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Abstract. We calculated transport coefficients in thin films in which the particle wavelength

is comparable to the thickness of the film, and the motion across the film is quantized. The
perturbative calculations are analytical almost to the very end, and result in explicit transparent
expressions for the transport coefficients via the correlation function of surface inhomogeneities,
density of particles, and film thickness. The final results are given for Gaussian correlations of
the surface inhomogeneities. The discrete nature of the spectrum leads to a non-analyticity of
transport coefficients as a function of particle density and film thickness, especially for degenerate
fermions. Surface inhomogeneity causes both in-band scattering and interband transitions; the
role of interband transitions is determined by the correlation radius of surface inhomogeneities.
The shape of the curves for the dependence of transport coefficients on the number of particles
and film thickness is determined by the correlation of surface inhomogeneities and is not very
sensitive to their amplitude. For short-range correlations, the interband transitions lead to a
saw-like shape of the curves. With an increasing correlation radius, the interband transitions
become suppressed, and the saw teeth gradually decrease, reducing, in the end, to small kinks
on otherwise monotonic curves. Careful analysis of the transition from quantum to semiclassical
and classical regimes allowed us to improve the accuracy of our previous classical calculations.

1. Introduction

Repeated collisions of ballistic particles with rough walls with random inhomogeneities
restrict particle motion along the walls, and are responsible for the formation of the mean
free path, quantum interference effects, and localization. Scattering of particles and waves
by random rough walls is an old and thoroughly studied problem (see books [1-7]).
However, most of the existingransport calculations for the wall-imposed limitations on

the transport coefficients and mean free path along the walls involve either oversimplified
models or complicated integro-differential boundary conditions (see, e.g., reviews [8, 9]
and references therein). The lack of simple expressions for the transport coefficients via
statistical characteristics of surface inhomogeneities hinders experimental and theoretical
work on systems with long free paths.

Recently we suggested a simple perturbative description of ballistic transport in systems
with random rough walls [10] (see also [11]). We expressed transport and localization
parameters such as mobility, diffusion, mean free path, localization length, etc, for
ballistic particles directly via the wall profile, namely, via the correlation function of wall
inhomogeneities. Despite intensive previous work on transport in thin films and channels
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with rough walls and a large amount of available data, our transparent semi-analytical results
provide a new explicit link between the transport coefficients and the correlation function
of surface inhomogeneities (for the latest experimental and theoretical results on transport
see references [10, 12-15] and references therein).

Our calculations were based on a canonical coordinate transformation, similar to the
Migdal transformation in nuclear physics, which makes the rough boundaries flat, but
complicates the bulk equations. This idea was proposed earlier in references [16, 17],
but was not carried out explicitly. We used an explicit expression for the coordinate
transformation with the parameters given by the exact profile of the random boundaries.
This provides an exact reformulation of the transport problem with random rough walls as
a transport problem with flat walls and randomly distorted bulk. The bulk problem arising
can be solved using the standard semiclassical perturbative transport equation.

The idea of reducing a surface scattering problem to a bulk one has been used
successfully in other fields, including the electromagnetic and acoustic wave scattering,
diffraction patterns, wave guides, etc, for several decades (see, e.g., [2, 6, 18-25] and
references therein). Generally speaking, such a reduction, either in the form of direct
coordinate transformation or as an expansion in initial boundary conditions, is inherent to
perturbative calculations for small roughness.

Our procedure is the first explicit application of such a technique developed specifically
for ballistic transport in thin films and narrow channels. The calculations are analytical
almost to the very end. The transparent results express transport coefficients directly
via the correlation functions of surface inhomogeneities, and can be used for analysis of
experimental data or as a basis for further calculations. Apart from the transport coefficients,
such as those of mobility and diffusion in different physical systems, the method provides a
simple tool for the study of wall-induced localization and quantum interference effects thus
supplementing the localization results of references [21, 25-27, 14]. Since we are interested
in slight roughness, the calculation of the ‘classical’ mean free path should precede and
serve as a basis for the calculation of the (small) quantum interference effects and (weak)
localization with (exponentially) large localization length. (In the case of strong roughness,
thetransportproblem is simple: the mean free path becomes equal to the film thickness with
the obvious consequences for transport coefficients. Other problems for strong roughness,
such as quantum interference effects or wave patterns for wave scattering, remain non-
trivial.)

