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Ballistic motion of (quasi-)particles in helium systems with quantized and
quasi-continuous spectrum is discussed under conditions when the mean free
path is restricted by scattering on random surface inhomogeneities. The
transport equation is derived for particles with arbitrary form of energy spec-
trum and without model assumptions on the structure of surface scattering
operator. The results can be applied to quasiparticles in liquid helium systems
with quadratic and linear spectra, spectrum with a gap, etc. The transport
equation is relatively simple except for the case when the distance between
quantized energy levels is comparable to the surface collision frequency. In
three limiting cases the diffusion coefficient is calculated analytically for arbi-
trary correlations of surface inhomogeneities, and elsewhere - numerically for
Gaussian correlations. The interwall correlation of surface inhomogeneities
affects particle diffusion in a non-trivial way; sometimes, the effect of inter-
wall correlations persists even in the quasiclassical limit.

PACS numbers 61.12.-q, 73.20.Fz, 67.90,+z

Low-temperature helium systems are perfect objects for experimental
and theoretical study of ballistic motion of particles with various types of
energy spectrum. At low temperatures, the mean free paths can be made
sufficiently large so that boundary collisions become the dominant scattering
mechanism. Boundary collisions can often be separated into two parts: scat-
tering on surface-induced potential changes near the walls and scattering by
(random) surface inhomogeneities. The latter problem is discussed below.

We consider (quasi-)particle diffusion in channel with random rough
walls x = ±L/2^£ii2(y,z), £i?2 < L, (£1,2) = 0, with locally specular reflec-
tion in the absence of bulk scattering. The goal is to express the mean free
path and transport coefficients via statistical and geometric characteristics
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of the wall profile, namely via the correlation function

The correlators £11 and £22 describe intrawall correlations of inhomogeneities,
and (12 = Czi - interwall correlations. Recently we developed a simple
formalism1 for exact mapping of transport problems with random bound-
aries onto problems with perfect boundaries and randomly distorted bulk.
The formalism is based on Migdal-like canonical transformation that flattens
the boundaries and, in the process, distorts the bulk. Here we report some
new results and applications to helium systems. A more detailed account
and literature review can be found elsewhere.2

Ballistic helium systems have two unique features. First, helium quasi-
particles can have various types of energy spectra including quadratic spec-
trum (rotons and 3He in 3He — *He mixtures), linear spectrum (phonons),
anisotropic spectrum with gap, etc. Second, changing the width of bal-
listic channels and/or particle energy one can scan the whole range from
ultra-quantum to quasi-continuous motion. We will express the transport
coefficients via the arbitrary correlation functions, and supplement general
expressions by computations for Gaussian correlations,

To avoid parameter clutter, in numerical calculations we assume that all cor-
relation lengths are the same, RU = RM = RW = R, while the amplitudes
aiki iik = \/|<i;fcK with some typical scale l, may be different.

Earlier1 we used the coordinate transformation

which made the walls flat, X = ±i/2. If one does not change coordinates
y, z, the Jacobian J of such transformation J ^ 1, and the Hamiltonian H
in conjugate momentum variables {Px,y,z} can acquire non-Hermitian terms.
To restore the volume, one has to supplement the transformation (3) by

(the same for z). It is possible to show2 that transformation (4) is important
only for anomalous quantum transport when the separation of minibands
€jq — £j/q for different states j,j' for finite motion in z-direction is compa-
rable to the frequency of collision-induced transitions between minibands.
Outside of this relatively narrow region (and always in quasiclassical con-
ditions), this complication is irrelevant, and one should put 7 = 0. In new
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momentum variables the Hamiltonian H = p2/2m = P2/2m + V acquires
the perturbation V,

The corresponding equation for an arbitrary energy spectrum is too
cumbersome. However, outside the anomalous region, the collision opera-
tor retains its standard Waldmann-Snider form and contains the energy 8-
function 6 (e,-q — £j'q/) in the integrand. Then the expression for the matrix
element can be simplified and obtains the following form for the arbitrary
spectrum:

The transport equation reduces to

As it is clear from Eq.(6), the effect of the oscillating interwall term with
Ci2 (q' — q) is rather non-trivial.

