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Quantized systems with randomly corrugated walls and interfaces
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Effect of scattering by random surface inhomogeneities on transport along the walls and localization in
ultrathin systems is analyzed. A simple universal surface collision operator is derived outside of the quantum
resonance domain. This operator contains all relevant information on statistical and geometrical characteristics
of weak roughness and can be used as a general boundary condition on the corrugated surfaces. In effect, the
boundary problem for the three-dimensiof@iD) transport equation is replaced by the explicit matrix collision
operator coupling a set of 2D transport equations. This operator is applied to a variety of systems including
ultrathin films and channels with rough walls, particles adsorbed on or bound to rough substrates, multilayer
systems with randomly corrugated interfaces, etc. The main emphasis is on quantization of motion between the
walls, though the quasiclassical limit is considered as well. The diffusion and mobility coefficients, localization
length, and other parameters are expressed analytically or semianalytically via the intrawall and interwall
correlation functions of surface corrugatid©0163-18209)00935-2

|. INTRODUCTION dn(p)
L =2mNmp | Wip=p')[n(p") ()]

Recent progress in micro- and nanofabrication, multilayer
systems, pure materials, vacuum technology, etc., made the d3p’
study of particle and wave interaction with system bound- ><5(6p—€pf)—3,

S : (27)
aries vital for almost all branches of physics. Below, we
concentrate on some universal features of wall and mterfacamereNlmp is the density of impuritiese(p) is the energy
scattering. More precisely, we consider effects of scatteringpectrum of particles with the distribution functiafp), and
by random surface corrugation without energy accommodathe transition(scattering probability W between the statgs
tion. and p’ is proportional to the impurity cross sectiom

Scattering of particles by random surface inhomogeneitiesthroughout the papei=1). This allows to express the re-
contributes to the randomization of momentum, formation ofiaxation time operator?*l via the transport cross section
the mean-free path, quantum interference, and, often, local,, . In quasi-2D systems with small spacihgbetween the
ization. Though this effect of surface scattering looks transwalls, such as ultrathin films, the motion indirection per-
parent, it is not easy to express it in terms of geometrical anghendicular to the walls is quantized and one deals with a set
statistical properties of surface inhomogeneities, especiallpf 2D energy minibandg;(q) instead of the 3D spectrum
for quantized systemésee Refs. 1-5 and, for recent refer- e(p). If the motion along the walls remains quasiclassical
ences, our preceding publicatfon and the concentration of impurities is Iargdel/3 L>1, the

At first glance, the effects of scattering by random surfacdransport Eq(1) can often be rewritten as a set of coupled
inhomogeneities should not be qualitatively different fromequations for minibands;(q)
scattering by bulk impurities. However, while the basic ef-
fects of impurity scattering are described in textbooks, a

@

similar simpleaccount of surface scattering is missing. One dné(tq) ZlempE fWu (g—a")[n;.(a")—n;(q)]
of the reasons is technical: the range of impurity interaction

is usually short while the corresponding parameter for sur- 42’

face scattering, namely the correlation radius of surface in- X 8(€jq— €jrq )_q’ 2
homogeneities, can be large. The second reason is more fun- (2m)?

damental. It is intuitively clear that the role of surface
scattering is higher in ultraquantum small-size systems o
longwave particles. In such quantized systems even the i —
purity scattering is not well understood and is much morgelated relaxation time operator is a matrix,; . A similar
complicated than in standard quasiclassical problems. matrix equation in kinetic theory of gases of particles with
If one disregards quantum interference and localizationdiscrete internal states is sometimes called the Waldmann-
the effect of impurity scattering on quasiclassical three-Snider transport equation. Since ttfereak localization
dimensional3D) transport can be described by the transporiength is exponentially large in 2D systems, the quantum
equation interference and localization problem can be approached af-

Yvhere the collision integral includes all impurity scattering
inrocesses with and without interband transitipasj’. The
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ter the “classical” transport problen) is solved and the bulk scattering and outside of the resonance region, enters
relaxation and diffusion parameters are found. the results as a simple perturbative fadfofsee below. The
The form of the collision operators in Eq4) and(2) is  main restriction on our results is thats small,
universal for bulk impurities and does not depend on the
geometry of the system. The main conclusion of this paper is I<L,R<Ly, (©)

that for a wide range of wall scattering problems one can still . _ . S
use the impuritylike Eq(2) in which the transition probabil- while the wavelength\ remains arbitrary. This restriction is

1y Wiie, te impurty crossSecton, (a—q')] shouldbe "L Ve severelFor examle he onty roniiane:
simply replaced by the correlation function of surface inho-PO"* P . . 9 9
mogeneitiesZ - (q—q') with trivial constant factors. Th ness. If the roughness is strong, the particles are dephased by

9 i’ 9-q al constant factors. '€ - gach )| collision, and thdransport problem becomes
form of the resulting transport equation is system indepen

dent in th is ind d ¢ : frivial with the mean-free patif~L]. Two additional con-
entin the same sense as E2).is independent of a particu- iiong that ensure the quasiclassical motion along the walls

lar realization of the random impurity system. We solve bothyg the absence of the quantum resonance are also not very
the diffusion and localization problems and give a ‘compactestrictive®

expression for the wall-related relaxation time opera-ﬁ)fr. _ The results below are obtained for quasi-2D syst_ems with
In certain situations, the quantum transport equation idmpenetrable external walls and/or transparent interlayer
solved analytically. To illustrate the versatility of the results, Poundaries in multilayer systems. Since the localization
we present a wide spectrum of applications such as condut€ngth in vg?%kly inhomogeneous 2D systems is exponen-
tivity of ultrathin metal films and channels, multilayer sys- Ually large,” one can start from “usual” transport and
tems, single-particle diffusion of quasiparticles in helium diffusion and study the localization effects after or in the
systems, quantum bouncing ball problem for trapped ultra

frame of the diffusion problenf~*° The diffusion results,
cold neutrons or electrons on helium surface, weakly bounéfvIth minor modifications, can be extended to quantized nar-
states on corrugated substrates, etc.

