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Transport equation and diffusion in ultrathin channels and films
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A rigorous perturbative transport equation for ballistic particles in thin films with random rough walls is
derived by the diagrammatic Keldysh technique for both quasiclassical and quantized motion across the film.
The derivation is based on canonical Migdal transformation that replaces a transport problem with random
rough walls by an equivalent problem with flat boundaries and randomly distorted bulk. The rigorous deriva-
tion requires a modification of our previously used transformation to avoid non-Hermitian perturbations. The
unusual nondiagonal structure of the effective scattering operator makes the transport equation different from
the standard Waldmann-Snider equation when the distance between quantized levels for the motion across the
film is comparable to the wall-induced perturbation. Outside of this anomalous quantum resonance region, the
transport equation is similar to that for scattering by bulk impurities. The magnitude of the anomaly is
calculated for degenerate particles and Gaussian correlations of surface inhomogeneities. The transport prob-
lem is solved analytically for the single-band occupancy and in the limiting cases of very large and very small
correlation radii of inhomogeneities for an arbitrary correlation function of surface roughness. Elsewhere, the
transport equation is analyzed numerically for the Gaussian correlation function. Transport coefficients are
expressed explicitly via the angular harmonics of the surface correlation function; in the anomalous region, the
results contain certain supplemental correlators. The results reveal various effects of interwall correlations on
transport including an oscillatory dependence on the number of occupied minibands. The transition from
guantum to quasiclassical description of ballistic motion acrosgttiiek) film can be hindered by residual
interwall interference effects similar to those in classical optic problems for thick films without bulk attenua-
tion. Erroneous matrix elements in our previous calculations have been cor{&@¢63-18208)05943-§

[. INTRODUCTION and solve a rigorous quantum transport equation specifically
for the situation when the scattering by random surface in-
Interaction of particles and waves with random roughhomogeneities is the main scattering mechanism. We intro-
walls has been studied for decades in various contexts frorduce explicitly an effective bulk perturbation operator, which
light and sound propagation to electron transport to gas dyiS exactly equivalent to the boundary problem with slight
namics and hydrodynamidsee Refs. 17 Repeated scat- roughness, and derive a diagrammatic transport equation for
tering of particles by random surface inhomogeneities leadd1is random operator. The transport equation is quantum in
to the formation of the mean free path, quantum interferencéhe direction perpendicular to the walls and is quasiclassical
effects, and localization. If the inhomogeneities are smallalong the walls.
the quantum interference is weak and the wall-imposed lo- Ballistic transport between rough walls is determined by
calization length is largé*® Thus, the localization effects correlation of consecutive particle collisions with the oppo-
should be studied after or in the frame of the diffusionSite walls and by quantum multiple scattering by the same
problem!*~® The aim of this paper is to describe diffusion Wall. These effects depend differently on intrawall and inter-
flows between rough walls in thin films, wires, layers, quan-wall correlations of surface inhomogeneities, and are deter-
tum wells, waveguides, etc., explicitly via the statistic andMmined by three spatial scales—the particle wavelength
geometric properties of wall roughness, namely, via the cordistance between the walls and the correlation radR;; of
relation function of surface inhomogeneities. intrawall and interwall correlations. Our description of bal-
Recent advances in molecular-beam epitaxy' quanturﬂStiC transport between random rOUgh walls is valid for an
waveguides and wells, and nanotechnology have renewedfbitrary combination of these scales. The transport equation
interest in this transport problefearly data are reviewed in IS solved, where possible analytically, in a wide range of
Refs. 17 and 18; for recent data, see Refs. 19-34 and refgparameters.
ences therein Many theoretical approaches to flows along ~The main finding is that there is a range of parameters in
rough walls involve either oversimplified specular, diffuse, Which the quantum transport problem between rough walls is
or Fuchs boundary conditions, or overcomplicated integrodualitatively different from transport with bulk impurity scat-
differential boundary conditiors®>%® often ignoring the tering and all previous versions of the transport
geometric and statistic properties of the surface. Perturbativéquatiori®?2":2334%4ail. The anomaly occurs when the dis-
expansions for weak roughnes®e, e.g., Refs. 1, 2, 6, 7, 17, tance between the quantized energy leve|s for the mo-
27, 28, 33, 34, 37, 38, and references therean take the 'ﬂo\n across the film is comparable to the collision operator,
shape of the surface into account, though the main attentiot/7() ~ 1. In this quantum resonance region, transport cannot
is usually paid to the scattering matrix rather than to the be described with the help of any single-w&limatrix and
transport equation which is assumed to have a standard bulkulklike Boltzmann-Waldmann-Snider transport equation. In
like form. This assumption is often wrong. Below we derive effect, our results provide the interferen8enatrix for scat-
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tering from two opposite walls with the quantized motion recent transport data is discussed in a separate subsec-
between them. In a wide range of parameters,$hisatrix is  tion. The final section presents the summary of our results.
simple despite the interference of scattering from the oppo-

site walls. In the anomalous range, tBematrix is compli- Il. MAPPING OF BOUNDARY SCATTERING

cated and involves new supplemental correlators. The opera- ONTO THE BULK

tor structure of thisS matrix requires a major change in the

form of the transport tion. Since flow channels are al- One of the simplest rigorous derivations of the scattering
orm of the transport equation. ce Tlow channels are a.operator for random rough walls is based on a coordinate

attenuation. We demonstrate how to solve this transpofheen ysed for electromagnetic and acoustic wave scattering,
problem, and find the scope of deviation from the resunsdiffraction patterns, wave guides, etc., for many ye@ese
based on a standard transport equation. Our procedure §st< > g g g 39’ 43-49. and ’referénces ther@me of
mathe_r_natlcally rigorous, and all the_restrlct|ons are readilype earfiest examples is the Migdal transformation in nuclear
quantified. Unfortunately, all calculations for the anomalousphysics_ The use of the Migdal-like transformation for trans-

region are extremely cumbersome. _ _ port problems was discussed in Refs. 50 and 51, but without
In addition, we performed a systematic analysis of the

) s D= ) fan explicit expression for the coordinate transformation.
transport manifestations of possible interwall correlations Ofindependently®-*2we suggested an explicit form of a nec-

surface inhomogeneities. These effects are more pronouncedq,ry coordinate transformation and expressed transport and
for quantized motion perpendicular to the walls. Sometimesy, .qjization parameters for ballistic transport in systems with
the mte_rvyall mt_erference suppresses the quasiclassical limit,qom rough walls explicitly via the wall profile, namely,
for ballistic particles even for thick films. via the correlation function of wall inhomogeneities. Later,

Note that, in contrast, for example, to the diffraction prob-ihe same transformation was used for conductance in 1D
lem or propagation through the layered media, the most iMzough cylindrical wire$?

portanttransportcalculations for narrow channels are those  Tig mapping of the random boundary problem onto a
for slight roughness. If the roug_hness is strong, the partiCquﬁrobIem with a random bulk Hamiltonian provides a basis
are dephased by each wall collision, and the transport proli 5 rigorous perturbation expansion for slight roughness—
lem becomes trivial. Formally, the results below are Obta'”e%ughness with small amplitude and aperture of surface in-
for thin 2D films or quantum wells with random rough walls. 5 ageneities. What is missing is a rigorous transport equa-
These results, with minor modifications, can be applied Qiqn, for such a Hamiltonian: our previous heuristic treatment
narrow 1D channels as long as we do not consider localizgp, the frame of the same transport equation as for the usual
tion effects caused by scattering from random inhomogengs, imperfections(impurities is not always adequate be-
ities, which are, of course, much stronger in 1D channelggse of peculiar operator properties of the effective collision

than in 2D films. , , , operator. These anomalies are quite general and restrict ap-
In the next section we discuss rigorous mapping of theplication of other transport calculatiohg328:3448

boundary scattering problem onto the bulk. The standard dia-
grammatic technique operates with Hermitian operators and
requires the Jacobian of mapping transformation toJbe
=1. Therefore, we are forced to modify our original map- We consider an infinite 2D channel of the average thick-
ping transformatioff~#?to ensure that the Jacobidrr 1 and  nessL with rough boundaries

all operators are Hermitian. This modification becomes im-

A. Mapping transformation

portant in the anomalous region, and is unnecessary outside X=L12=&(y,2), x=—LI2+&5(y,2). @
of it. In Sec. Il we also correct an error in our previous The inhomogeneities are smalf;(y,z),&,(y,z)<L, and
expressions for matrix elements. random,(&;)=(&,)=0, with the correlation function

The diagrammatic transport equation for ballistic trans-
port is derived in Sec. Ill with an emphasis on the deviation
from the standard Boltzmann-Waldmann-Snider form when fik(|s|):<§i(51)§k(31+5)>5f §i(sp)én(sy+9)dsy,
the gaps between the quantized levels for finite motion )
across the film are comparable to the wall-induced effective )
perturbation. The transport equation is compared with the §ik(Q)=f d?se9 9z (9)= &(Q) &l —q),
one for the scattering by bulk impurities in quantum and
quasiclassical limits. where s and g are the 2D vectors in the wall plangz.