In this paper we study ballistic transport in very thin films with quantized motion of
particles across the filmp, ~ jh/L (L is the average distance between the wallss the
guantum number). The quantization is important for electron transport in ultra-thin pure
metal films and for microflows and microdevices (see reference [28] and references therein).
In thin films with discrete levels for motion across the film, the change in particle density
N and/or film thicknesd. causes the redistribution of particles between these levels. In
Fermi systems af’ — O this is a non-analytical step-like process which should lead to
singularities in the dependence of the transport coefficients on the density of particles or
film thickness. The density dependence of the transport coefficients should become more
and more smooth with increasing temperature even for a distinctly discrete energy spectrum.

Similar singularities in transport in ultra-thin films have already been described for
scattering on bulk impurities [29], and have been qualitatively suggested in reference [17]
for scattering by rough walls. (Note, that this saw-like effect is a purely ‘classical’ transport
result that has nothing in common with 1D quantization of conductance for an effectively
1D motion of particles through a narrow contact [14, 27].) Recent perturbative approach to
a similar problem [15] included bulk attenuation, but disregarded the role of the correlation
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radius R and missed the operatdp, in the perturbation (this operator is inherent to such
problems [16] and is responsible for interlevel transitions). As we will see, the value of
the correlation radiu® and the interlevel transitions define the shape of the dependence of
transport coefficients on film thickness and/or particle density.

In the next section we present general perturbative equations for quantized transport in
thin films with rough boundaries. In section 3 we study transport singularities for degenerate
fermions atT" = 0. In section 4 we analyse transport at finite temperature, and calculate the
transport coefficients in the Boltzmann temperature range. The results ensure a consistent
transition from discrete to continuous expressions, and improve the accuracy of our previous
calculations [10] for the continuous spectrum in the classical and semiclassical limits. The
improved results for classical transport are given in the appendix. The final results are
presented for the Gaussian correlation of the surface inhomogeneities; similar calculations
can also be done for other types of correlation function.

2. Transport of particles with quantized motion across the channels

We will consider a film (channel) of the average thickndsswith rough boundaries
x = L/2—&(y,z) andx = —L/2 + &(y,z). The small boundary inhomogeneities,
&1(v,2), &(y,2) < L, are random functions of coordinates= (y, z) along the bound-
aries,(&1) = (&2) = 0. The correlation functior¢; (s1)&:(s2)) depends only on the distance
between pointgs; — s,| and not on the coordinates themselves:

(181 — s20) = (& (s1)E(82)) Cin(q) = f d?s 1z (s). (e

Our approach is based on the canonical coordinate transformationR, p — P,

_ Llx = &0, 2) — &1y, 2))/2]
L = (81(y, 2) + &2y, 2))

which makes the walls flaty = +£/2, and is responsible for the following change in the
form of the bulk Hamiltoniand = p?/2m:

Y=y Z=z (2)

PRGN S

- 2m X y zy Yx — mL X (3)
5 X 'D D 5 b 1 ’ 5 D b / A
V== [ BB+ Pl P] - - (@, — 8PP + Py, — 61

whereé = & + & and V. is similar to f/y; see [10] for details. The randomness of
inhomogeneities{&; ) = 0, leads to the randomness of the bulk distortién (V) = 0.
Thus, the transformation (2) reduces the transport problem between rough walls to an
equivalent transport problem with ideal specular wallgl./2) = W(—L/2) = 0, and a
distorted bulk Hamiltonian (3). The latter problem can be treated in the same standard
perturbative way as any random bulk imperfections or impurities.

The perturbative approach to surface roughness requires that the surface inhomogeneities
should be relatively smooth with the amplituéiemaller than their correlation radidsand
the thickness of the filnL, ¢ « L, R. The use of a semiclassical transport equation for
the motion along the film imposes an additional condition on the wavelength, namely, that
the wall-induced distorting force does not change the energy along the wall on the scale
1/q (g is the characteristic wave vector for particle motion along the walls). In the case
of not very high quantum numbejysfor the motion across the film, this means that either
¢/L < g?R? ¢°RL? or 1 « ¢R; if both inequalities are broken, one should substitute
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the exact quantum commutator for the Poisson bracket in the transport equation. These
conditions have different meanings for thin films with microscopic roughnesg; L, and
for smooth films that are irregularly curved on a macroscopic sddls; L. When, as
is often the case, the wave vector along the fiins of the same order as for the motion
across the filmg ~ 1/L, the applicability of our perturbative semiclassical approach
requirest < L, R, R?/L.

