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We describe the effect of zero-temperature attenuation, which has been recently
observed in spin dynamics of Fermi liquids, on various processes in helium and fer-
romagnetic systems. After a brief review of theoretical and experimental data on
zero-temperature attenuation in transverse spin dynamics of helium systems, we dis-
cuss coupling between longitudinal and transverse processes, the Castaing instability

in >He and >He — *He mixtures, and applications to pure ferromagnetic metals.

1. Introduction

One of the recent developments in physics of Fermi liquids was a discovery of peculiar zero-
temperature attenuation in transverse spin dynamics of spin-polarized Fermi liquids. In
contrast to all other dissipative processes in pure Fermi liquids, the transverse relaxation
time 7, and the coefficient of transverse spin diffusion D) do not increase with decreasing
temperature as 1 /72, but saturate and remain finite even at 7' — 0. By transverse dynamics
we mean the dynamics of components of magnetization perpendicular to its equilibrium
direction. The transverse processes are excited, for example, by inhomogeneous tipping
of spins in NMR experiments. Longitudinal processes in exchange systems, i.e., processes
which do not change the direction of polarization, do not exhibit any zero-temperature
attenuation irrespective of spin polarization.

The zero-temperature attenuation in transverse dynamics was predicted first on the basis

of general conservation law and symmetry arguments'2. This prediction was confirmed by



375 and, later, dense Fermi liquids®.

direct transport calculations for degenerate Fermi gases
The temperature saturation of transverse diffusion and relaxation has been observed in low-
temperature spin dynamics experiments in spin-polarized liquid *He 17 and *He T —*He
mixtures®.

The transverse zero-temperature relaxation time is 7, (1'=0) ~ (Nvgpo)™' (Tx/BH)?
for a system of fermions with Fermi velocity (temperature) vy (Tr), magnetic moment
B, effective cross-section o, and density NV in the external magnetic field H. Since the
usual temperature-driven relaxation time is 7, (H = 0) ~ (Nvpo)™" (T/T)?, the transition
from the temperature-driven to polarization-driven transverse attenuation occurs at the
temperature T, ~ GH when the phase space between the spin-up and spin-down Fermi
spheres is comparable to the thermal smearing of the Fermi spheres.

The reason for such an unusual behavior is that the transverse relaxation and spin diffu-
sion at low temperatures are determined by collisionless decay of magnons. Spin polarization
of the Fermi liquid opens phase space between the spin-up and spin-down Fermi spheres nec-
essary to allow these decay processes for magnons with finite k (inhomogeneously tipped
spins) even at T = 0. Mathematically, the zero-temperature attenuation can be described
by a pole contribution in the transverse component of the interaction function, and is, in
this sense, similar to the Landau damping in collisionless plasma?.

Below we will briefly describe theoretical and experimental aspects of this phenomenon.
and discuss its consequences. We are interested in both helium and electron systems. In
spin-polarized helium Fermi liquids, the zero-temperature transverse attenuation can affect
other dynamic processes via the magnetic dipole-dipole interaction and non-linear coupling.
Electron Fermi liquids with large degree of spin polarization exist in ferromagnetic met-
als. In itinerant ferromagnets, the manifestations of the zero-temperature transverse at-
tenuation are similar to those in helium systems (with spin-lattice coupling to longitudinal
modes). In Heisenberg ferromagnetic metals, the analogy is less direct: the Fermi-liquid

zero-temperature transverse attenuation affects ferromagnetic properties only via exchange

coupling of localized ferromagnetic spins to spins of conduction electrons.



In the next Section we give a simple theory of the zero-temperature transverse attenu-
ation. In Sec. 3 we highlight experimental aspects of this phenomenon in helium systems.
Then, in Sec.4, we describe the transfer of the zero-temperature attenuation into longitudi-
nal channels by means of magnetic dipole interaction. Sec. 5 deals with Castaing instability
in spin dynamics in an inhomogeneous setting. The last Section contains applications to

pure ferromagnetic metals.

2. Theory

Usually, the conservation laws restrict all low-energy relaxation processes in Fermi liquids
to a thin layer (with a relative thickness T'/Ty) near the Fermi sphere where the occupation
numbers n change gradually from 1 to 0. Everywhere else there are either no particles (no
"initial” states ng,), or all states are completely occupied (no space for "final” states ny;,).
The probability of relaxation scattering processes for the fermions, which is proportional to
Nin (1 — n i) , acquires the factor (7/T)? and is very small. As a result, the relaxation time
increases at low temperatures as (Tx/T)*. In spin-polarized Fermi systems the situation is
different: if the collision flip the spin of spin-up particle in the region between spin-up and
spin-down Fermi spheres, this particle can easily change its energy since all spin-down states
in this area are unoccupied.