In Sec. IV the transport equation is solved analytically inThe correlation functions/;; and {5, describe intrawall
the limiting cases of large and small correlation radii of sur-correlations of inhomogeneities, and;,={,; describe
face inhomogeneities. In Sec. V we calculate the transpoiinterwall correlations. The second equation in Eg8)
coefficients, where possible analytically, for the Gaussiaris valid for {1, only if opposite walls are correlated; other-
correlation of surface inhomogeneities in a wide range ofvise, {;,=0. Ourclassicalresult§? contained only the over-
parameters in quantum and quasiclassical regimes. In thal width of the channek, (s)=¢&;+ &, and the correlator
anomalous region, we compare numerical results based ah. =(&.(S1)€+(S))= {111 {2t 2{1,. In Ref. 40, we as-
exact and standard transport equations. The analytical arsimed that this result holds for quantum transport as well. As
numerical calculations reveal the nontrivial effect of inter-we will see, for quantized motion one should retain béth
wall correlations on transport. The comparison with otherandé_=¢&,—¢;.
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We will express the transport coefficients via the angular ~ p2 o .
harmonics of an arbitrary set of correlation functighgs), H=—+V, V=V,+V,+V,+V,, V,=—FP
and supplement general expressions by computations for
Gaussian correlations,

2 2 2 v 1 ' 1 ' D D B ' ’ D
§|k(s):||keXF(_S/2le), (3) V|:% L§+|_§ —i I:)Xl:)l—’_lal L§+I_§ —i I:)X I}
Li(Q) = 27 L RE exp( — g?R;/2) @)
including the case of small correlation radigs-0, i.e., the A o A o . A
Stype correlations, VZZE [v(9)P;P;+isi(P;v(s))P; P+ (P;¥(9))P;
Lu(9=15RY8(9)/s,  Cw(@)=2miRE. (@

+ 318K (PiP7(8) Py,

To avoid the parameter clutter, in numerical calculations we

assume that all three correlation lengths are the satpe, Where the indicesi(k) take the valuesy,z). Equation(7)
=R,,=Ry,=R, while the amplitudes , ;= a; !, with  differs from Refs. 40-42 by the presence &f and the

some typical scalé, may be different. integral terms withy(s) originating from Eq.(6). The pertur-
In Refs. 41, 42, and 40 we used the coordinate transforoation expansion with the Hamiltonia(?) linearized in¢
mation requires small and smooth inhomogeneities,
_ LIx=¢&-(y,2)/2]
- L_§+(y,2) (5) |<L,R (8)

which made the wall§l) flat, X=+L/2, and did not change The conditionl <R does not restrict our approach to the
the coordinates along the wall¥=y, Z=z. The Jacobian large-size inhomogeneities. The physical scale for the corre-
J of such transformationJaéi a{nd the Hamiltonian lation range s defined by the .p.articles wavelengind .not
&= p2/2m in momentum variable§P, . ,} canonically con- by the height of inhomogeneitids For longwave particles
n=p : XY,z Ically N>R, the correlations are essentialylike (4). The exact
jugate to {X,Y,Z} contained the non-Hermitian terms.

! o - : file of i is i tant only forh <R.
We dealt with this either by symmetrizing the perturbatlonpro lle of £y is |m_p_or antonly 9”\. ~ .
U—(U+U1)/2 in Refs. 41 and 42, or by ignoring the non- The non-Hermitian operatotP, in V, (7) is the source of
—( : ' Y19 9 all anomalies. The terms witly in Eq. (7), related to the

Hermitian nature oV in Ref. 40. As we will see, both ap- transformation6), make the full perturbatiok? Hermitian at

proaches are correct in the range of parameters in which thg price of more cumbersome equations than Refs. 40—42.

transport equation keeps its standard form. Beyond thISrhe nondiagonal structure of the scattering vertex, which is

range, the symmetry properties of the perturbation are cru- . ~ o
cial? y Y prop P determined byV, hinders the derivation of the transport

Rigorous diagrammatic derivation requires that all operafduation. This complication is not an accidental peculiarity
tors are Hermitian and coordinate transformations have th four_method._ The off-_dlagonal terms reflect th_e fact that the
JacobianJ=1. Thus, we are forced to supplement the iIm tr_uckr)ess is changing ran_domly along the film leading to
stretching of the film thicknes&) by isotropic stretching of the violation of the conservation law fét, even after aver-

coordinates Y,Z) along the film to havel=1: aging. As a result, the scattering vertex is always non-
’ ' diagonal with nontrivial operator propertig%>3

Y=y[1+ ¢S], Z=71+¥(9], The transformation&5) and(6) reduce the transport prob-
lem between rough walls to an equivalent transport problem
1 (1 with ideal specular wallsV(L/2)=V¥(—-L/2)=0 and dis-
y(9)=—— f ¢ (ada da. (6)  torted bulk Hamiltonian(7). In thin films, the unperturbed
L Jo motion of particles across the films is quantized?,);
=j/L, with the wave functions
B. Effective Hamiltonian and scattering probabilities

In new momentum variables— P, which are conjugate W(r) =2l oexpig-s)sin 7j(X+L/2)/L] 9
to Egs.(5) and(6), the bulk HamiltoniarH = p%/2m acquires .
the form (vo is the volume). The matrix elements dfare

Vaar =22 £, @ - D) + 2+ o —a
a9l T mL | et L 4 O—,(q/_q)')’
1-68; jj’ 1+ (-1 1— (-1
_ 1] 12_~2 r_ '—q) ——M
mL 2=z ){&(q Q) 5 +¢-(9'—a) 5 ;

(10
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1 (= da
Y(C]):—E L §+(QQ)7-

Even without the terms withy and£_ , the matrix element§l0) are slightly different from those in Refs. 42 and 40 because

of an error in our previous expressions. The randomness of inhomogengflies), means tha(\7>§=0. All nonvanishing
averages start from the quadratic combinations of the matrix elerignts; .

The transition probabilitiesV in the collision operator in the transport equation are quadrati¥ ifl0) and can be
expressed, after averaging over random functi§nga the correlation functions:

(Vayi,. atitValiz.alil De=( W)ij 111} /(d1,01) 6(A1— ),

(11
1 o S C
Wil (0,00 = o~ DI 2 2 Gt £ (— 1) T (— 1)l 2]}
X[ (77]1)2 1(95—qj )2} (@) (1—511,'1)1'1]1]
L) "3 (g qp? | - it
X[ (77]2)2 1(g3—a;) } y )(1—5,-zjé>jzjé]
L) 4 (a- ql) 9121y~ (G i =i
OOy |15 Ty Tualao | (450122
+ —+ =42 2 2
I |Gy G Y it (G—t)” [aia:®—(a1-ay)?],
where( ), stands for the averaging ovéythe “supplemental” correlation functiong; are
i@ =Zi(—=&@E&(—a),
(12)

&(a)=qe- —f &i(a

e is the unit vector perpendicular tpin the plane of the wallsinceW is quadratic ine, a choice of two possible orientations
of eis irrelevanj, and the correlation functions in E(L1) are{;(d;—qy) andN{ik(ql ai)- W J) i) , (12) is only a part of the
transition probabilityWV, .. . =wd, W@, the expression foW( ) s given in the Appendix.
i1 iai) J4dqlal, ITHPIES 11i2is
C. Standard Waldmann-Snider transport equation
Heuristically?®=*? one can treatV (7) within the Boltzmann equation for particles with minibaneg,= [(mj/L)?
+¢2]/2m with discrete quantum numbgr

q
dion(e;,q)+ o -9, 0n(€j,q)+F-dqon(e;,q)=L;{n;}. (13

Equation(13) is often called the Waldmann-Snider equaﬁéﬁ'he perturbative collision integrals; are determined by the
transition probabilitiedV;;.(dq,q9")=W;;j+;(0,9") = <|VJq, gt /|?) between the stateg,@)—(j’,q’),

, , d2qr
L]-:27Tzl J'W“/(q'q )[nj,—nj]5(e]-q—ej,q,) (ZT)Z (19
J

Equation(11) gives the parwfjl)J ;(a,9') of the full transition probabilityt/=W®"+ W in Eq. (14):

1 Y
Wfll)J i(a.9") 2L2[§11+ Lopt20(— 1)1

i\ 2 1 2_ ~12\2712 — 5 ) 2:12
A

4°(q'—q)? (-
5“ ’Zil 232 211222 (q2 q’2)2 2
Nl ol i v R [a%a"?~(a" 9)%]. (15
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Wj(jz,)j,j can be found in the Appendix. Since the terms wii{ q'?) dj;+ do not contribute to Eq(13) because of the energy
d functions &(e€jq— €j¢) in the integrand14), Eq. (15) can be simplified:

i’

1 2 2
Wi, (0.0) = =gl fagt Lot 200d ~ 1)) ]( )(T) (16

For the same reason, the terms \AWf\]Z)] J(q,q’) from the Appendix disappear completely from the Boltzmann-Waldmann-
Snider transport equatiofi3):

sz S (T

(the difference from Refs. 41, 42, and 50 is explained by the above-mentioned difference in the matrix ¢ldinertguation
is quasiclassical along the walls and quantum in the transverse direction and requires, apart from ¢8hditnenof the two
guasiclassical conditions

L 1
17 27m

(le ) fdzq’[§11+§22+2§12(_1)”]’][”]’(Q')_ni(Q)]é(EJ'q'_6jq) 17

I/L<g’R? @°RL? or 1<qR. (18

Note that the simplicity of the collision operat(i7) is not accidental and is common to a wide range of problems with rough
surfaces and interfaces as long as the collision operators contain the érfargyion. A similar transport equation was used
recently, though without the interwall term, in Refs. 23, 28, and 34. The heuristic transport equa8pasd (17) can be
wrong even under condition®) and (18).

Ill. DERIVATION OF THE TRANSPORT EQUATION
A. Diagrammatic derivation

To derive a rigorous transport equation for particles with the Hamiltofiam finite films, we use the Keldysh procedure
and notations of Ref. 55 in combination with the averaging techrijire principle, we could use alternative diagrammatic
techniques’>® In multiband systems;,, these techniques require an inversion of large matrices. In contrast to scattering by
bulk impurities, these nondiagonal matrices cannot be inverted analytically, thus requiring numerical calculations from the
start. The use of the transport equation postpones the inversion problem to the last stage, namely to the stage of solving the
transport equation. This allows us to find an analytical dependence of transport coefficients on physical parameters.