The effective bulk distortion (3) determines the effect of surface roughness on transport
via the Born collision integral

2
Li=+ Z/ <|qu,j’q'
>

in the transport equation for the subbarnds

2 7

’ ’ / ! d q
%) [ @=np) = nj 2= )] 8(e1(@) — €)@ oz @

dn(e;. q) + % dpn(e;. q) + F dgn(e;. q) = L;{n;) )

where subbands;(q) = [(wjh/L)? + ¢?]/2m. The equation includes both in-band scatter-
ing and interband transitions. Since we are interested in the effects of slight roughness in
the lowest approximation, we do not have to include the roughness-induced corrections to
the energy levels, and can neglect all the roughness corrections to the l.h.s. of equation
(5). The collision integral (4) and, therefore, the transport coefficients contain the squares
of the matrix elements of the ‘perturbatiol’, and the averaging over the random surface
inhomogeneities leads directly to the correlation functf@s).

The calculation of the matrix eIemen(ustq,jrq/F) with the unperturbed wave functions
U, = /2/voexpiq - s)sin(wjX/L) is trivial (v is the volume). The Hamiltonian (3)
contains terms witl§ = &, + & andé&; — &,. Both terms contribute to the matrix elements
|Vjq. 71> @and the collision integral (4). After the averaging and integration withsthe
functions in (4), the term witl§; — & becomes equal to zero, as in [10]. This cancellation
occurs only because of the randomness of surface rougltaresshe absence of bulk
collisions. In the case of regular roughness (i.e., periodic walls or channels of finite length)
or in the presence of particle—particle and particle—impurity bulk collisions, the contribution
of & — &, is finite. In our case of ballistic transport between random rough walls, the terms
with & — &, disappear from the collision integral (4):

1
L= S TBm2L2 / &g t(g—¢q) Z(nj/(q,) —n;j(q))d(€jrqg — €jq)
j
1 ni 2\ 2 1— 8.0 7
" [5"’”(2(‘1_‘1/)” (7)) + 5525 ("/z_qz)z] ©

where ¢(q) = ¢11 + 22 + 2¢12 is the Fourier component of the correlation function
(§(s1)é(s2)) for & = &1 + &2 (see equation (1)).

The transport equations (5), (6) are a set of equations in the distribution funetions
coupled via collision integrald.;. We can solve the transport equations for an arbitrary
correlation functions(q) and express the transport coefficients via the zeroth and first
angular harmonics of the correlation function at different valueg.dfVe will supplement
the general expressions with the most practical example of the Gaussian correlations of the
surface inhomogeneities of an average hefght

¢(s) = L2 exp(—s%/2R?) ¢(q) = 2m*R? exp(—q°R? | 2h%) 7
including thes-type correlations in the limit of the small correlation radiks
() =°R%(s)/s  ¢(q) =2nL*R%. ®)
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The condition? < R does not mean that our approach is applicable only to the long-range

correlations (large-size inhomogeneities). The scale for the effective correlation range in
equation (7) is defined by the particle wavelength~ 1/¢. If » > R, one deals with

the short-rangé-type correlations (8), while in the opposite case of long-range correlations

A < R one should consider the full Gaussian expression (7). Only the large humber of
equations (5) (relevant subbangls prevents us from giving a fully analytical solution of

the transport problem.

3. Singularities in the transport of particles with discrete quantum states; low
temperatures

Changes in particle density and/or thickness of the film lead to the redistribution of particles
between subbands with differept This redistribution betweediscretestates may lead to
a non-analytic dependence of transport coefficients on particle density and thickness of the
film [17]. This non-analyticity is more pronounced for degenerate Fermi systeffis-atO
when continuous increase in the number of particles leads, at certain critical densities, to
filling of new levels with higher and higher values pf

At T = 0, the Fermi momenta of fermions for the motion along the fylj?H in each
subband; are given by the overall Fermi energy as

.\ 2
er =5 ((F2) +a7) ©

while the 2D density of spin-1/2 particles in subbands

i
N, = 10
T onh? (10)

(for simplicity we assume that the effective masses of particles in all subbands are the
same). The chemical potential = €5 is determined self-consistently by calculating the
total density of particlesv,

7o\ 2
N:ZM:%Z(MEF—(%}v > (11)