The transport equation can be solved analytically for arbitrary type of
correlation function £ in three cases. In the first case, only one energy level
is occupied E = ei (q1), and the transport equation becomes the same as
usual ID transport equation for impurity scattering with the combination

playing the role of the transport cross-section (g is the spin factor),

(Eji are the angular harmonics of EH (|q1 - q'l) with |qi - q(\ =
1q\ sin 0/2). The limiting case of longwave particles qjR < 1 corresponds to
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quantum reflection when all the correlators £;fc (q - q') in the kernel of the
integral equation can be replaced by the constants ^ (0), and the diffusion
coefficient of quasiparticles with the energy E = €jq} is equal to

In the third limit of ultra-narrow channels, L <C R, the interband transitions
are negligible in comparison with intraband scattering, and Eqs.(6) decouple,

For Gaussian correlations (2) , H is expressed via the hypergeometric function

1*1:

Examples of dependence of single-particle diffusion coefficient on a =
R / X ( E ) for two different situations are given in Figures 1, 2 for Gaussian
correlation of inhomogeneities. Sharp singularities in both curves appear in
the points where the number S of minibands £jq accessible to a particle with
energy E increases by 1 with increasing energy E.

Figure 1 illustrates the single-particle diffusion coefficient (8),

for (quasi-)particles with quadratic spectrum e = —A+j) 2 /2m as a function
of energy a = R/\ (E) = RVlmE, at R/L = 0.003, an = a22 = 1, and two
values of interwall correlations, a12 = 0 (solid line) and a12 = 0.7 (dotted
line). The contribution of interwall correlation is an oscillating function of
the number S of minibands ejq accessible to a particle with energy E and
changes from destructive to constructive depending on whether S is even or
odd. This is a general feature that can be observed for any energy spectrum
at R <C A < L for not very large values of S; at larger 5, especially in the
quasiclassical regime 5 >• 1, this effect of interwall correlations disappears.
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Fig. 1. Function I I (a) , a = R/X = R(2mE)1/2 for the single-particle
diffusion coefficient D = (gL^/m^^R/L^a) at R/L = 0.003, an = a22 =
1, «i2 = 0 (solid line) and a\^ = 0.7 (dotted line)

Fig. 2. Function II(a), a = R/X = RUJ/C for the single-phonon diffusion
coefficient D = (L3c/P)E(R/L,a) at R/L = 314, on = a22 = 1 and a12 = 0
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Figure 2 presents the single-phonon diffusion coefficient (9),

e = cp, as a function of energy a = R/X (E) = Ru>/c at R/L = 314,
flu = #22 — 1) and without interwall correlations, aja = 0. In this case
j' = j and the whole effect of interwall correlations reduces to a trivial
factor (10) I/ (au + «22 + 2ai2).

In general, shapes of the curves depend more on parameters R/L and
R/\ than on the type of the spectrum e(p). The above expressions for
diffusion coefficient D (E) and mean free path £ = ID/v also provide one
with the localization length 12 for particles with energy £3,4

However, numerical estimates show that ID localization (11) can be observed
almost exclusively for low-energy particles for which only the first miniband
eiq is accessible, S (E) = 1, Eq.(7). At higher energies, the exponent (11)
becomes too large.

The most straightforward application is for 3He quasiparticles in 3He-
Hell mixtures with the spectrum £jq = A + (l/2m*) (g2 + ( i r j / L ) 2 } and

qj (E) = (2m* (E - A) - (TTj/I)2J . For these particles the above equations
can be used almost without any modifications and restrictions. At very low
temperatures, when the probability of inelastic phonon processes is low, the

above equations can be used for helium phonons e,-q = c (q1 + ( i r j / L ) 2 )

as well. For single-particle excitations in 3He below the transition point the
main restriction is presented by Andreev reflection. To account for these
processes, the transport equation (6) should be re-written as a set of two
coupled (sets of) equations for quasiparticles and quasiholes.

The above processes should define hydrodynamic flows in helium at
ultralow temperatures and should strongly affect thermomechanical effect.

This work was supported by NSF grants DMR-9412769 and DMR-
9705304. More detailed results will be published elsewhere.2
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