In films with quantized motionR,); , the single-particle distribution is a matrix in the indiges

2 _ .
nj(tsg=—iy lm JG Tty rysty rexd —ig(s;— )]
t:tl:tz—o
X sin 7 (X, —L/2)/L]sin 7j " (X,— L/2)/L]d(s;— S,)d X, d X (19

The Fourier image of thequilibrium Green’s functiorfifjo,) without interaction V(7), is

G0 (w1015 05,02) = (27)38(w1— w) 801~ 0) 8- G (w1,G),
where thex components of the matri@}o) are
*1

0—€jqtputi0

(0)x = _ (1x1
G7  (w,q)= —2mi| ———nj(Q) | dw—€jqt p),
(20)

1+1
GV* " (w,0)= 2m<n(q) )5(w €iqt 1)

As usual, the transport equation is determined by the diagram in f&pg. 1

i (0.g0,9)= GV) (o,q0',9)+2m)?2 X fdFldFiszdféé(wl—wi)5(wz—wé)Vqul,qii;qujz,qu;
j1.01:d2005
X[GW) . é(V) 1o e PN A T 21
[ ”l(qu!wliql) jijz(wqulerqu) Jé]’(wzyqz-w;q )] ) ( )

where the indexV¥) in G(V) denotes th@onequilibriumGreen’s functiorwithout interactionAVanddFi=dwid2qi /(2m)3. In

Fig. 1, the indicesy,8 take the values-, while the numerical indices 1/ letc., correspond toj (w,q), (j',»',q’), etc. The
diagrams with an odd number of dashedattering lines disappear after averaging over inhomogeneities and are not included
in Fig. 1.
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(s
1 r 1 v 1 L, 1, 1, 14y v
FIG. 1. Nonvanishing diagramg) before andb) after averaging over surface inhomogeneities. The diageam exact;(b) is truncated
in the second order.

The second relevant diagram differs from Figa)lby having the bold line to the left of the interaction. To get the transport
equation, we multiply these two diagrams BY?)~* (the first one byw— €4+, the second one by’ — €/ + ), and
subtract one from another. Then the left-hand ldeS) becomes

(0= 0~ €jqt€g)G)j, (0.0;0',0"). (22)
After we separate slow and fast variables and perform the Fourier transform over the slow ones,
o+ q+ wtow' q+
6, (0.0 a)=G;, |00’ q-qi o, T8 =f exm(w—w’)t—i(q—q')s]ej—j,*(t,s; 2 9 atas
(23
Eq. (22) assumes the form
q+q’ . 4, oto’ qtq
(c?t-l—w-as-l—lﬂjjr)G”, (t,S,T, 2 y (24)
where we multiplied the equation byi and introduced the interband transition frequencies
1 ' 12
Q= m [] ]. (25

To get the equation for the distribution function from the equatior(‘j"f_?r+ , We integrate the equation over the fast frequency
variable:

q+q [ dote’) . wte gq+q
Finally, the LHS(24) of the transport equation reduces to a usual form
+
i+ q2q dst i) )n” ts% (27)

The same operations should be performed over the collision operator on the right-haflRH8lef the equation.

B. Collision operator

In the lowest order itV, we can disregar¥ in the remaining full Green’s functioéﬁjéj,(wé,qé;w’,q’) in the RHS of Eq.
(21, and replaceéjéj, by éf\zlj) . After this, the averaging over surface inhomogeneiti¢s[connecting the interaction lines
in the diagram of Fig. (b)] becomes trivial since the only term that has to be averaged is the quadratic combination of the
matrix elements o¥/ (10).
Close to equilibrium, the kinetic equation can be lineariZat) = G(®+ 5G. Using the definition of the Green’s functions
GJ(J.V,) via the construction operatoss',a, it is easy to show that, sind8) does not depend on interaction, all foii)

components 0BG are the samedG;;, = 5G|, = 8G;;, . Then the RHS of the linearized transport equath acquires the
form

Wij11,i(0,01,0" +0;-0,0") 86y (0,01 ;0",0’ + 01~ )G} (@',9") = G{(w,0)]
E j +Wjjijijz(q qi!Q:,L q)észj’(a’ q'w’,q’)G.R(w qi) , (29

j 12 (277)2
. 121111] (q’ ql!ql’q )5G“2(w g,0',q )G (w :ql)

WhereGjR(w,q) and GJA(w,q) are the usual unperturbed retarded and advanced Green'’s functions,



13 248 A. E. MEYEROVICH AND A. STEPANIANTS PRB 58

GM(w,q)= ! =P ! Timd(w—€g+p) (29
J ' w—€jqtu=i0 w—€gqtum ja™ K-

After we separate fast and slow variables as in 8),

w1twy; 0110

2 ' 2

8Gjj (w1,01;02,02) = (27)3gj; dw— w1+ wy)8(K—0;+0Qy),

the integrand in Eq(28) reduces to
Wi, (@t .0z ,a7)95:1,(do, a1 G (dg ,a7) ~Gf(ag ,a™)]

Wi, 00,079, (do. 0 G (dg )

iqiqd2

=Wiizi (a0 07 .07)Gj;,(do. Q)G (dg a7 ), (30

where q*=q+k/2, gy =qo* /2, andqy is the temporal transport equation for the Green’s functigp to the equa-
(frequency component of the 3-vectolg,q). tion for the distribution functionsin;;. : the integration of
The Green’s functionsGG*R (29) contain both singular the type(26) cannot transfornsimultaneouslyll the Green’s
(&type) and regulaf P(1/x)] contributions. Under the usual functions§G;;. in Eq. (30) into énj;, . In other words, it is
circumstances, when the equation contains only the diagonéhpossible to represent afiG;; in the form(31) so thatall
components of the Green’s functiogs , the regular parts the & functions in the equations get canceled out in the same
disappear from the differenc@].“—ejR and from the equa- uniform manner as in the case of purely diagonal equations.
tion, and the Green’s functions can be expressed via the de- At present, we can solve this problem for low-temperature

viation of the single-particle distribution from the equilib- degenerate syster’s—0 by using the method that we have
rium énj; : developed recent?)f? for the spin dynamics of the off-

diagonal single-particle density matnix  in spin-polarized
9jj(@,q)=2mi onj;(q) (v — €jq+ p). (31)  Fermi liquids.(The same approach to high-temperature sys-

Then the transport equation for the Green'’s function reduceTs,ems s less cqn'structive: iF leads to an extra int.egral equation
instead of a finite set of linear equations as in the case of

to a standard Boltzmann-Waldmann-Snider equatiod. degenerate systemsThe main difference from Ref. 58 is

This is not the case when the equation contains the offh Ref. 58 d i level h ¢ hich

diagonal Green’s functiong;;,, and the differencessjA :Eh:tinteerlactior?sdccgles?igtt\évg- evel exchange system for whic i

R . o . pend on the energy level and re
—G;, retain the principal part integral(1/x). duces to products of Kroneckers in level indicesj. As a

result, we performed the exact summation of all diagrams

C. Coupling to off-diagonal Green’s functions and calculated the Fermi liquid renormalizations to the trans-

The coupling to off-diagonal Green’s functio@s;, is POt equation. Our present multiband system with large indi-

important only when the separation between the energy |e\;:fesj requires inve.rs.ion of large matr!ce.s..Since the interac-
els ;. is comparable to transition probabilitiéy, Q. (j ~ tion depends explicitly on the band indicgsand does not
#j')=(w42mL?)|j2—'?|~W, i.e., for not very thin films. reduce to a product of Kronecker symbols in indigeshe

If Q;.(j#]')>W, one can neglect the off-diagonéG;  , explicit analytical inversion is impossible and the Fermi-
and all the difficulties disappear. The opposite c&5e (j liquid renormalizations cannot be calculated. ' '
#]")<W is effectively a single-band case and is also N the anomalolus regiofd ;. ~W, we ca}?n splg[gjj, Into
simple. regular R) and singular §) parts, gj;: =g;;, + 9;;. where

The coupling to off-diagonal components of the Green’sthe singular part contains thetype factorsé(w— €jq+ u).
function 6Gj;, in Eq. (30) hinders the transition from the Equation(30) for gﬁ, containsgjsj, only in the integrands,

4 4 = . \S 1
Wij1i,i(a" 01 101 ,07) g}y (do,da) P Go—cth G—enta) (32
WhereejiqE €;(q=k/2). Here the difference of the principal paR¢1/x) is of the order ofw—k-g/m—{;;, and is, therefore,
of the order ofW. Then the whole integran@?2) is of the second order i and is small. Since most of the terms wgﬁ,
in the same equation are of the first ordeMif this makes;;ﬁ,<gﬁ, . This, in turn, means thzgﬁ, can be neglected in the

integrandg(28) and (32) of the collision operator in the equation fgﬁ, :
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Wi ,5(@ 7,00 01078 (0o, DT 8(do — €0+ 1)+ 8(dg — ejg+ )]
+W,j111,2(q+,q1+',qf',q+)gf‘zjr(qo,q)GE(q5 a7 )
Wi,z (@,01 e g5 (do, q)G 1(Go Gy ). (33
Without the off-diagonal Green’s functimg;%gj, , all the 5 functions in each term would be the same, and(B@) could be
easily written on this single mass surface as an equatioarfgr using Eq.(31). With the off-diagonal Green’s functio

in Eq. (33), the terms contaidlifferent & functions. Thusgjsj, cannot be written consistently in the forf81) with a singles
function, but should contain a linear combinationadif theseé functions incorporating, therefore, all relevant mass surfaces

07} (0,0) =2 [40;{,(00,0) 8(dg — €+ )+ ANj;, (o, @) &(dg — g+ 1] (34)

with the “partial distributions”5n}ji,(q)56n}j ,(eiiql o/2— p;q). The full distribution function is
onjj (o, k)= 2| [5n;j+,(efa— wl2— p;q)+ 5n}j_,(6i}+ /2= p;q)]. (39

Finally, the kinetic equation becomes a set of equations for partial distribum}rﬁs:

k- .
(w—;q )5n' @=3 f Qg (k). 36)

where the mtegran@ (k,q;q) is equal to

JJJJ

”TW"JZJ (q Q1 vql q )5”
X 2 1oy, ()8l elg— €ig,)+ N, (A1) B €ig— €ig,~ w)]

+WJJ£]’J2(q+1q]J_r’qI’q )5nl+ (Q)G (6|q M ql) szijij’(q71q11q1 ) )5n],+2(Q)G ( M_w!qi)-

The equation for5n (09,9)= [6n .(do,9)]" is the Hermitian conjugate to E¢36) with k— —k, w— — w. This equation
should be compared with a standard kinetic equation which involves only diagonal states and can be written as a set of
equations for densities of particlé®; = 5n on each level:

(w—k—)an (a) 2 f Zn )ZQ“ (K,Q;0p) (37
with the integrand@ﬂi(k,q;ql),
W 75(0 00,0107 )E0N], (02) Oejq— €1 )+ 0N, (A1) g = €1 — )]
+ 0N (@IW;j5(a".07 07,0 G (€jq— .0 = Wiy, (A7. 01 .01 .0 7) G (€jg— w= w,07)].