Mathematically this means that the collision integral of the form

/d3p1 d’py Pps PpaWé (€1 + €2 — €3 — €4 — hw — 23, H) § (p1 + P2 — P3 — P4) (1)

X [nipngr (1 —nsp) (1 —ngp) + napngg (1 —nzp) (1 —ngy)]

does not go to zero at T'— 0 as (T'/Tr)*, but remains finite and is proportional, at small
polarization 3H /Ty, to (BH/TF)>.

This mechanism of zero-temperature attenuation requires a spin flip during collision and
exists in exchange systems only in transverse spin channel, i.e., for processes with changes

in direction of magnetization such as spin waves, spin echo, and other NMR effects. The



attenuation for exchange longitudinal processes - processes without changes in direction of
magnetization - involves similar collision integrals, but with equal numbers of up and down
arrows, and vanishes at T — 0 as (1'/Tx)".

In general, there should be no dissipative collisions at 7' = 0. In Fermi liquids at T' =0
all incoherent processes, including the transverse ones, should disappear, and the interaction
should be described by the Landau interaction function, i.e., coherent molecular field. This
seems to contradict the existence of zero-temperature attenuation. This contradiction is
resolved if one notes that the microscopic equation for the transverse component of the
Landau interaction function contains the integrals of the form?®

U'U// T 1_n/l_n/1T - P !
(2r)®

p*+pi —p? —pf —i0sign (p' —pry)  p? +pi —p? —pf

The imaginary (pole) part of this interaction function reproduces the integral (1). Therefore,
the zero-temperature transverse attenuation can be interpreted as the imaginary (pole) part
of the interaction function. In this sense, the zero-temperature attenuation is a direct analog
of the Landau damping in collisionless plasma. Needless to say, this pole part disappears in
the absence of polarization or for longitudinal processes.

The above simple theory is directly applicable to low-density Fermi liquids such as the
3He component of 2He T —*He mixtures, or to dense Fermi liquids at low spin polariza-
tion. The situation in dense highly polarized Fermi liquids is more complicated. Here the
molecular fields acting on slightly tilted spin-ups and spin-downs are different because of the
large distance between spin-up and spin-down Fermi surfaces. [This effect is analogous to
the well-known particle-hole anisotropy away from the Fermi surface]. Then the microscopic
equations of transverse spin dynamics, i.e. the equations for (small) transverse components
of slightly tilted spins, have the form of two separate equations for tilted spin-ups and spin-
downs with different molecular fields. It is not clear how these equations translate into
macroscopic equations of spin dynamics, and what are the necessary modifications of the
Leggett equation of macroscopic spin dynamics.

The Leggett equation of Fermi-liquid spin dynamics is a closed equation in macroscopic
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magnetic moment M. This equation in its original form cannot be applied to highly-
polarized Fermi liquids: the molecular field term in the effective magnetic field inevitably
involves integration of the magnetization distribution m with the Fermi-liquid interaction

function f between spin-up and spin-down Fermi spheres

[ 1pp m @) (o (0) = nl” (9)] '/ (270)° (2)
Integral (2) can be written via the macroscopic magnetic moment

M = [m(p) [o" (") = 0" (p")] &5/ (2)’ (3)

only if the interaction function is constant between the Fermi spheres. This is true either for

2

dilute Fermi gases®, or, as in the original Leggett derivation, at very low polarization when

the Fermi spheres almost coincide.

3. Experiment

Recent experiments at Nottingham®? have used the techniques of pulsed nuclear magnetic
resonance to measure both transverse and longitudinal spin diffusion in a saturated (3 =
6.4%) solution of > He in *He. The active region of the experimental cell consisted of a 1 mm
diameter Stycast tube, 20 mm in length around which an R.F. coil (3 mm radius, two turns
of 0.6 mm diameter C'u-wire) was positioned. A main field of 8.8 T" and a uniform gradient
of 80 mT'/m were applied to the cell, in a direction normal to the axis of the tube. The
polarization of the saturated solution in such a field was a few per cent and the Leggett spin
rotation parameter pMy had a value of about 4 at the lowest temperatures.