Equations (9)—(11) in convenient dimensionless notation

L\? 2 2 _ 2.2
v=2meF T[_E Zj:;NjL szZZj:;NL (12)

can be rewritten as

z,~=v—j2 Z=Zz,~. (13)
The number of occupied levels for the given value ot (i.e., for the number of particles
NL?) is given by the integer part af'/2(z):

S(z) = Int[/v]. (14)
All of the levels with the indicesj > S are empty,z;.s = 0. Summation in equations

(13) from 1 to S defines the number of occupied levellsand the dimensionless chemical
potentialv as functions of the number of particles

_ _ z  (S+DEs+1
S =Int[\/v] =Int |:\/S+—6 :|

(15)
z

1
st 6(5 +D@S+1).

v(z) =



4162 A E Meyerovich and S Stepaniants

(For computational purposes, it is convenient to start from defining the number of occupied
levels S, and to determine the interval of the valueszodnd v, which corresponds to this
number of levels, on the basis of the valueSof The changes in the number of occupied
levelsS =1, 2, 3, 4, 5, 6,... occur atz =0, 3, 13, 34 70, 125 ... (i.e., at the points
z= 83— S(S+1)(2S +1)/6).
At T = 0, we look for the solution of the transport equation (5) in the form
o, o, FL? )

nj(@) =n;"(qr") — —770(€ — €r)xj(qy") COSY;
where 6, is the angle between the momentugn and the external forceF’. Then,
after the integration of the collision integral (6) with the Gaussian correlation of surface
inhomogeneities (7), the transport equation reduces to the following setimhensionless
linear equations iry; (q},-")) with hypergeometric coefficients:

1/2, 2
Z;'"L 1 ) 3 2n2z; R? . 5 2n2z; R?
. ==X <4]41F1< 2, — 4 ) + GZjJZlFl( 3, - A )

R? 2 2’ L2 2’ L2
5, 7 2n%z; R?
+ Ezj 1F1<§,4,— 12

S(z)

+2 Z(l — ;)2 exp[-n2((z; — Z7)?R?/2L?]

J

1 272, /77, R? 3 272, /77, R?
X |:Xj’<1F1< 1, —4> - 1F1( 2, —#>>

2 L2 2’ L2
1 272 J7;7; R?
=X 1F1<§, 1, —%)] (16)

(We do not give cumbersome equations for the correlation function of a generak fgim

with the coefficients expressed via the angular harmonics of the correlation function on the
Fermi surface.) The conductivity (mobility) of particles is given by the solution of this set
of equations as

S 272 S
; e’L 12 j
oy =0=) o)) = T 2m4he2 >4 %) (17)
j=1 j=1
and can be conveniently parametrized in the form
272
e“L R 2 2
Uyy:azz:Wq)(Z’Z) ZZ;NL . (18)

The dimensionless function®(z, R/L) for four different values ofR/L are plotted in
figure 1 (solid line) forR/L = 0.05, and in figure 2 foR/L = 1, 3,5. The singular points
correspond to change in values $from 1to 2to 3to 4..-atz =3, 13, 34....

This representation gives the dependence of the conductivity (mobility) on the
dimensionless density of particlesL? for different (dimensionless) correlation radi/L.
Another possible way of parametrizing the equations, similar to the one used in [10], could
be based on the definition

2n?, /7,25 R? A /Z;ZyN R? _ 872 /77 ( R\?
L2 - Z - F4 A
where the effective particle wavelengtt? = 27/N. This equation redefines the
function ®(z, L/R) in (18) as®®(z, R/A) = ®(z,2R/1/z) or as ®@(z, RV/N) =
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Figure 1. ®(z, R/L), equation (18), as a function of density= 2N L2/x for the correlation
radiusR/L = 0.05. Solid line: the exact calculation; dotted line: calculation without interband
transitions (without off-diagonal terms in the collision integral equation (6)).

-
1 04 [ //j/// %

Dz, %) -

10 - 7

10 - .

0.1 : :

1 10 100
Z

Figure 2. ®(z, R/L), equation (18), as a function of density= 2N L2/x for the correlation
radiusR/L = 1,3,5. The curves are labelled with the valuesRyfL.

®(z,+/2N/mzR). These alternative parametrizations would give the conductivity (mobility)
as a function of dimensionless thickndsg/N at different correlation radiR</N or R/x.