D. Transport equation

Equations(36) and (37) are quantum kinetic equations with finite and k. For transport problems, we should consider
these equations in a quasiclassi¢ahd hydrodynamiclimit for the motion along the film(the motion across the film
remains quantizedIn other words, we should expand these equations in smafld w, and, for transport calculations, put
w=k=0 in the collision integralQ. Then Eq.(36) reduces to

k-q , d%q
w_W_ij')&\}jr(Q):Z f ﬁij/,jijz(q,%) (39
j1i2

with
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Qiiifi,=17Wij1j,i+(0,01,01,9) (6 + & ')EI 5”;“2((11)5[&((1)— 6|(Q1)]+W“'1,112((1,%'Q1-Q)5n}2j/(Q)

><GjRi[Ei(Q)_/Jvach]_wjzjijij’(qachaQ1aQ)5n}j2(Q)Gﬁ[Ei(q)_Myql]

and 5n;j+,= 5n;f,= 5n}j ,/12. In the same limit, the standard kinetic equat{8i) reduces to

(w——)b‘n (@)= 2 f o )zQJ, /(d,00) (39
with
Qiji:WJ'J1jij(q1qlvqle){2iWanji(ql)a(ejq_Ejiq)+5nj(q)[GjRi(EJq_/‘l“’q1)_Gin(ejq_M’ql)]}'

In the latter equation, the principal part integrals fr@ﬁ and—GjA, (29) cancel each other while thitype contributions are
1 1
the same, and we return to the same Waldmann-Snider equéti®nand (17) as the one that we used earlféf24°

k- d2 '
w—Wq)anjm):ziw; | Wi (@0 o (')~ oy (@]l (0)~ € (0" (@0

The transport equatiof88) is a set of integral equations in the partial densiﬁeﬁ, which describe the Green’s functions
6G;;» on a set of mass surfaces. This situation is typical for transport problems which involve the off-diagonal states. The main
obstacle to solving this set is a rapid growth in a size of the set with increasing néaferccupied minibandsg; . While
the standard Waldmann-Snider transport equai@® consists ofS integral equations for complex variabléa;= 5an , the
number of coupled integral equatiof®8) for 5n;j, increases aS®. This makes an exact solution for systems with a large
number of bands, as in the Boltzmann temperature range, practically impossible. For degenerate Fermi systems, the situation
is better: the energy functions 6(e;(q) — ) automatically reduce the integral equationsjito a set ofS? linear equations
atq=qje for a finite number of bandS. These equations can be solved explicitly even for a fairly large number of Isands
Calculation of transport coefficients, such as diffusion, mobility, or conductivityhould be done using the transport Eq.

(38) in which we can disregard the principal part integraIGF) ,GJA, ,
1 1

2 q J] Tiai’ (9, qlvqlvq)(6u+5u )2 5]’]],] (Q1)5(6|q flql)
1
”TZ f (2m)? | ~[Wij,(a ql,ql,q)én, i (Q)+Wpr0(a, 01,01,9) 8nj; ()]

X 6(€q— equl)

— Q) 5n“/(Q)— F-q6i; 6ij: 6(€jq— 1), (41)

where F is the external forcgelectric field and w is the chemical potentialFermi energy. The disregarded integrals

compensate neglected diagrams of the first ord&f, ibut with V expanded up to the second ordefirfThis compensation is
similar to the cancellation of Fermi-liquid renormalizations for Larmor frequencies of spin wakes(t
In degenerate systems, we look for the solutions in the form of angular Fourier harmonics on the Fermi surfaces:

N, ()= oni;,(6) 8 €iq— ). (42)

Then all the energy functions in Eq.(41) get canceled:

do, 2 Wi, (0, 001,COSX) (8 + 5) nj (61)
mE f !
P [W“ijijz(ql qj ,COSX)&'I (0)+WJ 2igiqi’ (qlqu ,COS)()5I’1” (0)]
IIQ“/5I’1;],(0)—FqJCOSt95”5”,/m, (43)

whereq; is the Fermi momentum on the Ie\del[qu+(77j/L)2]/2m=,u, THBL (9,91,91,9) becomesW“rJ2J (9,9 ,cosy)
with |g|=q; and|qg;|=q,, @ (or 8,) is the angle betweeR andq (or q,), andy is the angle betweeq andq; .
Only the first angular Fourier harmon&n'(l) of the distribution(42),
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5n (0)== 5n“ +2 5n]fs,)co§\se),

. . , g (44
W(x)= 5 W+ > Wcogsy), W= Zf W(x)cogsy) 5,
2 =1 0 2m
contributes to conductivity,
— i(1)
iy 2 -5n}j . (45
The equation for this harmonic has the form
1 (1 0) 0
Z,EJ (857+8,) 2 Wiiay (G, a) anjy = [WEY,, (05.050) oy 1+ Wi (G50 ) O]
112

If one uses the simplified transport equati@f), then the analogs of Eq&46) and (45) are the standard equations

—Fq;/m= E[W‘” (qj,0)8n 7 = Wi(q;,q;) onfY],

(47)

2
e

=_ .S5ntv

7= 2nF ; a;on;
with W (q;,0;) =W, (q;.95), nj=anl; .

I
E. Comparison with scattering by bulk imperfections lejijzjé(%’Qi)HNinlji(%_Qi)szjé(qi_qlmjljé!

Transport processes with scattering by bulk impurities al-

most never exhibit any anomalies related to the off-diagonajynereN; is the concentration of the impurities abtis the
terms inj. This difference between bulk-defined and wall- potentlal distortion caused by a single impurity. What is
defined transport should be explained. more, scattering processes by different impurities are often
Wall-defined transport requires averaging of surface inhoassumed to be independent, meaning that the particle wave-
mogeneities along coordinatgsz (11), which results in the lengthA <r;<L. This, in turn, means that the motion across
2D ¢ function 8(g;—q5), i.e., the average momentum con- the film is quasiclassical, and the discrete indices for the
servation law along the walls. There is no averaging ovemotion across the film should be replaced by continuous con-
coordinateX described by discrete indicgs Therefore, the served momenta, :
transition probabilitieg11) W; KRN contain terms both with

Kronecker symbols; 4; or Iy 2 originating from the terms

in energy that do not depend ok (a discrete analog of
momentum conservation fdt,), and the off-diagonal terms

orlglnatlng fromXP The latter terms are reSpOﬂSlble for Thengn (q) are rep|aced bﬁn(p) I] , and we recover

all anomalies. a standard classical transport equatlon We will discuss the
For bulk impurities, it is usually assumed that the distancgyuasiclassical limit for Eq(38) in more detail in the next

between the impurities;<L. Then there is an additional sybsection.

averaging over the impurity distribution across the film |f the number of bulk impurities on the thickness of the

which leads to an effective homogenization alof@nd the  film is not large, there is no averaging over the coordinate

momentum conservation law, i.e., to tAdunction over the In this case, one can neglect the off-diagonal terms in the

indicesj, transport equation only if the matrly;;, is diagonal. IfU;,

Wi i2i,i2(A1,61) = NiU (P =) U (P —P1) 8y,
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is not diagonal, one immediately encounters the same prolfrom films in an infinitely thick film limit. To get the classi-
lems as in the preceding sections for scattering by rougleal result, one should not only take the limit of very thick
walls, and the transport equation for thin films with impuri- films, but should also introduce some infinitely small bulk
ties assumes the anomalous fof@88). We did not find the  attenuation. Without the attenuation, the results strongly de-

analysis of this situation in the literature. pend on whether the film thickness is equal to an even or odd
number of half wavelengths, and a unique thick film limit
F. Quasiclassical limit simply does not exist. In this paper we disregard bulk attenu-

In general, one should be cautious when studying the quaation and some of the results for “quasiclassical” thick films
siclassical limit of thick films forballistic particles. There is retain residual quantum features of interwall interference.
always some constructive or destructive interference between The gquasiclassical thick film limiL>\ involves a large
direct and reflected particles depending on whether the quamumber of energy minibandS>1 with a narrow spacing
tum numbersj are even or odd. Without bulk attenuation, Q- =(7%2mL?)(j?—j’?) and large quantum numberg,
this interference does not disappear irrespective of how thick>1. The interband transitions— |’ are significant, accord-
is the film. Therefore, the situation is not “quasiclassical” in ing to Egs.(10) and (11), only for 1~|j—j’|<j,j’. We
a rigorous sense, and there could be a residual oscillatoiptroduce continuous variables as/L— py+K,/2, mj'/L
dependence on the level index even for thick films. This— px—Kk./2, and(};;, = p,k,/m with k,<p,. In the collision
situation is analogous to the following well-known paradoxintegral(30), we, as usual, negleat andk thus disregarding
in optics. Suppose one wants to evaluate optical reflectiothe gradient terms and replacing;, for small li—i'| by
from a semi-infinite space by using the results on reflectiordiagonalg; :

kp _.2 dzq, Nt 4 !
O.)_F gjj_l 5 ?Wjj’j’j(q!q g ,q)[gjrjﬁ(QO_5+M)_gjj5(ck)_f +,LL)],
(48)
9=9(do.9), 9'=9(do.0'), €=¢€jq, € =g