In order to measure the transverse spin diffusion coefficient a § — ¢; — 180° R.F. pulse
sequence was applied to the 3He spin system resulting in a spin-echo at time 2¢;. The presence
of transverse spin diffusion causes this echo signal to decay with inter-pulse time ¢;. The
height h and phase ¢ of the spin-echo was fitted to the Leggett-Rice equations

2 2

(1 + p* M3 cos* 0)In(h(ty)) + a ;\40 sin 0(h*(t) — 1) = —272G2Dﬂ§




¢ = —puMqcosOln(h(ty))

to obtain values for the spin-rotation parameter, uMj, and the transverse spin diffusion
coeflicient D .

Longitudinal spin diffusion was measured using a technique similar to that used by Nunes
et all®. By applying a § = 180° R.F. pulse, the magnetization in the active region of the
cell can be inverted. A longitudinal magnetization gradient will thus be set up between
this region and the remainder of the cell. This will result in the diffusion of spins into this
region to recover equilibrium. The recovery of the magnetization can be characterized by

harmonics in the wavenumber of the spin current, k, as:
Mfmal — Mz(t) = che_D||k2t.
s

The magnetization is sampled at times, ¢, after the application of the initial 180° pulse using
a 21° — Ims — 180° pulse sequence. The resulting recovery profile can then be used to find
the longitudinal spin diffusion current, D).

The measured transverse and longitudinal spin diffusion coefficients are plotted on the
same graph in Figure 1. A clear deviation of D) from D) can be seen at temperatures
below about 30 m K. The longitudinal spin diffusion follows the expected 7~? dependence
of a degenerate Fermi liquid (7% = 417 mK for a 6.4% solution of *He in *He) whereas
the transverse spin diffusion approaches a constant value as T'— 0 K. The results for D,
have been fitted to the theory® in the low spin polarization approximation. A value for the
anisotropy temperature of T, = (19 + 3) mK was obtained. A fit of the theory to earlier
measurements of the transverse spin diffusion coefficient in an z3 = 3.8% mixture yields a
value of T, = (13 + 2) mK for this concentration.

Similar results in pure *H e have been obtained by Wei et al” using the same pulsed NMR

spin echo technique. In this case, the anisotropy temperature T, = 16 mK.



4. Dipole effects and longitudinal attenuation

Since the transverse attenuation is the only zero-temperature relaxation mechanism in pure
exchange Fermi liquids for low-frequency long-wave processes, it is interesting to inquire
whether this dissipation mechanism is coupled to and affects longitudinal Fermi-liquid pro-
cesses.

There are two general mechanisms that couple longitudinal and transverse processes in
helium: the magnetic dipole-dipole interaction and the non-linearity of equations of motion.
We will look only at dipole coupling, which is quite strong in highly polarized systems!?,
though the non-linear coupling also leads to interesting effects especially near the spin-wave
(Castaing) instability.

The dipole interaction transfers the zero-temperature transverse attenuation into the

1 First, in spin-polarized systems with

longitudinal channel by two different mechanisms
magnetic dipole-dipole interaction the spin-flip processes of the type (1) with dipole vertex W
are allowed in the longitudinal channel and enter the collision integral directly. Second, the
dipole interaction couples the longitudinal modes to (attenuating) transverse spin waves.
Then the collision integral (1) enters the longitudinal processes with transverse exchange
vertex W and dipole interaction in the coupling constant.

As a result of both, direct and indirect dipole processes, the effective zero-temperature
attenuation in the longitudinal channel 7.¢; (T = 0) should differ from 7, (T'=0) by an
extra coupling factor (E,/Tr)? where the characteristic dipole energy is 32Z2m3/2T/? /h?,
and Z is the microscopic parameter which describes the difference between the (pole terms
for) Fermi liquids and gases. The transition from temperature-driven to polarization-driven
zero-temperature sound attenuation should occur for longitudinal sound in sub-u K region,
i.e., at considerably lower temperature than the recently observed anisotropy temperature
T, at which the transverse attenuation loses its 1/7?% dependence. [For liquid *He ] this

corresponds to the temperatures below the superfluid transition when the theory of normal

Fermi liquids cannot be applied directly. Thus the unmodified results can only be applied



to liquid *He T —*He mixtures].

In order to avoid separate independent calculations of attenuation for different hydro-
dynamic and high-frequency longitudinal modes in *He | and *He T —*He mixtures, we
calculated (zero-) sound attenuation in a generic polarized Fermi liquid. This allowed us to
extract the effective mode-independent zero-temperature relaxation time 7.¢¢ (1T = 0) and
viscosity ness (T'=0) = pviTess (1 + Fl(s)/3) /5. The effective relaxation time could be used
in conjunction with standard hydrodynamic and Af equations®'® for polarized for >He T and
3He T —*He mixtures giving the attenuation of all sound and Af modes in terms of effective
Nesy and Tepys.