The z-dependences of the conductivity for all of these parametrizations look roughly the
same.
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The diffusion coefficientD,, = D, is related to the mobility21) as follows:
Th? 5 on; Th%oy, L% R
D, =g, / M ge = T2 % _ oz, = 19
Y em O ;/ de g e2mS 3me2s \“ L (19)

while the mean free path along the channel is
(q) _ (Zﬂ)l/zi_ch( 2>1/2 LR L ®(z, R/L)

(o2
L= 2N~ ¢2N3/2 J - LF R z

The dramatic difference in shapes of the curves in figures 1 and 2 for small and large
values ofR /L is explained by the role of interlevel transitions. If one neglects the interband
transitions (the off-diagonal matrix elemen?gf with j” # j) in the collision integral (6),
then the set of transport equations (16) will decouple ifitmdependent equations. It is
obvious that in this approximation the conductivity should be an almost monotonic function
of z = 2NL?/x, though the critical values aof, which correspond to the change in the
number of occupied levelS, are still responsible for the singularities (small kinks) in the
curves. Therefore, the saw-like nature of the curves is caused by the interlevel transitions
exclusively.

For comparison, figure 1 (dotted line) and figure 3 give the functiqp) calculated
when all the interband off-diagonal ternjs## j in the collision integral (6) are artificially
disregarded. The curves with and without transitions always coincide as long<as
when there is only one occupied subband. The differences show up only &t

(20)

T T 5
1(}5 [ 1
104 - .
Pz, %)
107 - =

10 .

0.1 * *

1 z 10 100

Figure 3. ®(z, R/L), equation (18), as a function af for R/L = 1,5, calculated without
interlevel transitions (without off-diagonal terms in the collision integral (6)). The curves are
labelled with the values oR/L.

Algebraically, the importance of interband transitions is characterized by the parameter
NR? ~ zR?/L2. Sincez; —z; = j2 — j’?, the exponents in equations (16)

2
exp[—72(z; — Z7)?R?/2L%] = exp|:—n (,/NjR2 - ,/Nj/R2> ]
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make interlevel transitions to remote Iev¢j’s— j’| > L/R negligible. These exponents
show also that the interband transitions and the resulting mixing of adjacent levels are very
important only for not very highly populated levels withr2;R?/L? « 1. Thus, the
contribution of interband transitions is noticeable only for relatively small valueg/df,

and decreases exponentially with increasiyd.. For this reason, the saw-like character of
the particle mobility becomes less and less pronounced with incre®&sihg At R/L =5

the saw nearly completely disappears, and there is practically no difference between the
curves in figure 2 (the exact calculation) and figure 3 (the calculation without interband
transitions). Note that the curves calculated with and without transitions always coincide
for a small number of particles < 3 when only one level is occupied and the transitions
are impossible for energy reasons.

The same parametersg2;R?/L? = 47 N;R?, determine the values of the hyper-
geometric functions in (16). Ak? <« 1, 1F1((2n — 1)/2,n, —x?) ~ 1, while in the
opposite case? » 1, 1Fi((2n — 1)/2,n, —x?) ~ (n — 1)!//mx". Therefore, at large
27%z;R?/L? > 1, one can not only neglect the interband transitions, but also neglect the
hypergeometric functionsF;((2n — 1)/2, n, —x?) with n = 3 andn = 4 in the diagonal
terms of the collision integrals (16) in comparison with the one with 2. Under these
conditions one can justify a heuristic assumption made in [10] and recover the (&3ult

s 272
. L R
_ o _ €
Oyy = 2 1: Gyé = n4ﬁgzq)<z’ Z)
"~ (21)

R L2 S(z) 1 .
q’(Z’ —) =) i :
L 4R® &~ j*1F1(3, 2, —2n%z; R?/L?)

If the correlation radius is smallvR? « 1, all of the terms in(16) are of the same
order, while the hypergeometric function

1F1((2n — 1)/2,n, —21%z;R?/L?) ~ 1F1((2n — 1)/2,n,0) = 1.