(in the LHS,p andk are already the 3D vectors, while in the RHS we still have 2D veajarad summation over discrete
variablej’). Now we can introduce the density E®1):

k-p . d*q’
(0)_ W) 5nj(Q):27T'? f WW“'j/j(q,q,,q,,Q)[tsnj'(Q')_ on;(a)]o(€jq—€jrgr)- (49

!n Wj; ,_j,j(q,q’,q’,q) (15) we should keep only the terni&6) that do not vanish in combination with the ener@function
in the integrand,

]
TP anj(@)—an(p),

(50)
2,12

poX H !
Wi /j(a,9")—=W(p,p") = W[gll(q,_q)+§22(q/_q)+2§12(q’_q)(_1)J+J ]

The last, oscillatory term With-(l)jﬂ/ violates the quasiclassical nature of this expression and describes the inherent
interference fomallistic particles reflected from the opposite sides of ftiéck) film which is mentioned in the beginning of

this section. Without interwall correlatiord;>=0, or when the averagingsummation over j’ makes this oscillatory term
disappear, we get the truly quasiclassical transport equation

( k.p) 2 i d3p' - ’ , , (pz /2)
- 5n(p)—mf (277_)3pxpx [£11(a" = a)+ {2(q" —a) ][ 6n(p”) — on(p)] 6 >m” 2m)’ (51)

The same equation appears in the presence of small residual bulk attenuation, which makes the interwall correlations irrelevant
for thick films.

In two cases, the complication caused by the oscillatory termk)(+j'§12 can be circumvented. The core issue is the
dependence of the correlation functigon the quantum numbejsj’. If the correlation function is a slow function ¢f, then
the summation ovej’ in Eq. (49 with W (50) makes the contribution from the rapidly oscillating interwall term with
(—1)j+j'§12 small in comparison to the intrawall terfi;+ {»,, and one recovers E@51).

If the wall-induced interband transitions are suppressed in comparison with the intraband scattering, the dependence of the
correlation functionf on the quantum numbessj’ reduces tosj;. . Then the correlation functiong(q' —q) effectively
contain thed functions§(q’ —q), and the summation ovgr becomes trivial:
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k-p C2m (&, , , , , p> p’?
O~ T | NP = zr | Gy PxPx L@ m ) 8 q7 = a) + 285"~ JLon(pT) = on(p) 16| = o -

(52)

A simple “quasiclassical” extrapolation for the oscillating interwall term:()”i'glz is to replace it byl,, cogL(py
—pII:

k- 27 d3 ’ 2 12
(w—%)én(phm—llf (sz)spip;Z[én<p'>—5n<p>]5(§—m—Z—m)
X{£12(a" =)+ £2Aq" — ) +2 cog L(px—py) 1419" — )} (53

A more accurate quasiclassical approach to the oscillatingquantum reflection All the scattering probabilities are con-
term in Eq.(50) for the Gaussian correlation function in the stants with the first harmonic equal to zero, and the summa-
whole range of parameteftsspecially wherR~L) is virtu-  tion overj’ yields

ally impossible. It is easy to see that transport beyond the

limiting cases(51) and (52) is dominated by particles with 3e2LY 73 v(z)—j?

low quantum numberf and the accuracy of the quasiclassi- o= 2 ) =
cal approach is relatively low anyway. SS+HLESHDn(0)+8A0)] =1 j2(14E))

(56)

i+S
IV. GENERAL ANALYTICAL RESULTS FOR TRANSPORT _ 6 (=100 £1(0)=Li(q=0).
COEFFICIENTS 1725+1 11(0)+{0) " ™' !

One of the difficulties in solving the transport equation is  gjince the terms with the smallgismake the largest con-
the large number of accessible minibargi#hich results in  tipytion to the sum, the contribution of the interwall tefin
a high rank of the matrix transport equation. The transporis an oscillating function of the total number of the occupied
equation has simple analytical solutions in three limitingminihands. The interwall term= rapidly declines with the
cases of narrow clearancé®/L > 1, single-band occupancy, increase inS and disappears in the quasiclassical lirgit

and long-wave particlepR~RSL<1. In these cases, the 5.1 The typical behavior of the conductivity (56) at peR
difference between the standard and anomalous equationsgRg| <1 for moderates is illustrated in Sec. V D.

(46) and (47) is insignificant, and one should analyze only  fqr the intermediate values &, the contribution of in-

Eq. (47). In the first case, the gaps between minibaadare  (erywall correlations should be studied numerically for par-

large in comparison to the wall-induced perturbation, and thjcyar forms of the correlation functions of surface inhomo-
collision-induced interband transitions are ineffective IN geneities.

comparison with the intraband scattering. This makes thé
matrix W;;, diagonal and simplifies the oscillating interwall
term inWj;, (16). Theno is determined by the angular har-
monics of the correlatorgik(qj—qj’) on the Fermi surfaces

I

V. TRANSPORT COEFFICIENTS FOR GAUSSIAN
CORRELATIONS OF SURFACE INHOMOGENEITIES

€jq= M A. Parametrization of equations
In this section we supplement general expressions by ana-
o, L\4 v(z)—j? lytical and numerical solutions for Gaussian correlations of
T=7€ P Ej: j4[Y(°)—Y§1)]’ surface inhomogeneitie®). For numerical calculations we
] i . . . 01) .
(54) need to rewrite the equations and matrix elemwj(tﬁj ot in
0,1 _ 0, 0, 0, dimensionless variables similar to those used in Ref. 40.
Y(OI=yO(z)= /001 790+ 249"

The 2D density of spiri—particleij and the longitudinal
Fermi momentuny; in each occupied minibandare given

The dependence on the interwall correlatiahs is trivial by the overall chemical potentigFermi energy uu= e, as

and remains the same even in the quasiclassical limit.
In the case of single-band occupancy, the matrix equation

becomes scalar with the result the same as Egs.without N; :qj2/27r, (mj/L)2+ qj2:2m,u, (57
summation:
while w is determined self-consistently by the total density of
(L)t w1 - particlesN,

S

For the long-wave patrticles, the 2D scattering is almost N=E N =mSu/7m— 7S(S+1)(2S+1)/12L.2, (58)
specular irrespective of the details of the scattering potential T '
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=0,3,13,34,70... . The number of occupied levElfor
the given value of=2NL?/ 7 is the integer part 0f*4(z),

S=Int[\»]=Int[VZ/S+(S+1)(25+1)/6].  (61)

v=2mu(L/m)?,  z=2NL¥7m=q’L%7? Computationally, it is more convenient to fix the number of
(59)  bandsS and to determine the interval of the valueszadind
v, which corresponds to this number of bar&ls
ZEE zj=2N L2/ 7. The transport equatio(6) with dimensionless distribu-

tion functlonK , and transition probab|I|t|e\3!VJ(]0 ]1)1, ,

whereS is the number of occupied minibands. Insteaguof
gdj, andN; we use dimensionless variableandz;,

Then Eq.(57) can be rewritten as 3

on'P=— —ZFL K
i T 4 AR

z=v—j? z=vS-S(S+1)(2S+1)/6.  (60) . AU

62
- . o (0,1 271°R? (0,1) (62
All the minibands with the indice§>S are empty,z;-s Wi i (i ,a) = W—W” i’ (zi,7),
=0. The changes in number of occupied minibar@ls
=1,2,3,4,... occur ar=Zg, Zg=S3—S(S+1)(2S+1)/6  reduces to the set of dimensionless linear equations
|
1
L2 E [W}, o (20208 8= 3 il WiG (21,20 8150+ Wi (21,20 8]
|_2 ,
—Im<12—j'2>x}j,+@5ﬂéw (63
while the conductivity is described by the dimensionless funclida, R/L),
2e?L2 R R 1 .
_ = Sl=—Z e
O’—WH(Z,L>, H(Z,L) 4§ \/ZK”. (64)
In the same notations, the standard transport equéionhas the form
R? N A
_ ) 0) —
\/Z_J_ffg [\Nf] j j(ZJ’ZI ki M] i (zj,7j) K], Kizkij’
2¢?L.2 ./ R\ ~[ R 1 (65

Further calculations require specific expressions for transition probab\?\tiélsl), (16), and(62).

