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TRANSPORT PHENOMENA IN SYSTEMS WITH ROUGH BOUNDARIES

A.E.Meyerovich and S.Stepaniants
Department of Physics, University of Rhode Isiand, Kingston, RI 02881-0817, USA

ABSTRACT

We discuss a very simple and versatile formalism for transport problems in systems
with rough boundaries. We reduce a transport problem near rough walls to a
completely equivalent bulk problem with ideal flat walls, but with certain bulk
imperfections. The latter problem can be easily analyzed by standard perturbative
techniques. All the calculations are very simple and straightforward. As examples,
we consider diffusion and conductivity in rough films, single-particle diffusion (a
"bouncing ball"), quantum interference (localization) corrections to conductivity, efc.

1. Introduction

Motion of particles near the walls is determined by the surface-induced
changes in energy, such as changes in energy spectra or potential reliefs, and by the
profile of the walls. The latter factor becomes non-trivial if the walls are rough with
random inhomogeneities of different scales. Often the effects of roughness and energy
changes can be separated. Below we will discuss the effects of boundary roughness
on transport of particles near the walls. Later, we will see that some of the energy
changes can be easily incorporated into our formalism.

Reflection of particles from random surface inhomogeneities feads to an
additional randomization of motion near the walls. This means that the boundary
roughness imposes additiona! restrictions on the mean free path along the wall. Then
the mean free path should be expressed via the parameters of the correlation function
of surface inhomogeneities. We will discuss a simple method of calculation for this
mean free path, and will apply this method to a wide variety of problems.

A standard approach to transport problems in restricted geometry is to solve
the transport equation with a corresponding boundary condition. In the case of rough
boundaries with random profile, this integro-differential equation becomes practically
unsolvable, Then the only remaining option is to use some over-simplified boundary
condition.

We developed an alternative approach to transport problems with rough
boundaries™. It is known that sometimes the analysis of systems with complicated
boundaries becomes more transparent if one performs a coordinate transformation to
simplify the shape of the boundaries. Some of the examples are the Migdal
transformation in nuclear physics or wave scattering from a random surface®, We
will use a similar approach for transport of particles in thin films with rough surfaces.
By a proper canonic transformation we will make both walls flat. The price will be
the appearance of some complicated random terms in the bulk Hamiltonian. These
small random terms can be treated perturbatively within a standard transport equation
as any other bulk imperfections or impurities. As a result, we will get simple
expressions for transport coefficients via the correlation function of surface
inhomogeneities.
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2. Formalism

Let us consider a thin film of an average thickness L with rough boundaries,
x = L/2 -E,(v,z) and x = -L/2 + E5fy,2). [In principle, most of the results are also
applicable to narrow 2D strips with random linear boundaries.] The inhomogeneities
are small, £;, << L, and random, <§,,> =0, with the correlation function

ﬁ_,»ﬁ_mﬁ.ww.w = <E(5) 85 >,

T = Gy + Gy + 2pp @) = [d69T08)

Typical examples are the Gaussian correlation of surface inhomogeneities of
an average height A,

I(s) = Alexp(-s%2R?), Uq) = 2nA’R’exp(-g?R¥2),
and its limit for small correlation radii R, i.e., the &-type correlation,
U(s) = N2R25(s)s, T(q) = 2MA*R™

As we will see, the transition between these two correfation functions occurs when
the de Broglie wavelength of particles becomes larger than the correlation radius of
surface inhomogeneities.

The boundaries can be made flat, X = -L/2 and X == L/2, by the non-linear
coordinate transformation

¥ - x - g (yzy2 + E(y.z)2 Yoy Z=z

1 - Efya2l - glyz)L’

This canonical coordinate transformation should be supplemented by the conjugate
momentum transformation, p ~ P. As a result, the Hamiltonian e{p) in new variables
acquires a small random part,

e(p) = eP) + V, V=VPEL+ mua_\q.m\ P <a.m\ %%%r
V, = BeldP, V,=oefoQ, E =3ss, E=E +§, Q=1P.F

The problem should be approached differently depending on whether the film
is thick and the motion across the film is classical (or WKB), or the film is very thin
with a large separation between levels of quantized motion. For example, one of the
most important cases is the classical motion of particles with quadratic energy
spectrum, e = p?/Zm. The above coordinate transformation demonstrates that the
motion of such particies between rough walls is equivalent to the motion between
perfect fiat walls of particles with anisotropic coordinate-dependent random effective
mass
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{other components are not affected). [n the opposite case of strong quantization with
suppressed transitions between widely separated states P, = 2nj/L, the motion of
particles along the film is equivalent to 2D motion in the weak random potential

2n/h,2 E(y,2)
V(y.z) = (52022000
\c\ ) L ) mL
with all standard localization implications.
In general, the above "perturbation” V leads to transitions berween different
bulk {momentum) states with the probabilicy W(P,P’) which is determined by the
matrix elements of V-