Although the effective zero-temperature longitudinal relaxation parameters are quite
small because of the weakness of dipole interaction, these parameters provide the real zero-
temperature cut-offs for longitudinal relaxation and transport. Since liquid helium, in con-
trast to electron systems, does not have any impurities, one may expect to observe these
limiting cut-offs at ultra-low temperatures in highly polarized *He T or *He T —*He mix-

tures.

A. Dipole collision integral and sound attenuation

Dipole interaction leads to spin-flip collisions even for longitudinal processes such as sound
propagation. As a result, one can find zero-temperature terms with the spin structure (1)

in the collision integral with the scattering probability

(p1—ps)’ (P1 —Ps),  (P1—pa)>(P1—pa), |

(Pl - P3)4 (Pl - p4)4

EN?
W(p17p27p37p4) — (iTF)

where the z-axis is chosen along the magnetic field (spin polarization), and the dipole energy

is equal to
E; = ﬂ2Z2m3/2T3/2/h3

The resulting sound attenuation is'!



Imw =

E? (ﬂH

2
(25 I (scosd 4
16750 Tp TF) (s cos ) (4)

where s = w/kvp is the (dimensionless) sound velocity, and the function I (s cos#) is plotted

in Figure 2 for several values of s.

B. Coupling between sound and spin waves

In Fermi liquids with exchange interaction between particles, longitudinal and transverse
processes are decoupled. Weak magnetic dipole-dipole interaction couples longitudinal and
transverse processes. As a result, the zero-temperature attenuation in transverse channels
can lead to zero-temperature dissipation even for ordinary longitudinal processes.

In spin-polarized Fermi liquids, sound propagation in the absence of dipole interaction
is described by a set of two coupled equations for densities ny and n| of spin-up and spin-
down particles. The coupling of longitudinal dynamic equations for ny, n| to the transverse
equation of motion for the mixed spin component of the density matrix ny; is provided by

magnetic dipole - dipole interaction with the Hamiltonian!*?

] LA LA N [ (5)

This Hamiltonian is responsible for two effects. First, it causes demagnetizing factors which,
in an elliptical sample, are equivalent to the demagnetizing field Hy;. The integration of
dipolar interaction, necessary for the calculation of demagnetizing field, is not trivial because
of the divergence at small wave vectors. It is possible to show!® ¥ that the demagnetizing

field in spherical samples is, with good accuracy, equal to
H, = 47 (M-H/H — M/3) 2%, M = (3/2)Tr, /aﬁgdf (6)

This equation for Hy includes both the equilibrium contribution with My and the non-
equilibrium part with 6M.
Second, the dipole interaction changes the effective Landau interaction function (molec-

ular field):



0 fap s (P, P') = ;LWZ%Q Heow: (1)2(%5 @ (057 - Tas) (7)

where Z is the usual renormalization coefficient in the pole part of the single-particle Green’s
function for Fermi liquids. [Note, that Eq.(7) contains only one of the diagrams for the vertex
I'“. The other diagram is already included into the term with 6M in the demagnetizing field
H, (6)]. The substitution of the dipole terms (6), (7) into the commutator in the equations

of motion,

(7,8, €ay = €9 — Boy,-6H, + / Fapms (P, p') 81l dI”, (8)

results in coupling of longitudinal and transverse equations.

As a result of this coupling, the sound waves acquire the zero-temperature attenuation!!

2
h* (kvp)* Fés) E3 (k2 k> — k2 AkY — 3k2E2 + kA
Imew = 32727, Fés)—Féa) Tilji k2 )2 Iy (5)+ 3t Fg(s) (9)
where
_ 92 (2 w(s?=3)—1/3[ w@Bs?—1)—-1 LNz T
Fl(S)—QS (S —1) w(32—1)—1 2 1—|-F(§a) + s —3w(5 —1) _5 \ (1())
_ 9.2 (.2 w(s®+3)—1/3 4 201
P2 (s) =25 (S_l) w(s2—1)—1 w(S_l)_§_57
w(s):flns—l_l —1,
2 s—1

and in the single-harmonic approximation w (s) = 1/F{*.

The most important difference from (4) is the k?-dependence of the attenuation (9)
originating from the k - v factor in the coupling coefficient. The calculation was performed
for low frequencies, kv < Qo. At higher frequencies, the factor (kvg)® should be substituted

by the square of the Larmor frequency €.

C. Effective relaxation and viscosity

The above expressions for sound attenuation allow us to get the values of effective relaxation

time and viscosity. Comparing Eqs.(4) and (9) with the standard expressions for (zero-)
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sound attenuation in Fermi liquids, we immediately get!!