Then equations (16) can be simplified as

5% 1 4 2,92 - 2.2
ij ="5X <4j + 62, + 5% ) — 2y Z(l —8;0i%J" (22)
7
In this case
o(=7) = i > o g 29
"L 4R? = (j*+3z;j2/2+527/8) + S(S+ D(2S +1)/6 — j2

In the opposite limit when; R2/L? > 1 for all j, the interlevel transitions and higher-order
hypergeometric functions can be neglectﬁﬁj,(g, 2, —x?) — 1//7x3, and

© 5 B 7T7/2R S(z) (V(Z) _ j2)5/2
©rL) T 2L I
j=1

(24)

Note that the accuracy of equation (24) for largeR? can be improved near the
critical values ofz which correspond to changes in the number of occupied leSels
With the appearance of a new lev8| the number of particles on this levelg, and,
therefore, zgR?/L? are small even for largeR/L, and the contribution of this level

is zs/1F1(3, 2, —272z,R?/L?) ~ zs5, and notzsnY2(2n?z5R?/L?)%? as is implied by
equation (24). Away from the critical density the hypergeometric function becomes small,
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272z5R?/L? >> 1, and the contribution of this highest level will recover the form indicated
by (24).

The argument of the exponents and hypergeometric functions can be also written as
the ratio of the particle wavelength to the correlation radius of surface inhomogeneities,
272z;R?/L? ~ (R/};)?. The particle wavelength serves as a natural scale for describing
the correlations, and separates long-range from short-range correlations. In this sense, the
interband transitions are more important for the short-range correlations.

4. Transport along films and channels; high temperatures

At finite temperatures, all of the levels with differeptare populated, and the transport
equation is an infinite set of coupled equations (5). The chemical potential is the same for
particles in all bands,

1 (7jh\? 1 2%
p 1 = (FE) s g =5 () 4 0?) 25)

wherey; is the chemical potential of a 2D system Mf fermions in the bang. If we are
dealing with a dilute gas, then; depends only on the number of particlgs= 2N;L?/n

in this band:
-2
) wooJ
zj =07 In<1-|— exp(T’)) =V In<1—|— exp(; — E)) (26a)
and
=T In(exp(ﬁ> — ) (26)
g ﬂT
where
2mT L?
T= e

describes the ratio of the temperature to the energy of zero-point oscillations in the well of
the width L. This equation should be used to express the chemical potential via the total
number of particles = 2NL?/x:

00 .2
=07 ; In [exp(% - ;—T) + 1} . (27)

The solution of this equationy(z) at 7 = 0, is given by equation (15).
We will give the transport coefficients for high-temperature systems of particles with
the Boltzmann distribution function when

=vrexpl £ )o =T In[ - ®(ﬁ)=iex i
z=70r pT = 9,0 T—i:1 p 97 )

The transport equation (5) in dimensionless variablgg),

3

nj(q) =n;"(¢)( 1 - WXJ(Q)COSQ
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assumes the form

12 1 1
ur'c = 2721202 Xi(q) M (7]1(14 ujj) — no(u, uj;))

+ wjt(yi(u, ujp) — yolu, uj)) + j*Cau, uj;) — Co(u, ij))}

S(u,j)
+ Z 32700 e, ) — xjgo(u, ujj/)]} (28)
J'#]

while the mobility (conductivity) is

NN L 7 & Jj? W2 u
oo =0 Lol = paivie 1y oW o) [ | 5 | o

j=1
(29)

of L ? 2\1/2 2 L\?
= e Su, j) = Int|{(u+ j i =uU+ Jjc—7
u (n ) (w, j) [+ j5Y?] wjp=u+j*—j?=q' (m)
and o 1(u, uj;), no1(u, ujj), andyg1(u, u;;) are the zeroth and first angular Fourier harm-
onics of the functions

t(g—q) = ¢(q* + q'* — 2qq' cosp) = ¢ (u, uj;, COSp)

(30)
n(g —q) = ¢(q—q')[1 - cosp]? v(@—4q) = ¢(q—q)[1- cosy]

over the angley between the vectorg and ¢’. In essence, the variable = (¢L/7h)?
plays the same role as the Fermi momegta: (q(”L/JTE)2 for degenerate systems in the
previous section.

In the Gaussian case (7), integration in (28) leads to the same set of equaGpnsth
the only difference thak should be substituted fai;. The situation is again non-analytic
since the summation in (30) for off-diagonal transitions op/eshould be performed up to the
value S(u, j) which is not only different for eaclj, i.e., for each equation, but also depends
on momentuny and exhibits step-like jumps at certain valuesicE g%(L/nh)?. However,
this non-analyticity manifests itself more noticeably in the integrands (29) rather than in
the transport coefficients themselves which are fairly smooth. Finally, the conductivity
(mobility) is equal to

N\ R
Oyy = 2;0.»(1{') = I5h02 H<ﬁT’ Z)
j:

2 4 u?
I(x,y) = 2®(x)y /Xj(u) exp< . " > du.