B. Transition probabilities

Though it is possible to perform the computation with all parameters in the correlation fung;io}p, it is worth limiting
the number of independent parameters. We assume that all the intrawall and interwall correlatigp, edithe same, while
the average heights; of inhomogeneities are differerif, = a;, 12, though of the same scale

Zij=2maj|I*RPexd — (q' —q)°R?/2]. (66)
Then the harmonch](]O })] ;,Zj) (11) in the simplified transport equation E(@5) are equal to
WD =[ag+agy+2a5(— 1) 1] j'ZQ(Ol(Z zj). (67)

I

The zeroth and first angular harmon'@éo’l) of the exponent in the correlation functidy (66) are expressed via hypergeo-
metric functions;F, in the same way as in Refs. 42 and 40:

Qé°~1><zi,z.>=exr{ (Vzi—2))? 2L2

: (68)

ZRZ)

1F1( 2,— 27z L2 )_1F1( 2,—2\Z;Z 2

In the next subsection, we compare transport coefficients given by the full transport eq@atiand its simplified version
(65). Since the full equation is already too cumbersome, we assume, for this particular task, that all normal and supplemental

intrawall correlations’;; ,Z;; are the same, and that there are no interwall correlations:

{11= {op= L11= L= 271 °R? exd — (' —Q)?R%2], {1p=15=0 (69

[the interwall correlations are analyzed in Sec. V Fhen the transition probabilitiegljjijzj,(zi ,Z;,C0sy) (112),
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\7\/”1]2]/:[(_1)J+Ji+12+]/+ 1]eX[[—(Zi+Z|—2\/ZiZ|COSX)7TzR2/2L2]

S 1 (i2_|2)25jj1 o (1—5“;)”1
XY\ 16 —(I°=19) =

_Zzi+z|—2\/ziz,cosx [
x(jzg. - (51570 +(i2-1?) _(1_5121')1'2],)
2U2T 4 74 7 — 2z z,cos ¥ E
1 (i2=1%)2zzsir? x
+— 8ii1 8 i1 (s (70)
4 (Zi+Z|_2\/ZiZ|COSX)2 ”1 12!
have the angular harmoni&ﬁ}?;ﬁj,(zi Z),
1
WB  —[(—1)ititi2ti 4+ 1](12—12)2
iiqial
-2 sy . P
o] [0 A aiDiia| (120, (A= 0,00al") 30
0 i2_|2 H_Z_jz i2_|2 j/2_j§ 16
iz 5__/(1—5121/)1'21" s (1—5111)J'Ji+ %5 9" 2, o 4tZ
1 leﬂ_ Nk jiz—jz 212 JoT) > ,
(72)
) 27 exf — (z;+2— 2\/z;z,cos x) m*R?/2L.?] dy
QP (z,2)=2 cofy 5=
0 (zj+2—2\/z;z,cos x)“ 2m
|
[both Greek indicesy, B take the valueg0,1)]. The hyper- and either for
geometric integralQ{ are given by Eq(68); integralsQ, 2
cannot be expressed via special functions. S>§2, ﬁ§’2~ 1 (74)
C. Transport in the anomalous region or for
This subsection illustrates the role of anomalous off-
diagonal terms in the transport equation. We performed nu- L2 R an
merical calculations for conductivity on the basis of the full S<@1 FS ~1 (79)

transport equatiori63) and (64) and the standard equation
(65) for the same values of parameters. We used the transPnly then is there a noticeable difference between the full
tion probabilitiesV with the Gaussian correlation of surface @nd simplified transport equation. N
inhomogeneitieg3) assuming that all the intrawall correla-  The computations with large values $fare very difficult
tors are the same for both walls, and that there are no intefince the number of equatiof3) grows as &°. To see the
wall correlations. For the full transport equation we used theoff-diagonal contributions at moderae we should consider
transition probabilitieg70), and for the simplified equation noticeable amplitudel though within the limits of the per-
we used Eq(67) with a;;=a,=1, a;,=0. turbation theory(8), I<L,R. The conditions(74) and (75)
Let us specify the range of parameters where one shoullreak down both at smai~1 and at very large values &t
expect noticeable off-diagonal contributions. The off- Since the number of occupied barflss a monotonic func-
diagonal terms should be retained whegp ., ~W, i.e., ac- tion of the density of particlesl (or dimensionless variable

cording to Eq.(68), when z), the difference between the full and simplified transport
) equations can be observed only at intermediate valu&s of

12R?}3 1 (or 2)

1~ (72 :

L* 1+ (RIL)3(S?—j?)%> This effect is illustrated in Fig. 2 fom;;=az=1, a;,
where we disregarded all numerical factors and approxi-zo’ R/L=0.5, and the amplitude of mhomogen_elt_lb(sR
mated ;F,(3/2,2—x) as 1[1+x¥?]. The differenceS? =0.2. For these values &t andL, the largest deviation of

—j2 is either of the order of? or of the order ofS. If S? the full fu~nctionH(z,R/L) (64) (bold line in Fig. 3 from the
—j?~$S?, then Eq.(72) is always violated();;,>W, and we  functionII(z,R/L) (65) calculated from a standard transport
return to the simplified transport equation. Equatid®) can  equation without off-diagonal term@lotted ling should be
be valid only for observed atS~13 when the number of equations exceeds
4000. After that, the two curves should start to converge
?—j°~s (73 again. Since all the coefficients in the equations are compli-
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FIG. 2. I1(z,R/L), Eq. (64) (solid line andﬁ(z,R/L), Eq. (65) (dotted ling, as a function of particle densig=2NL?/ 7 for R/L
:OS andR/I :5, a]_l: 322: l, alzzo.

cated hypergeometric integrals, memory limitations allowed D. Analytical results: Quantized motion
computation only up toS=10 when the anomalous off-

i I ibuti ded 10%. To shift th imal In this subsection we present analytical results for the
lagonal contribution exceede o- 10 Shitt the max'm‘”‘conductivity for Gaussian correlation of surface inhomoge-
effect to smaller values 0%, one would have to perform

; ; " . S neities outside the anomalous regiofi@) and (75) in the
computations for inhomogeneities with larger This, in I .
. same limiting cases as in Sec. IV B, namely, whh>1
turn, would lower the accuracy of all expressions. R<1 f bit ber of ied bar@igth
Small spikes on the bold line correspond to filling of Of Pe oran arbitrary number of occupied ba €

higher energy bands with the increase in the number of paf=€™M! momentump§.=277N/S+(77/L)2(S+ 1)(25+1)/6]

ticles z. It is not clear why the solution of the simplified @nd for the case of single-band occupancy.

transport equation does not exhibit these singularities for the 1N the first caseR/L> 1, both walls are very close to each

same set of parameters. In general, our analysis of the sinfther, and multiple scattering occurs within the same inho-

plified equation in Ref. 40 showed that the acuteness of theg@ogeneity. In this case;(m°R?/2L%)>1 (except, maybe,

singularities strongly depends on the vaRi (see below for the highest miniband in which the number of partictgs
Figure 2 demonstrates that the conductivity in the anomacan_be small and the exponents eixp(m*R/2L%)(\z;

lous regiong74) and(75) differs significantly from its value — \/Z)Z] in functions ng‘l) (68) are negligible for allj

given by the standard transport equation. The data in Fig. 2’ and can be replaced by the Kronecker symipl. This

are the first exact transport computations for the anomalousieans that the interband transitions are effectively sup-

region. pressed, and the set of equatidfs) is diagonal:
|
2
Ki=— - - \/Z—] . (76)
I 2R%jY(ayt+agnt2a59),F1[3/2,2,- 2w R%Z; /L]
Then the conductivity65) is equal to
—Zeszﬁ RIL), Ti(zRIL)= L Sﬁ) % 7
o=z NRL), R = gete Fayr2a,) & (Fi32.2- 222Re, 1L} (79

For all terms in the sum, except maybe the last one, for whicmay be small, the argument of the hypergeometric
function is large, 2°R?z;/L?>1. Since

221, Fi(2n-1)/20—x2)= 1) 78
x*>1, Fi((2n—=1)/2n,—x )—W. (78
the conductivity(77) reduces tdcf. Eq. (54)]
5 2R S(z)-1 [v(z)—j2]5/2 L2 z
I(z,RIL)y= ———F— T 2 ) +— s (79
aptagpt2a;,| 2L =1 i 8R 3

st

1&{5,2,— 2mR%zg/L?
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FIG. 3. ﬁ(z,R/L), Eq.(65), as a function of particle density= 2N L?/ 1 for R/L =50, a;;=a,,= 1. Solid line:a;,=0 (quantun); dotted
line: a;,=0.75 (quantun); thin line: a;,=0 (quasiclassical

Even for not very largé&, the second term in the square brackets is small in comparison with the first one, while the sum itself
converges faster than the suiri/j*= 7%/90=1.082 and is squeezed between—1)%? and 1.082¢— 1)°2 Therefore, it is
sufficient to leave in this equation only the first few terms in the sum,

1 7? R [v(2)—41%% [w(2)—9]°"?
— | [w(z)—1]°2+ + +

H(zRL)~—mM7— —
( ) aytas+2a, 2% L 16 81

(80)

This ﬁ(z,R/L) is a smooth function of the number of particles 2NL?/ 7, and the singularities in the points whee
changes by Jan appearance of a new term in the s(8@)] are not noticeable.
In the case of single-band occupan®&p), the general result for conductivity is similar to E¢g7):

2e?1.2 L2

~ ~ Z
o= "3z MzRIL), T(zRIL)= .

8R*(ay1+ax+2ary) 1Fi[3/2,2-27°R°z,/L°]

(81)

The functionII(z,R/L) (79) is plotted in Fig. 3 forR/L =50, a;;=a»,=1, and two values od,,, a;,=0 (thick line) and
a,;,=0.75(dotted ling. The intermediate line presents the quasiclassical resulis,er0 and the same valug/L. All the
curves, in accordance with E¢r9), are simple monotonic functions of the number of particieghe effect of interwall
correlationg a;, in the denominator$77)—(80)] is noticeable, though trivial.

In the second limiting caspR<1, the parameterlé\/z—j/L<1, and all the hypergeometric functions in coefficieQt$68)
are equal to 1. Then the set of transport equati@as reduces to

2R2j2 S(2) o
\/Z_j:_?’(j > j'antant2a(—1)1. (82
=

After trivial summation, we get

= SLZ\/Z—j 83
M T RZS(S+ 1)) (ays+ax) (2S+ 1)+ 6a,(—1) 79 (83
and the dimensionless conductivii§5) becomeqcf. Eq. (56)]
ﬁ( R) 3L2/4R2 1 2 yz-j2
Z,~|= - r=pe
L) S(2)[S(2)+11[2S(2) +1] aytay 1 j1+E|]
(84)

6 (= 1)1*%ay,
i 2S+1 a;tan

i1l
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FIG. 4. ﬁ(z,R/L), Eq. (65 as a function of particle density=2NL?/7 for R/L=0.01, a;;=a,,=1 The results fom;,=0;0.75 are
indistinguishable.