1 _ Imw _ E? (ﬁﬂ)z I (scos?) (1)
Teff 5(8) 167‘(’5th TF 5(8) ’

5(3)::5211)2(52_1)(352_|_1)_|_2w(52_1)_17

w(sz—1)—1
1
w(s) = flns—l_ —1
2 s5—1
for direct processes, and
1 B2 (kop) B

7l g DA 3k

2

E3 (k2K — k2 4kt — 32k + k*
= 5 - FQ (S)
Terf  32727LE(8)

79— p®
(12)

for indirect ones.
The high-frequency attenuation can be obtained by the method similar to that used in
calculation of sound attenuation in Fermi liquids'®. The analysis of the non-vanishing at
T = 0 collision operator of the type (1) shows that this integral is similar to those studied

int?38 and should reduce to the form

o (1 T (95/2)2) "

(in dense Fermi liquids the Larmor frequency € experiences the usual Fermi-liquid renor-

malization), where 7;; determines the low-frequency sound attenuation in Fermi liquids,

¢ (s)

=Imk = 14
wo=Imk = (14)
The effective field-driven viscosity at T = 0,

1 s
Neff = EPUETess (1+F7/3), (15)

depends on the angle between the velocity gradient (k) and the direction of polarization z.
This anisotropy of the fluid dynamics in spin-polarized systems with dipole interaction is

quite natural.
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5. Castaing instability
A. Castaing instability in spin dynamics

Studies of instabilities and non-linear effects help towards an understanding of spin dynamics
in Fermi liquids. One of the most important spin-waves instabilities - the so-called Castaing
instability - occurs in spin dynamics of spin-polarized Fermi liquids in the presence of a
gradient of magnetic field and/or polarization.

At low spin polarization, the transverse spin dynamics in polarized Fermi liquids is

governed by the Leggett equation (see, e.g., review?):

oM 9. D, oM oM
W‘F[VB x M] = 8:1;k[1—|—u2M§(6:1;k ‘|‘N[M><67m])] (16)

If the magnetization gradients are small, the last term can be linearized in small deviations
from equilibrium 6M as p[Mg x 96M/0dz.], and the spin excitations are weakly attenuated

circularly polarized spin waves with the spectrum
(i — pMy) (1)

Castaing?® noticed that if the gradient in the magnetization VM is not negligible, the
linearized last term in Eq.(16) is g[Mg x 06M/0xg|4+u[6M x VMyg], and the excitation

spectrum changes from (17) to

Dy
14+ p2M?

w = wo +

(1 — pMo)(k* — pk-VM). (18)

For a sufficiently large gradient (or sufficiently small k), the last bracket and, therefore,
the imaginary part of the spectrum change sign. Instead of attenuation, the perturbation

increases with time resulting in instability starting from
k. = yn-VM, n =k/k (19)

The non-linearity of the Leggett equation of spin dynamics, which is responsible for

the Castaing instability, leads to a highly inhomogeneous final stationary distribution of
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magnetization (magnetic domains) even in slightly inhomogeneous magnetic field?!. Under
certain conditions, the domain wall could become very wide??. Then the difference between
longitudinal and transverse relaxation disappears, and the overall relaxation is determined

by the shortest of the two, i.e., by the field-driven zero-temperature transverse attenuation.

B. Observation of the spin-wave instability

This instability is very general, and can be observed in helium systems in different con-
figurations. We will illustrate it on the example of experiments? in saturated *He — *He
mixtures.

We observed an oscillating signal that could be induced by the application of a single
R.F. tipping pulse of angle § applied to a small region of the helium in the middle of the 1
mm tube?. Large magnetization gradients were induced in the helium at the edges of this
small region. We approximate these gradients as |[VM| ~ My(1 — cos 8)/Ax, where Az is
the distance over which they extend. A typical NMR signal produced by a § = 105° pulse
is plotted in Fig.3.

This long-lived ringing, which we interpret as a sign of instability, was observed only when
the tipping angle exceeded some critical value 8. ~ 70°. The frequencies of the oscillations
were determined by Fourier transforming the signals; the frequency shift éw away from
the Larmor frequency increased with tipping angle. By substituting the expression for the
magnetization gradient into the spectrum Eq.(18), we find that the frequency, éw = w — wy,
depends upon tipping angle as éw o cos# — cosf., where 6. is the critical angle; i.e. the
angle for which the last bracket of the spectrum is equal to zero, Fig. 4. Our estimate
gives the value k., ~ 600 cm™!. This implies that the large magnetization gradient is over a
distance of order 0.05 cm; this is consistent with the scale of our experimental setup.