W(P,PY) = (2nfn)<]V

fa
o q'p 1 >0(E-E) =

X

I\ N
mwm‘%mkmSﬁma%hiﬂv+D<xvx3nh-,ox7oﬂaéokfJv_zmi&_
T
Q - (PV,-PV,)Q-Q)

For simplicity, let us assume that the scattering from the rough walls is the sole
source of particle diffusion in thin films thus neglecting scattering by bulk impurities
or collisions of particles with each other. Then the above transition probability
immediately gives us the diffusion coefficient in momentum space,

D = w [KK WEPISK, K=P - P

for the Focker-Plank equation,

op = 5,160 + 5,(0%n), & = [KWP.PYTK,

or the collision integral,

L (P = %Eﬂt.__uiivvcaati.,\oqw»uzwdiu

for the Boltzmann transport equation,

L

gn o+ ven + Fon =
where v = 5e/3P is the velocity, F is the external force, n{P) is the distribution
function. The transport problem with this collision integral is similar to standard
problems with impurity scattering, and the consequent calculation of transport
coefficients becomes rather straightforward.
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3. Transport coefficients

Below we will give only the values of transport coefficients for particles with
quadratic, e = p?/2m, and linear, ¢ = ¢p, spectra; dat for more complicated mvwoqm
can be found elsewhere.? The conductivity (or mobility) along the film for particles
with quadratic spectrum is

h%%\m:a (2me)'? de d cosd
n 7 e Lg-T, cos’O a+dtan’®

g =

where & = (ngn Y (Lo L)), n(P,0,8) = {(Pcosd, d)[I-cosd)?, o1 s and 7o, are the
angular harmonics of the correlation function. This equation can be easily analyzed
for different correlation functions and in different temperature regimes. For example,
in the case of Gaussian correlations the conductivity along the film is equal to

2y 2 f{p_RM) exp(x?cos?B/2) d cosd
g = 28°L7 RPN £.(x) u\, i

n*p.  AR? cos?d 3/2 +4tan'd

for degenerate systems, 7 < < Ty Comparison with the standard expression for
conductivity, 6 = ¢’AN/p, demonstrates that scattering by surface inhomogeneities
restricts the free path along the surface by

A= mruo"oomm?x:%mna

where N is the density of particles inside the film. For Boltzmann systems the
expression for mobility is similar,

z 4z  dcosd
cos?8 3/2+4tan'd

4 e\
g= —

- A 8T p TR, fald) = [expl-z(1-x)]
%?ananﬁn

Since in this case o = e*AN/(2mT)"?, the effective mean free path along the film
is

PL L3#®

- ,Iﬁnj!iﬂﬂajﬂ;&
m ARE2mT)

The variable for the functions f- and f; is the ratio of the correlation radius of
the surface inhomogeneities, R, to the de Broglie wavelength of particles. The
transition from Gaussian to &-correlations occurs when this ratio becomes small, and
the argument x in the above exponents is close to zero. In the opposite limit, when
the corretation radius becomes large on the scale of the wavelength, the mean free

path increases. This increase is a natural consequence of the fact that at large
cmve Tl e A af ciiifnnn fmhans aeanaitiae B the eurfara hernmee affectively flat.
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and the reflection of particles from such a surface is nearly specular and does not
cause chaotization of motion.

The diffusion ceefficient can be easily calculated using the above expressions
for conductivity:

uw m:
Dy, =D, = :@'Q\%E;mﬁwaqm%sqw
2me? * Be

The limiting values in degenerate and Boltzmann cases for Gaussian correlations are

L2 fu(p R

D, =D, -
” = mp2 WR?
and
2, 3
D, = =D, = ——L ¢ (m TR
Jn A2R2m?T

These equations are consistent with the above expressions for the surface-induced
mean free path.

The expression for the single-particle diffusion (i.e. for the Brownian motion
of a ball bouncing between two rough walls - the so-called bouncing ball problem)
is somewhat similar, Here the diffusion coefficient along the film depends on the
particle energy and the average valugé of momentum across the film:

nL? P2 R? e-P2m
_DE\ = DNN = WXUHAmllkv g X
A*R? 2m 212 3(2me-P,22/8+P !

However, this expression assumes that the motion of a ball is diffusive. There are
some numerical indications that the motion of a bouncing ball could slightly deviate
from a classical diffusive picture; this question is not settied yet. Here our approach
can provide an alternative and more simple computational method.

Let us give also an expression for diffusion coefficient of a particle with
linear energy spectrum, e =¢p ( a classical phonon or photon):

mic?L? (e¥c®-P expl(e¥c?-PHRY21Y
2P2\?R? 3(ec?-P A2 B+P !

