. 
In the original paper of HFB, keeping the solubility constant, the polariza- 
tion increases the transition temperature by orders of magnitude. This is 
the effect of the change in effective interaction and the enlargement of the 
up-spin Fermi sphere, which in this model appears to be the main reason 
for the large enhancement of T c. 
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Fig. 6. The p-wave superfluid transition temperature along the demixing line as function of 
polarization A ~ A34 at different pressures, as calculated with the HFB/nearly metamagnetic 
model. The change in 3tte density with polarization is taken into account. Full line: 
P = 0 MPa, dashed line: P = 1 MPa, dotted line: P = 2 MPa. 

In the dilute gas model, the p-wave scattering amplitude b and, there- 
fore, 7 should be considered as constants independent of polarization. Then 
the effect of spin polarization on Tc reduces solely to the concentration 
dependence in Eq. (28). The value of b should be determined from 
experimental data. Unfortunately, the existing experiments at low concen- 
tration cannot provide the value of b; experimental information on b can 
only be obtained from experiments at high polarizations. 27 Therefore, at 
present the value of b is completely unknown, and it is impossible to give 
a numerical estimate for Tc .28 

We can use Eq. (29) to fix 7 in Eq. (28) at zero polarization. Doing so, 
we can use this last equation to compute the p-wave superfluid transition 
temperature with the limiting concentrations resulting from Eq. (15). We 
have plotted the values of T c obtained in this way in Fig. 8. We see a 
dramatic increase in Tc  of up to 5 orders of magnitude, generated by the 
large increase in xs(A). As in the case where X$ x~, the largest increase is 
seen at P = 0, while the highest Tc is predicted for P = 1 MPa.  Note that 
in this approach the interactions are kept constant, while the increase in T c 
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is generated solely by the increase in density. Making a plot like Fig. 7 
would thus yield the trivial result Tc(A, x~(A)) = To(A, Xs(0)). 

4.3. Kohn-anomaly p-wave Pairing in the Weak Coupling Limit 

Recently, Kagan and Chubukov 42 have shown that the effective inter- 
action in the p-wave channel is dominated by the attraction resulting from 
renormalizations induced in the second order terms of the s-wave interac- 
tion. In the weak coupling limit this approach yields higher values of the 
transition temperature than the standard p-wave model discussed above, 
but the dependence on concentration is weaker: 

T~ = T% exp( - ) 7 / 3 5  2 / 3  ) (30) 

where the dimensionless constant )Tg 1. Since at low concentrations 
x ~/3 < x, the increase in T c  as a result of the enhanced solubility x is not 
as spectacular as in Eq. (28). However, the absolute value of T c  3~ itself 
should be much larger than the values obtained in the standard p-wave 
pairing model. 28 
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5. C O N C L U S I O N S  

We have applied some theoretical approaches to spin-polarized 3He 
and 3He-erie mixtures to the problem of the solubility limit. For low 
polarization, all calculations agree that changes in the solubility will be 
small, although there is disagreement even on the sign of the effect. 

We examined two approaches which apply at arbitrary polarization, 
the HFB model combined with the nearly metamagnetic model in the limit 
Jf~ x~, and the dilute gas model in the limit X]" 1. At higher polarizations, 
these models disagree: for X ~  x~ the solubility is predicted to go through 
a minimum at P - - 1 -  2 MPa,  after which it increases to about  the zero 
polarization value. At zero pressure, //34 is predicted to increase by 30%. 
This is certainly not as optimistic as the model applied to the case X ~  1, 
which predicts a 2-4 fold increase at all pressures (however, as it was men- 
tioned before, the s-wave approach loses its accuracy with an increase in 
concentration). 

Because the 3He superfluid phase transition temperature is a 
monotonously increasing function of/'/34, the solubility limit sets an upper 
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limit for Tc. Both theories predict an enormous enhancement of T c with 
polarization, though the sources of this increase are different. In the s-wave 
approximation (or, better, dilute gas model) the effective interaction is con- 
sidered constant while all observable changes caused by polarization are 
explained in terms of relative changes in densities of state near the Fermi 
surfaces for up- and down spins. Then the increase in transition tem- 
perature is explained by a considerable increase in the limiting solubility 
and, therefore, increase in the density of states without changing the effec- 
tive interaction. The HFB model also gives a large enhancement in Tc,  
about the same order of magnitude. However, this model relates all the 
effects to changes in phase space and effective interaction with polarization, 
while the changes in density play a secondary role. If there is a density 
(solubility) effect in the HFB/nearly metamagnetic model, it tends to 
diminish Tc,  except at zero pressure. 

Note, that the results can be very sensitive to whether one deals with 
equilibrium polarization caused by an external magnetic field, or with a 
long-lived non-equilibrium polarized state with a given overall polarization. 
In the latter case, which corresponds to more realistic ways of obtaining 
high polarizations, the calculations of the limiting solubility and polariza- 
tion should be done with the additional constraint that the total polariza- 
tion A=(A3N3+A34N34)/(N3+N34) remains constant. As a result, the 
limiting solubility, polarizations of both phases, and the transition tem- 
perature depend on the ratio of the total number of 3He and 4He particles 
in the system, (N34+N3)/N 4-= X/(1-X), and therefore on the details of 
the method of polarization. Of course, in thermodynamic equilibrium this 
ratio is irrelevant. 

Generally speaking, all models which apply at arbitrary polarization 
give different estimates for the size of the change in solubility, causing a 
rather large spread in values for Tc. However, all models share the com- 
mon property that a sizeable increase in polarization results in an increase 
in T c  by orders of magnitude, whatever the mechanism. 

Concluding, we might say that spin polarization is a probable way of 
lifting the superfluid transition temperature up to experimentally accessible 
temperatures, although theories are inconclusive about the mechanism 
which causes the enhancement of T c. The results lead us to conclude that 
around 1 MPa one can expect the highest transition temperatures. Also, 
the overall concentration X in the sample cell might have a large effect on 
the value of T c. In spite of the theoretical uncertainties, we feel that 
investigation of dense polarized 3He-4He mixtures is strongly encouraged 
by the results. 
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