These ringing signals possess several features which support an explanation in terms of
an instability. There is a cutoff in tipping angle 8. below which no signals were observed.

This, together with the fact that there was no ringing signal at higher temperatures when
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1My is small, confirms the threshold nature of the phenomenon. The long-time scale of the
signals and the initial increase in amplitude (Fig.3) are also characteristic of an instability.
The frequencies of the oscillations scale as the cosine of the tipping angle, cos §— cos 8.. The
presence of two frequency peaks on the Fourier analysis of the spectrum suggests that the
signals are coming from regions either side of the R.F. coil where the magnetization gradients
are slightly different. No such signals were observed during experiments on solutions with
lower *He concentrations. Here uM; is of the same magnitude but negative, so that the
instability propagates in the opposite direction, away from the receiving NMR coil.

Similar instabilities have been observed by Nunes!® and Dmitriev et al?*. The ringing
continued for extremely long times, leading to conclusions about the existence of a metastable
state (precessing spin domains)?! after the instability develops. In our experiment we did
not see such a long-time behavior due to the different setup. Only a small fraction of the
spins in the lower chamber was tipped and the longitudinal spin diffusion coefficient D) was

large, so that the instability was quickly suppressed by diffusion of up-spins into the coil.

C. Dipole effects in Castaing instability

The non-linear coupling between longitudinal and transverse channels is enhanced close to
the instability in spin dynamics (see, e.g., Ref.?> and references therein). We analyzed!!
the dipole effects near the onset of Castaing instability. Without the dipole effects, the
instability occurs at k., Eq.(19). The dipole interaction makes the instability anisotropic by
adding terms of the form k2, uk, V.M, (uVM)*, and (uV.M)? to Eq.(19). However, these
terms contain a small factor F,/Tr (we will not give here the cumbersome coefficients).
These anisotropic corrections do not have any fixed sign so that it is impossible to say
whether the onset of instability occurs earlier in certain directions.

Though this instability exists in transverse spin dynamics, one of its features is that u
in Eq.(19) is proportional not to the transverse relaxation time 7, but to the longitudinal

time 7, g = Q;7/M. Since 7 o 1/T?, the onset of instability &* = pk;V;M happens,
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with decreasing temperature, at larger and larger wave vectors. The usual derivation of the
instability condition assumes that the gradient of the longitudinal magnetization leads to a
large longitudinal diffusion current and not to longitudinal oscillations, i.e., that 1 /7, > kvp.
These two conditions, taken together, limit the temperature range in which the instability

can be observed to
Te > T > Tr(aa/L)Y* J2'? (20)

where « is the degree of spin polarization, x is the molar density of the Fermi liquid, and L
is the spatial scale of the polarization gradient.

The dipole coupling between longitudinal and transverse channels leads to a substitution
of 7 by 7.5 and lifts this temperature limitation. At zero temperature, the instability occurs
at k% = perrkiViM, pesr = Qi7es¢ /M under the condition 1/7.55 > kvp . The compatibility

of these equations requires high polarization with small gradient,
1/4
Ey > Ty (a/o®L) "

As a result, the instability exists even at zero temperature, but occurs at extremely small

values of k.

6. Application to pure ferromagnetic metals

Ferromagnetic metals can be roughly separated into two groups: itinerant ferromagnets with
ferromagnetism of conduction electrons, and metals with ferromagnetic ordering of inner,
localized electrons (with Heisenberg interaction). The zero-temperature transverse attenu-
ation in the former systems seems similar to helium systems, while in the latter group such
effects appear only as a result of exchange coupling between the localized ferromagnetic elec-
trons and the Fermi liquid of conduction electrons. In addition, the spin-lattice relaxation,
absent in helium, presents a strong coupling mechanism between longitudinal and transverse

channels for both types of ferromagnetic systems.
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A. Itinerant magnetism

The theory of transverse spin dynamics in electron Fermi liquid in itinerant ferromagnets
should be similar to that in spin-polarized helium. To a large extent this is correct, especially
well below the transition temperature. Close to the transition temperature the Fermi-liquid
description is not applicable (see,e.g.,?®). It is well-known?® that the spin wave spectrum
in ferromagnetic metals is similar to the spectrum of Silin spin waves in Fermi liquid .
Careful analysis of the spectrum?® shows that this spectrum contains the zero-temperature
attenuation: the expression for the spectrum includes the integral between the spin-up and

spin-down Fermi spheres,

/ ey =] dT,

which, as any integral not localized near the Fermi surface, should contain a large imaginary
part. However, this integration deep into the Fermi spheres makes the derivation?® not self
consistent; a consistent derivation should be based on the microscopic equations®.