This function is plotted in Figs. 4large values ofS) and 5 Equation (84) for ﬁ(z, R/L) can be simplified aS>1
(small S) for R/L=0.001, a;;=ay=1, and two values of andZ.~2S%3 as

the interwall amplitudea;,=0 (solid line) and a;,=0.75
(dotted ling. Figure 5 presents the blow-up of the initial part [ R 2 2[4 (z2—7)/S?
of Fig. 4 for small numbers of particles(small number of ( , )— 7 [2 (2-29/52)]
occupied state§) on a different scale. 16R%(a11+822)S(2)

ZE_

Equation(84) contains the number of filled level(z) (85)
explicitly in the denominator. In the pointg=2Z¢=S° 1+(z—Zg)/S%(z) €2L* 1
—S(S+1)(2S+1)/6 the number of level$ increases by o= 8725(2) IR 2yt 8y,

AS=1 and we see sharp drops Ih(z,R/L). The relative
amplitude of these singularities should decrease with increasms function still contains sawlike singularities in the points
ing S as 16. Also, with increasingS, I (84) becomes less z=Zg whereS(z) increases by 1.

and less dependent on the interwall term wat}y and the
solid and dotted curves in Fig. 4 (larg®) merge. The dif-
ference between these two curves at si8dlFig. 5 is quite
large. Later, we will discuss the effect of interwall correla- In the case of Gaussian correlatidi6), the quasiclassi-

E. Analytical results: Quasiclassical motion

tions in more detail. cal transport equatiofbl), (52) has the form
| | | | |
18k a2 =000 — -
12 =075 -~
1.6 :' 4
] 1
e Lo} ; .
0.8 T::
06 If
0.4
0.2 3 -
0 ! ! ! ! ! !
0 20 40 60 80 100 120

FIG. 5. Initial part of the curve from Fig. 4. Solid line;,=0; dotted line:a;»=0.75.
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FIG. 6. ﬁ(z,R/L), Eq.(65), as a function of particle density=2NL?/ 7 for R/L=0.001,a,;=a,,=1, a;,=0. Smooth line, quasiclas-
sical calculation(89); sawlike curve, quantum calculatidB5).

1 R?
[K(n’)—K(n)]1F1<§:2;—27r2fz Vz( 7})2(77’))

3 R2 ’
—[x(n'>+K<n>]1F1(§:2:—2w2p |
(86)

L2 / \; 2R2
?ﬂ:j dn’nz”l'zexf{_W_z[\/z(n)—vz(ﬂ’)]z
(a o 2L

where{a} is an appropriate combination of amplitudag  €Xxact proportionality coefficient between the cutoff value
from Egs.(51) and(52), »=pL/7 is the dimensionless mo- (Px)min @nd 7/L cannot be guessed from the quasiclassical
mentum, the number of particle$z) = v— 5? with momen- equations. We can either omit this coefficient or take it from
tum 7 is the quasiclassical analog of the discrete the c;)mparison with the exact quantum res@d®), 7y
=2N;L% 7, and«(7) = — m*125n(7)/FL® describes the de- =6/7":

viation of the distribution function from equilibrium. In these

notations, the conductivity is 2e?L.? me’l? L 1

o=z PR RIL)= 2= —70 PER® aytag,’

2e?L2? - ~ 1 (W 89
o= fipeL L), Ti=— [ ()2, (89
(87) This curve is presented as a bold line in Fig. 6 RIL

=10"3. The sawlike thin line presents the exact quantum
In the limiting casepeR~7R\v/L<1 andS~+v>1, expressior(85). The highest values af in this figure corre-
as in the corresponding quantum case, the interwall correspond to more than a hundred occupied bands. At even
lations vanish from the equation, and the proper combihigher values of the number of particles the inequality

nation of amplitudes is{a}l=a;;+a,. The arguments PrR~RSL<1 will be violated, and the quasiclassical and

2m?R%\z(7)z(5")/L? of the hypergeometric functions are guantum curves will diverge.
small, 1F1(1:2:0)~,F,(3:2:0)~1, and In the opposite limiting casR/L>1 andS>1, the ex-
y 1M1\ 24, ~1Fi1\2: 4, ~4,

ponents exi{—7°R/2L2)(\z;—/zj:)?] with j#’ in Eq.

312 1 \/m (86) should be neglected in comparison with the ones with
K(9)=—703 ——— —37. (89 j=1i'. The same is true for hypergeometric functions. Then
2R a11+ a22 /i

the only important terms with€1)I*i" in Egs. (51) and

The integral(87) for the functionﬁ(pFL,R/L) with «(7) (52) are eqlAJaI to 1, and the proper combination of the am-
(89) diverges at smalp as 1p. This divergence is natural: plitudes is{a}=a;;+a,+2a;,. The solution of the trans-
there is always a small number of particles with momentadort equation has the form

parallel to the walls and, therefore, infinite mean free paths.

This leads to a formal divergence of the integrandpat R 1 Z*(7)

—0 and requires a cutoff at smatl,. The cutoff parameter L ajtant+2a;, 7

is determined either by bulk scattering or, in our case of

ballistic particles without bulk attenuation, by the minimum The integral87) also diverges at small as 1p>. The quan-
momentump,~ /L. Since this is a quantum cutoff, the tum cutoff 7.,,=(30/*) Y yields

k()= —v2r™
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FIG. 7. ﬁ(z,R/L), Eq. (65 as a function of particle density=2NL?/7 for RIL=0.5, a;;=a,,=1, and five different values di,
=0,0.5;0.75;0.95;1.0.

2e?L2 . depend on the interwall correlatioas, in the same way as
o=—zz H(PeR,RIL), on the intrawall ones. In agreement with this simple expla-
(90) nation, the conductivity at large values BfL is a mono-
~ 1 (@\% L*Rp tonically decreasing function &,,, Eq. (79) for all values
I1= 45 (5 ap+agt2an, of S, and the correlation amplitudes enter in the combination

) ] o aj t+ajt2ay,. This result is illustrated in Fig. &he solid
This curve forR/L =50 anda;,=0 is presented in Fig. 3 jine corresponds tay;=az—1, a;,=0; the dotted line cor-
(thin line). The divergence between the quantum and qUaSifesnonds ta,;=ay=1, a;,=0.75). Note, that in this case
classical curves is caused by a choice of the cutoff parameter | o .nd the “quantum” interference effects for inter-
and is deceptive. The cutoff parameter reconciles E6) )

with the main termv®? in Eq. (80). As a result, the relative wall collisions are smaller than classical.

difference between the quasiclassical and quantum curves I_n_the opposite case ®/L<l’ the §,2) coordinates of
: . ) . . collisions with the opposite walls are separated from each
decreases with an increasing number of partizeshile the : X .
T other by a distance much larger than the size of the inhomo-
absolute value of this difference goes up1@€.

. . . ) . . egeneities. Therefore, the consecutive collisions are, on aver-
For guasiclassical calculations in the intermediate rang

one can use Eq53), which reproduces the limité9) and age, uncorrelated even if there is strong interwall correlations

(90), and provides a good approximation in-between. As itOf Inhomogeneities on the scake In this case, the depen-

was mentioned earlier, the accuracy of the quasiclassical aﬁ%eenc;e Sgtitgr?sln?i:\év%Lforéigl()t%ﬁ ?Sh?ﬁ(led Sllt?:pﬁgﬁtrl:rrr?rzase
proach in this intermediate range is low. q : y P q

A~L when both consecutive collisions are within the same
guantum “reaction zone” and, obviously, interfere with each
other. Since the typical values of the wavelengtt 1/pg

The effect of interwall correlationa;,#0 on conductiv- ~L/S, the interwall correlations foR/L <1 should be no-
ity is determined by the oscillating term-(1)! *1'a,,in tran-  ticéable only for smalB. This situation is illustrated by Egs.
siion probabilities(16) and (67) and strongly depends on (84) and(85) for pR<1. At largeS (Fig. 4), the contribu-
RI/L. tion from the interwall correlation amplitudse , has a purely

In general, the correlations of inhomogeneities affect the?Scillatory character and vanishes completely from the equa-
motion of particles either as a result of interference of conlions after the summatiofaveraging over the energy levels
secutive “classical” collisions or as a result of a purely |’ WhenS is small (Fig. 5), the summation ovej’ is in-
quantum multiple scattering on the scale of the partidesufﬂc.lent. to .mask mt_erwgll corre[atlons and the mtgrwall
wavelength. While the intrawall correlations are importantcontribution is an oscillating function dé: the dotted line
only for the second effect, the interwall correlations can ap{812=0.75) is either above or below the solid line
pear, depending on the parameters, as a result of both effect§i2=0), depending on the value & At largerS (Fig. 4),

The consecutive scatterings from the opposite walls aréhe dotted line becomes indistinguishable from the solid one.
correlated only to the extent to which the inhomogeneity Away from these limiting cases, the contribution from
&(y,,2,) in the place of the second collision is correlateginterwall correlations to the scatterlng probability is charac-
with the inhomogeneit¥(y; ,z;) in the place of the first one. terized by the factol,,(—1)I*}" without any general re-
If the walls are very closeR/L>1, the {/,z) coordinates of strictions on relevant values ¢fj’. The resulting effect can
both collisions are close to each other, and both scatteringe, depending on parameters, constructive, as in(Eg),
processes occur on the “same” inhomogenéifythe inho-  destructive, or mixed, as in Fig. 5. The destructive interfer-
mogeneities on the opposite walls are correlpt@then the ence is illustrated in Fig. 7 for five values o,
transport coefficients in the second order in scattering shouler 0;0.5;0.75;0.95;1.0 and an intermediate value RIL