The functionTI(x, y) is plotted in f|gure 4 fory = R/L = 0.05 and in figure 5 for
y=R/L=051.
In the Boltzmann temperature range, the diffusion coefficient can be expressed via

mobility as
on; Ta TL* R
Dyy.. = y}/z/ i de = T _ W“(W Z) (32)

(31)
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Figure 5. The functionIl(x, y), equation (31), fory = R/L = 0.5 (solid line) and 1 (dotted
line).

while the mean free path

L =o0(q)/e’N = (33)

5he2? o)

The difference between the functiofigx) in figures 4, 5 of several orders of magnitude
is not surprising. Since = ¥ ~ (L/A)? (A is the particle wavelength), figure 4 is plotted

(mT)Y2L* n( R)
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in the regionL ~ A. On the other handy = R/L = 0.05 is rather small, as a result of
which R/A <« 1. As was explained in [10] (and is confirmed by the present calculation),
the conditionR /A « 1 corresponds to a nearly specular quantum reflection, and, therefore,
to large particle mean free paths—thus the large valueH @f) in figure 4. In figure 5,

y = R/L ~ R/) ~ 1. This case corresponds to the most effective scattering of particles
by surface inhomogeneities and to the smallest values of the mean free path.

5. Summary and discussion

In summary, we calculated mobility and diffusion coefficients for ballistic particles in ultra-
thin films with random rough boundaries for the case where the motion of particles across
the film is quantized. We obtained simple and explicit expressions for transport coefficients
via the correlation function of surface inhomogeneities, the particle densitand the

film thicknessL. The particle transport along the film is a non-trivial function of two
dimensionless parametera/L? and R/L, where R is the correlation radius of surface
inhomogeneities. The most important consequence of a discrete character of the particle
spectrum for the motion across the film is the non-analytic low-temperature dependence
of the transport coefficients on the film thickness and the density of particles with the
singularities at the critical values of L2.

The strengths of these singularities strongly depend on the correlation radius of surface
inhomogeneitiesk. In the case of short-range correlations of surface inhomogeneities, the
low-temperature dependence of transport coefficients on particle density and film thickness
has a pronounced saw-like structure. The saw teeth become smaller, and the saw-like
structure gradually disappears with increasing correlation radius. Finally, for long-range
correlations one gets not very well pronounced kinks, instead of the saw teeth, at the
critical values of density and/or thickness at which the number of occupied levels changes
by one.

Though both the amplitude and the correlation radius of surface inhomogeneities affect
the particle scattering by the walls, the dependence of transport coefficients on the amplitude
of the surface inhomogeneitiés in contrast to their dependence on the correlation radius
R, is quite trivial, and reduces to a multiplicative factod.

In general, the non-analytic nature of the curves is explained by the singularities in
the (low-temperature) distribution of fermions over a system of discrete energy subbands.
However, the sharp discontinuities on the saw-like curves for transport coefficients are
caused not by the singularities in the density of state, but mostly by the interband transitions
caused by the scattering from wall inhomogeneities.

The occupation of a new, higher-energy subband leads to two transport effects: to the
direct transport contribution of the particles from this new band, and to the opening of new
scattering channels for particles in all already occupied bands (interband transitions to and
from the new band). The first effect is proportional to the number of particles in the new
band and is small. For this reason the singularity of the transport coefficients reduces, in the
absence of interband transitions, to a series of kinks corresponding to the occupancy of the
higher bands. On the other hand, the opening of new scattering channels with the interband
transitions to and from newly occupied bands affects particles fbnalready occupied
bands, thus increasing dramatically the total effective scattering cross-section in a step-like
manner. If one artificially freezes these transitions, the transport curves will exhibit kinks
rather than the saw teeth.

Not surprisingly, the contribution of interband transitions depends exponentially on the
ratio of the particle wavelength to the correlation radius of the surface inhomogeneities,
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and decreases rapidly with increasing correlation radius of surface roughness (i.e., with the
flattening of surface inhomogeneities). The emerging picture is more complicated than that
described in [17, 29, 15] because, unlike bulk impurities, surface inhomogeneities can have
a relatively large correlation length.