Apart from the zero-temperature attenuation, these equations have another interesting
feature, namely, the spin-up - spin-down asymmetry. This effect is similar to a well-known
particle-hole asymmetry in Fermi liquids away from the Fermi sphere. In itinerant ferro-
magnets the radii of the Fermi spheres for spin-up and spin-down particles differ by a large
margin resulting in different molecular fields (Landau Fermi liquid functions) for quasiparti-
cles near these Fermi surfaces. This means that the frequencies of inhomogeneous precession
in the effective field for tipped spin-up and spin-down particles are different.

In general, the transfer of the microscopic equations® from Fermi liquids polarized by
an external magnetic field to ferromagnetic Fermi liquids is rather straightforward, and we
will not dwell on this here. Instead, we will mention another interesting aspect of micro-
scopic equations. The spin-up - spin-down anisotropy of the effective field can give credence

and microscopic justification?” to the concept of reaction field suggested by Onsager?® for

segnetoelectric systems (this concept for ferromagnetic systems was discussed in??).
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B. Heisenberg systems

The above zero-temperature dissipation mechanism is inherent to Fermi liquids and, in its
original form, does not exist in solid-state magnetic system of localized spins with Heisenberg
interaction JJ. However, this unique Fermi-liquid dissipation mechanism should lead to some
residual attenuation of magnons in pure ferromagnetic metals with Heisenberg interaction.
We want to emphasize that in this section we are interested not in itinerant magnetism,
for which the manifestation of Fermi-liquid effects is natural, but in an exchange magnetic
system of localized electrons.

The effect is fairly straightforward, and is based on exchange coupling of localized ferro-
magnetic spins (e.g., 3d electrons) to conduction (e.g., 4s) electrons. This exchange coupling
results in small polarization (not to exceed several per cent) of conduction electrons of the
order Jy (S) /Tg, where J; is the exchange coupling constant between localized ferromag-
netic electrons with spins S and spins of conduction electrons o. Polarization of spins of
conduction electrons ensures the propagation of Silin spin waves in this system with finite
zero-temperature attenuation 7, (1 = 0) ~ (Nvpa) ™" (1x/J; (S))?. The exchange coupling
between these attenuating Silin spin waves and ferromagnetic Heisenberg magnons transfers
the zero-temperature attenuation to the magnon system resulting in the effective relaxation
time 75 ~ 7, (J;/J)?. The competing processes that lead to the magnon attenuation are,
obviously, scattering on impurities and spin-lattice processes studied long ago (see, e.g.,%%).
The former processes are small in pure metals, while the latter are suppressed at low tem-
peratures.

The equilibrium energy of conduction electrons has the form

ef = 5? — ﬂfo‘i . H—Jlai . <S> /2 (21)

K3

while the Hamiltonian of localized electrons is

1
e = —p's; - H—2Jo (o) - Si—J > (Sitas+Sita, +Sita.) * S, (22)
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The effective parameters for conduction electrons are already renormalized by their Fermi-

liquid interaction, 3¢ = 3¢/ (1 + Féa)), J1 = Jo/ (1 + Féa)), while the averages
(S)=>_S;N;, (o)=> am; = ppm(B{H + 1/2J,<5,>) /71 (23)
The Fermi-liquid term in the energy of conduction electrons has the usual form,

1
betp = —5 Jous - 65+ /faﬁa/ﬁ/(p,p/)5nﬁ/a/(p/)drl (24)

with the Landau Fermi-liquid function

prm s a
W};ﬁ3faﬁa/ﬁ/(p7p/) = )(p7p/)50fﬁ5a’ﬁ’ + P )(pvp/)aaﬁ *Oarp (25)

Often, in ferromagnetic systems Jy (S.) > Jo (0.), BH, and Qg > wp. In this approxi-
mation, the analysis of the coupled equations of motion for localized and delocalized spins
S and o with the Hamiltonian (21)-(25) yields, after some algebra, the following expression

for the attenuation of ferromagnetic magnons3!:

BH (o)) koir (14 F)(1 4+ F9)3)
60 (520 (5201 4 [0 (14 F@/3) 1 (14 F)]

This equation is valid only for 3'H > J(S.) k?a? and formally yields zero at H = 0. In
smaller fields the attenuation does not vanish, but becomes proportional to k* in accordance
with the general result®?.