Dy, =D, =

4. Quantum interference corrections to transport

Interference between different scattering channels for scattering by random
surface inhomogeneities leads to guantum interference (or localization) effects in
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transport exactly in the same way as usual scattering by random bulk impurities. This
analogy becomes especially transparent after we reduce, by means of canonic
coordinate transformation, the problem of transport between rough walls to an
equivalent problem of transport with random bulk perturbation V.

As ustal, quantum interference corrections are determined by the diffusion
coefficient. In 3D films

._.0 N
Ag |%<>wuabw\v-wb& Lot il

2y 2
T BD§

where 1 and T, are momentum and energy relaxation times, Ag is the de Broglie
wavelength of particles, and the last expression is valid if T, - .

The 2D case (a 2D strip restricled by random linear boundaries) is different.
One of the reasons s the divergence of the above integral at 7, ~ =. However, in this

case we can get an exact explicit expression for the density of states v(E) when the
boundary inhomogeneities are &-correlated,

<E(y)E(y,)> = V2nARB(y,-¥,),

and the transition between the states with different guantum numbers J, P® =2xin/L,
are effectively suppressed. Then’
242 113 5 3

W °A°R) %mmmxluwuumv. E-

EmL? L2
L2 0 VZ

v(E) = S —
AN._.—kuru Qay.nmvn_.w

This expression gives the conductivity threshold for narrow clean 2D film strips with
rough boundaries.

As it was mentioned in Sec. 2, the localization properties of motion of
particles along the film in the ultra-quantum 3D case with suppressed transitions
between the discrete levels the film, are the same as for any 2D motion in weak
random potential Vi{y,2) = C=jn/LYE(y,z)/mL.

5. Summary and discussion

The main advantages of our formalism of solving transport problems in
systems with rough boundaries are its simplicity and versatility. The calculations are
very straightforward, and can be easily performed for different types of transport
problems.

Above we presented different transport results mainty for classical particles
with quadratic dispersion law, e = p?/2m. Similar results for particles with different
spectra and for quantized motion across the film can be found in Ref.?

The main deficiency of the results obtained so far is that we neglected bulk
relaxation and collisions. As a result, the mean free path along the film is restricted
oaly by scattering on surface inhomogeneities. It is relatively simple to include the
effect of scattering by bulk impurities. The presence of bulk impurities is equivalent
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to the random term U{r) in the Hamiltonian. After the coordinate transformation the
effective random scattering field has the form

V,, = UR) + BUR) + V,

where V is the perturbation from Sec. 2, and 8U is the ¢hange in U as a result of
transformation r ~ R. The matrix element of the perturbation Ver is linear in these
three terms, while its square will contain, after averaging over bulk impurities and
surface inhomogeneities, only the terms

_<w3u.3_~ = (Upprl? = [Vpprl® + [BUppil® + BU T pVppr * BUppV prp

After the substitution into the equations for scattering probability and collisior
integral, the first term will reproduce a usual collision frequency with impurities, the
second term will give the surface-induced collision integral from Sec.2, while the las
three interference terms will be linear in both impurity concentration and the surface
correlator ¢/L. If the impurity concentration is small and these three terms can b
neglected, the transport parameters will obey a simple Matthiessen's rule fo
independent bulk and surface-induced collisions. Otherwise, the interference term
will somewhat complicate the picture. In any case, the calculations are ver;
straightforward. The situation will be much more complicated for large conceniratio:
of impurities or for strong interaction potential when the wave functions fo
calculation of matrix elements should include effects of impurity scattering. Th
situation, when the bulk relaxation is determined by particle-particie collisions, |
less clear.

Practically the same modification of the calculations will take place if we hav
to take into account possible energy distortions near the boundaries, U Up{x-L/2+E,
+ Uyfx+L/2-E,). Then, after the coordinate transformation, the matrix element in th
scattering probability will contain the perturbation Vg = 8U + V, while the potenti:
U,(X-L/2) + Uy(X+L/2) should be used for calculation of wave functions and b
included into the LA.s. of the transport equation. The consequences of change V'~ V
in the expressions for scattering probability are obvious.

The appearance of the new length scale, namely, the mean free path along th
boundaries restricted by scattering by surface inhomogeneities, affects the scale of sii
effects (see, i.e., Ref.?) near the boundaries. Our preliminary results’ show that tt
corresponding catculation requires the simultaneous analysis of the effects of surfac
roughness and bulk refaxation.

Our method can also be applied for derivation of effective boundary conditio
in different systems'®!!, Another possibility of continuation of this work is tl
application to layered systems. In this case the main modification assumes the chang
of the boundary condition ¥ = 0 on the walls.

In addition, the results of this paper provide a new method for numerical stuc
of the bouncing ball problem. There are some indications that the asymptotic moti
of such a particle differs from a standard diffusion law ! ~ Df. Qur method c:
simplify the calculations and clarify the situation.
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