The parametrization of transport parameters in this paper is slightly different from that
in [10]. In the case of the mean free path it is probably better to use, instead of (20), (33),
the parametrization in the form [10]

2

L°R
E“Tf(R/)»)

with the minimum atR ~ A. The transformation of the results to this form is fairly
straightforward in both the degenerate and Boltzmann regions. As usual, the information
on the mean free path allows one to calculate quantum interference corrections and to
determine the localization length.
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Appendix. Classical and semiclassical motion across the channels

In the classical limit, when the distance between the bands with diffefebécomes
negligible, the above results should coincide with the results of the classical calculations in
[10]. The transition to the classical limit corresponds to thick films or to the states with
large quantum numberg,> 1, when the interlevel transitions are accompanied by relatively
small changes of the quantum numbery Bj « j. The coordinate transformation (1) and

the effective Hamiltonian (3) are, obviously, the same in the classical and quantum cases.
The matrix elements of the effective bulk distortion (3) are

&(@—q) wjt 1l o, o,
Vajaj = — i\ 7z T 7@ —4

+ oD 4 1)%@2 — q’z)}. (A1)
2 Jje=

In the quasiclassical (continuous) limit we should substiputend p. for jh/L and j'h/L,

and assume that, j/ > 1 . Then the matrix elements (Al) coincide exactly with the

classical matrix elements in [10] with tlég.-terms giving rise t&(p, — p.), and the terms

with (1 —8;;:)/(j — j') giving rise t08’(p, — p).

The collision integral (4) contains the squares of the matrix elem&ptg ;. The
calculation of(|Vy; 4 |?) for the quantum matrix elements (A1) is trivial sing® = §;;.,
(1-6;;)% = 1-3;, ands;;(1 — 8;;) = 0. However, a calculation of the squares of
the classical matrix elements in the continuous limit, as in reference [10], involves the use
of not very well defined squares of ttéefunctions§(p, — p,) andé’(p, — p.). In our
calculation [10] we used the following approximation for such a product of thenctions:

1 , L
8(px = PIS(px = P = =3 [8%(px — PL)] =~ —578 (e = P (A2)

An unambiguous calculation procedure requires the transition to the classical expressions
only after the quantum calculation ¢fV,; 4,12 when the problem with the squares of the
3-functions does not arise (an alternative is the use of the bell-shaped functions instead of
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Figure Al. The functionfg (x); solid line: equation (A4); dotted line: the result from reference
[10].

3-functions, e.g., in the presence of dissipation; this option is more complicated). The use
of the quantum expression forV,; ,;-1%) on the basis of equation (A1) with the consequent
transition to the quasiclassical limit shows that the exact expression for the above product
of the §-functions (A2) has the form

8'(px — P8 (px — py) = =8'(px — P,)/2ps-
This leads to a more accurate classical analogue of the transition probability:
2 2>

W(p,p) = = <|qu.,j’q'
92
S(e —€) |:2pj3(px -+ 78”(1& - p;)}

_tg—q)
47 L2m?
Qp.p)=(@-4q)-(pxq+ p.d)
than equation18) of [10].
The corresponding change in the classical collision integral does not result in any
significant changes in the expressions for the classical transport coefficients.onfyhe
improvement should be the substitution for the functions

d sing
a + 4tarf o
in the integrands for all transport coefficients in reference [10] with
d sing
a + 4ptart o + 8tarf 0

(A3)

where
a(u) = (5/21F1(7/2, 4, —u?)/1F1(3/2, 2, —u?)
Bw) = (3/2)1F1(5/2, 3, —u?)/1F1(3/2, 2, —u?).
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Figure A2. The functionfr (x); solid line: equation (A5); dotted line: the result from reference
[10].

This change in the analytical expressions leads to more accurate results. However, the
numerical change is not very significant. This small numerical change is illustrated in figures
Al and A2 for the functionsfz (x) and fr(x) which describe the transport coefficients and
the mean free path [10] for Boltzmann and Fermi gases:

_ 32 &L°R°N _ R

i T R 7 Y e
exp[—x2z%/cog6| d dg
o) =x* [ 7w/ cos 0] (A)
1F1(3/2,2,-72) co26 o +4ptartd + 8tarto
and
V2 212 2 _

o= _FrR" Sfr(x) x=~2prR/R

o) 1 / 1 1 dsing
X) = — .
5 x3 ] 1F1(3/2,2, —x2co20) cof6 o + 4Btarto + 8tarfo

(A5)
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