The strength of the effect depends on the exchange interaction JyS - o between spins of
ferromagnetic and conduction electrons. In free atoms the s — d exchange is of the scale of
1 eV. In metals, screening weakens this exchange by about one or two orders of magnitude.
There is also an enhancement factor which is related to the Kondo-like logarithmic divergence

of the effective field. The localized electrons create the (transverse) coherent exchange field

for conduction electrons which is equal to?

¥

— +
Lcoh == W [5S+(nT — nl) — b0 <SZ> N:| X
d3p’ 1 9
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The exchange field for localized electrons is similar. Here #; and t, are the bare direct and
exchange interaction constants, and NV is the density of localized spins. If the polarization of
conduction electrons is low, the direct interaction ¢; disappears from the results. The above
integral, as other similar integrals in the theory of metals, diverges logarithmically. After

introducing the usual cut-off, we get the following renormalization of the bare interaction:

Tr(1 + FY) )

BeH +15(S.) /2

where vg is the density of states on the Fermi surface. As a result of this large logarithmic

Jo = tg (1 + 87tyvpIn

enhancement of the interaction, Jy can reach several hundred K and the polarization of
conduction electrons can exceed one per cent. Then the zero-temperature attenuation for

conduction electrons 7, can become shorter than 1071° sec, and 7* can reach 1077 sec.

7. Conclusions

The zero-temperature transverse attenuation in spin-polarized Fermi liquids, which was
observed recently in spin dynamics of *He T and *He | —*He mixtures, is the only low-
frequency dissipative process in Fermi liquids at 1" = 0. This effect can have much broader
implications than a simple low-temperature saturation of transverse transport parameters
in polarized helium systems. We highlighted several of such effects.

The dipole coupling between longitudinal and transverse spin dynamics processes in spin-
polarized Fermi liquids leads to the transfer of zero-temperature transverse attenuation into
longitudinal channels. This transfer is responsible for the zero-temperature dipole contri-
bution to the sound attenuation in a generic Fermi liquid described by the effective mode-
independent longitudinal relaxation time and viscosity. These effective parameters provide
the low-temperature limit for dissipation of various hydrodynamic and high-frequency modes
in helium systems.

The zero-temperature attenuation processes have interesting implications for ferromag-
netic metals. Of course, the direct manifestations of this Fermi-liquid anomaly can be

observed in itinerant ferromagnets. Here the most interesting effect is, probably, not the
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zero-temperature attenuation itself, but a pronounced spin-up - spin-down asymmetry of
the effective field which could manifest itselt in the formation of a peculiar Onsager reaction
field.

In metals with ferromagnetism of localized Heisenberg spins, the effects of the zero-
temperature Fermi-liquid interaction are indirect. In this case, the exchange coupling of
localized and conduction electrons results in low residual polarization of spins of conduction
electrons. This, in turn, leads to the propagation of Silin spin waves with small zero-
temperature attenuation in the system of conduction electrons. The coupling of these spin
waves to the spin waves in the system of localized Heisenberg electrons transfers the zero-
temperature attenuation to ferromagnetic magnons. This mechanism is responsible for the
residual attenuation of ferromagnetic magnons in pure ferromagnetic metals.

Another important peculiarity of spin dynamics in spin-polarized Fermi liquids is the
spin-wave instability in inhomogeneous setting (Castaing instability). We presented and
analyzed experimental data confirming the existence of this instability, and discussed some
further experimental options. As a result of dipole transfer of zero-temperature attenu-
ation into longitudinal channels, the Castaing instability does not disappear at ultra-low
temperatures, though its observation would require a relatively large experimental installa-
tion. In addition, the dipole interaction makes all the processes, including the instability in
spin-polarized Fermi liquids, highly anisotropic.

The non-linearity of the Leggett equation of spin dynamics, which is responsible for the
Castaing instability, results in a highly inhomogeneous final distribution of magnetization
even in almost homogeneous magnetic field. In these conditions, the difference between
longitudinal and transverse relaxation disappears, and the overall relaxation is determined
by the shortest of the two. Then the overall low-temperature relaxation is similar to the

field-driven zero-temperature transverse attenuation in homogeneous systems.

The work was supported by NSF grant DMR-9412769 and EPSRC grant GR/K44008.
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FIGURE CAPTIONS.

Figure 1. Temperature dependence of transverse (circles) and longitudinal (rhombs)
diffusion coefficients, D and D).

Figure 2. I (s,2) as a function of @ = cos 0, Eq.(4), for four values of s, s = 2; 3; 3.47; 5.

Figure 3. The ringing signals observed following a # = 105° pulse

Figure 4. The frequency shift as a function of the tipping angle. The line is a fit
of = A(cos — cosb,.).
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