F. Effect of interwall correlations of inhomogeneities
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=0.5. For thisR/L, the singularities in the points when the Boltzmann equation with an extra condition of the smallness
numberS of the occupied bands changes are not well pro-of the wall corrugation. As a result, the transport restrictions
nounced and are even more suppressed by interwall correlas Ref. 25 are equivalent to supplementing our E8), |
tions. Ataj;,=1, the effect of interwall correlations can be <R,L, by a strong extra conditiopR> S which is similar to
anomalously large. The kernel of the transport equation, i.ethat of the limiting cases in our Secs. IV and Re>L. This

the transition probability?V, contains the correlation ampli- means that Ref. 25 completely misses the anomalous region
tudes in combinatiora,;+ay,+2a5,(—1)171'. If a;,=1, and operates with the matrix eIemer_ﬁfSla that coincide

this kernel is zero for certain values pf thus strongly af-  exactly with our Eq(10) if Eq. (10) is simplified outside the

fecting the solution. This is reflected in a rapid increase ir@nomalous region by using?j?+q®=7%'2+q'2. Trans-
conductivity whena;,— 1. port calculations in Ref. 25 for the limiting cas&>L are

performed only for one and two occupied minibands (
_ _ _ =1;2) and aremuch less general than our analytical and
G. Comparison with other recent transport calculations numerical multiband results of Secs. IV and V for an arbi-

Recent advances in nanotechnok)gy' quantum We”st'rary relation betweeRR andL. Reference 25, in contrast to

etc_, brought into being numerous pub“cations on transporpreVious Ca|Cu|ati0nS, contains the interwall term in the ma-
in  ultranarrow  channels  with  rough  bound- trix elements(2.15; however, the analysis of the effect of

ariesto-23:25-32.3440-42.505L.8 these, only Refs. 23, 25, 28, interwall correlations on transport is missing.

and 34 have quantum expressions for transport coefficients The authors of Ref. 28 used tiematrix’’ for scattering
via the correlation function of surface roughness that can b8y one random rough wall in order to derive the quasiclas-
compared to our previot&“*2and current results. sical boundary condition for the distribution function. The
First, this work is the only one that reveals and exploresauthors solved the quasiclassical Boltzmann transport equa-
the anomalous quantum regime for the transport equatioﬁl_on with this bOUndary Condltlon, and calculated the conduc-
All previous publications use a standard transport equatiorfivity (the low-momentum cutoff, in contrast to Sec. IV E,
Second, we present a systematic analysis of the effect d¥as fixed by impurity scatteringThe transition to the quan-
interwall correlations on transport. tum equations was achieved by replacipg by 7j/L and
Away from the anomalous region and apart of interwallSummation ovej instead of integration. This procedure ef-
correlations, our resuli84) for long wave particlep-R<1  fectively replaced the inversion of matrices when solving the
ata;»=0 coincide with Eq(13) of the first Ref. 23 and Eq. quanFum m_amx transport equathn by quant|z§1t|on _Of the
(3.13 of Ref. 28. Both papers do not contain many analyticalclassically inverted operator. This approach is valid for

or numerical results beyond this limit. Note that the caseP’rR<1. In the presence of interband transitions, the results
peR<1 is not sensitive to the particular form of the corre- based on Ref. 28 should be much less accurate. In addition,

lation function and iS, effective|y, the case @type correla- the method in Ref. 28 cannot describe the effect of interwall
tions (4) and quantum reflection. correlations or the quantum transport equation for the

Fishman and Caleck replaced the quantum problem anomalous region.
with random boundary conditions by a problem with random
bulk Hamiltonian. The exact mapping is achieved by our VI. SUMMARY AND DISCUSSION
Hamiltonian(7) with the matrix element$10). The authors
of Ref. 23 choose a much simpler Hamiltonian with the ma- We performed a rigorous diagrammatic derivation of the
trix elements that correspond to the first term in Eq€)  transport equation for particles in thin films and narrow
(with one rough wa)l. This turned out to be a good model: as channels with random rough walls. Together with our tech-
we demonstrated in Sec. II, only this part of the exact matrixiique of mapping of a transport problem with scattering by
element contributes to the Boltzmann-Waldmann-Snidefandom surface inhomogeneities onto an equivalent bulk
transport equation$l3) and (17). Therefore, the transport Problem, these results present a consistent approadfato
equation of Ref. 23 was the same as our truncated equatiofi§tic) transport between walls with slight random roughness.
(13) and(17), though with inhomogeneities on only one wall The main finding is that the standard transport equation
and, therefore, without interwall terms. Thus the authors ofails when the distance between quantized energy levels for
Ref. 23, might, in principle, obtain our analytical results out-theé motion across the filni);; is comparable to the wall-
side the anomalous region and/or numerical results of Reinduced effective perturbation 4./ In this anomalous quan-
40. The quantum transport equation for the anomalous regiotum resonance region, the equations become more compli-
or interwall terms cannot be reproduced by the method ircated than and differ from those for scattering by bulk
Ref. 23 because of the simplified mapping of the boundarympurities. This difference is explained by a peculiar opera-
problem onto the bulk. tor form of the wall-induced effective perturbation. We ana-

Kawabat&® analyzed 1D channels with rough walls with lyzed the corresponding range of parameters and determined
the help of “adiabatic” wave functions ¥ the magnitude of the anomaly by calculating the mobility of
~explqy)sin{mj[x+L/12— &(y) /[L—&1(y)—&x(y)]} (in  degenerate particles for the Gaussian correlation function of
the notations of our papemithout specifying the “adia- surface inhomogeneities.
batic” conditions. The use of such a wave function requires In this anomalous range our previous coordinate
a slow variation of shape along the channgR>j,jl/L. transformatiof’~*?should be modified to make the Jacobian
Though these conditions were sufficient for calculation ofJ=1 and the perturbation operators Hermitian. This change
the matrix elements and the reflection coefficient, transporbrings unusual supplemental correlators of surface inhomo-
calculations in Ref. 25 required use of the perturbativegeneities into equations. Outside of this range of parameters,
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our original transformation leads to accurate results, and theidual constructive or destructive interference between the

supplemental correlators disappear. particles reflected from the opposite walls irrespective of
Inside this special quantum range of parameters, the efiow far apart are the walls. In this sense, the truly classical

fective transport equation with wall scattering is extremelytransport results for thick films should involve finite bulk

cumbersome. Beyond this range, the transport equation fattenuation.

particle scattering by random rough walls is essentially the The developed transport formalism provides a starting

same as for scattering by impurities and is relatively simplepoint for a study of the interference between wall and bulk

According to Egs.(73)—(75), the anomalous region corre- scattering processes.

sponds to a moderately large number of occupied stfes

guantized finite motion across the film, when ACKNOWLEDGMENTS
I2S#LR~1, S>LZR?, I<RIL This work was supported by NSF Grant Nos. DMR-
or 9412769 and DMR-9705304.
IS¥2R/L2~1, 1<S<L?%R? R,L>I>R?L.
This anomaly can be best observed for not very small ampli- APPENDIX A: TRANSITION PROBABILITY
tude of surface inhomogeneitiés Equation (11) provides a simplified expression for the

. In addition to solving the transport equation with Gauss-t;ansition probabilityW, 1, ./,
ian correlations numerically in a wide range of parameters,
we obtained analytical expressions for the transport coeffi- , ,
cients in the limiting cases of long wave ballistic particles <Vq111 qlllvqllz daiy )e= (2m)? llliizié(%’qi)g(%_%)'
peR<1 and very close wallk/R<1 for both quantum and i e @
quasiclassical motion in the direction perpendicular to th Th% full expression has the fori/=W"+ W, where
walls and an arbitrary form of the correlation function. Wi j1j,i,(d2.61) is given by Eq.(11) if the interwall corre-
The effect of interwall correlations of inhomogeneities on
opposite walls is nontrivial. Depending on parameters, the
interwall correlations can either decrease or increase particle 9 (= de
mol_aility. Someti_mes the effect of interwall c_orrela_tic_)ns isan 7 (a)=&(q)é(—q), &(q)=qge - J &(aq) —,
oscillating function of the number of occupied minibarfls qJ1 a
depending on whethe® is odd or even. The effect of inter- (A1)
wall correlations disappears for lar§except the case of the . ~ o~ .
ultranarrow clearance between the walls. exist and are real. If,={,,=0, one should disregard the
The quasiclassical ballistic transport in thick films canterMZ11l2,/\Z11¢2,in Eq.(11). The second part of the tran-

retain certain quantum interference features related to a resition probability, WJZJ i .(q1,097), has the form

lation functionsZ,, and?»q,

di-[exai]l g’
(2) —
w 2m’L?  (q;—

X( L o) st
L 4 (91— 9qy)? By (A1 ji1e-ig Jai

LI (¢3-q;)? BNCELIRIBE )
AT T3 ez ~(@i-a) ) o) (A2)
wheree is the unit vector perpendicular to the film, and the correlation functfqnare defined by Eq12).

In principle, we can perform all the calculations with the full transition probabiétyincluding the term(A2). Because of
the factorg,-[eX q;]=040; sin x in W, this term will result in the presence of the harmonics withéin the expansion of
the transport equation in the angular Fourier harmof@& and (44). Then we will have to look for the solution of the
transport equation in the form

)2 [511( 1)iitintiztia 1 7+ Tyt Tog(— 1)irtintiztiz)

5n [(0)= —5n'(0)+ E 5n” )cog s6) + sin 02 5nlj?>cos(sa). (A3)
This will lead to a doubling of Eq9446), but will not result in any new physical effect. Since we do not know the correlation
functionsZ, and assume, in computations, tifat £ anyway, the use of EqA2) will make the expressions fal even more
cumbersome than they already are without bringing in any new physical insight.
When the off-diagonal contributions are irrelevant and/or in the quasiclassical limit, the termaM#tHEq. (A2)]
automatically disappear from the equations because of the eddugytionsd| €;(q) — €;,(q') ] in the integrands. As a result,
under these conditions the supplemental correlafdsecome irrelevant.
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