row quasi-1D channels as long as we do not consider local-
Our preceding pap®rcontains a rigorous diagrammatic ization effects, which are much stronger in quasi-1D chan-
derivation of the quantum transport equation for quasi-2

Dnels than in quasi-2D films.
systems with weak scattering by random rough w@sran-
dom impurities. The essential difference from the standard Il. CORRUGATION-INDUCED RELAXATION TIME
Keldysh technique in combination with impurity averaging OPERATOR
is the quantization of motion ir direction perpendicular to
the walls resulting in the quantumatrix) form of the trans-
port equation; the motion along the walls remains quasiclas- The aim of this paper is to describe the effect of scattering
sical. Almost always, this quantum transport equation withby random surface inhomogeneities on physical processes in
surface or impurity scattering reduces to the fof@h The  ballistic systems with random rough surfaces. The results
exception is a narrow quantum resonance region in which théescribe the following classes of problems:

A. Systems and problems

gaps between the quantized energy legelare comparable ~ * diffusion flows along random rough walls in thin films,
to the effective corrugation-induced perturbation. Since thevires, layers, quantum wells, waveguides, etc.;
energy gapg) increase with decreasing spacihgbetween » quantum and classical bouncing-ball problems with a

the walls as 1/2, this anomalous quantum resonance domairfandom rough wall and an arbitrary holding potentigx),

is unavoidable with miniaturization of the system. In the which returns the particlé&he “bouncing ball”) back to the

quantum resonance regime, the description of weak impurityvall;

and surface scattering becomes almost intractable. In this ¢ motion and localization of adsorbed or weakly bound

regime, transport processes are coupled to off-diagonalarticles on rough substrates;

(mixed) quantum states and cannot be approximated by Eq. ¢ localization of particles in rough channels;

(2), which accounts only for the diagon@dure states. Out-  transport and localization in multilayer systems with

side of this quantum resonance region, the contribution ofough transparent interfaces between the layers.

the off-diagonal mixed states is small and the quantum trans- The confinement in the direction perpendicular to the

port equation acquires the standard Boltzmann-Waldmanrwalls is necessary to ensure the repeated scattering by the

Snider form(2). Below we study only the “normal” regime walls. This confined motion can be quantized; the motion

(2) and show that the surface-induced transition probabilityalong the walls is quasiclassical. The particles can have ar-

W is system independent for a wide range of systems antiitrary spectrume(p)=e(—p), such asp?/2m, “relativis-

physical problems. tic” spectrumcp, spectra with gaps, etc. Specific physical
The wall roughness affects physical processes via the coexamples and experimental applications are discussed in Sec.

relation (or lack thereof of classical and quantum multiple Ill. Geometrically, the systems can be split into four groups:

scattering by the walls. The magnitude of the effect is a ¢ systems with a single random rough walt

complicated function of four spatial scales-the particle wave= £(y,z), (&)=0; the particles are bound to it by some

length\, distancel between the walls, bulk mean-free path attractive potentialU(x), U(x—®)=0; U=« on the

Ly, and the correlation radR of intra and interwall corre- wall;

lations of surface inhomogeneities. Another spatial scale, ¢ single-wall systemsx=£(y,z), with particles confined

namely, the amplitudé of the wall corrugation, determines near the wall by a holding potential, such as gravity or elec-

the “strength” of the surface scattering and, without thetric field, with U(x— ) =0c;
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« system with two rough external wallsx=+L/2 1. Smatrix approach
+&AY.2), (€12=0, with an arbitrary potentidl(x) in One of the options is to start from the single-w&lna-
betweenU =2 on the walls; trix. >1” Because of the interwall interference, the two-wall

* multilayer systems with corrugated transparent interscatteringS matrix does not factorize into a product of two
faces between the layers=x,+§,(y,z), and an arbitrary  single-wall S matrices, and the exact expressions for the
bulk potential U(x) in between (the potential changes single-wallS matrix are not sufficient for solving the multi-
abruptly by[U], on the interfacg the confinement irx  wall problems in the ultraquantum regime. This approach has
direction is ensured either by impenetrable external walls onot been used beyond the simplest two-wall system without

by a holding potential. interwall interferencé®
Theoretical description of systems with random bound-
aries is often hindered by a common difficulty. It can be 2. Adiabatic approach

illustrated in the calculation of the corrugation-induced cor- Kawabata’'s “adiabatic’ approximation for the wave

rection to the matrix elemerftys|H|4) for particles with  function'® can circumvent the difficulties caused by the lack
the HamiltonianH=H,+V and the orthonormalized wave of explicit basis wave functions in systems with randomly
functionsy= 9+ sy (H, and ¢(* describe the same sys- corrugated boundaries. Suppose one deals with a flow cannel

tem but with flat walls;V and 8y are the corrugation- with two random walls,

induced changes x=+LI2F & Ay.2). )

" — /.1 (0)[\7]5,(0) _ (0) If the change of the wave function along the walls is slow,
| HIg2) = IVI927) + (Bs—Bo) (09l 457). (4) one can start from the “adiabatic” wave function

The wave functiong/(“) for the flat walls are known and the X+ 12— £,(y,2)
first term in Eq. (4) is the same as in all perturbative P~ exp(iqyy+iqzz)sir{7rj = = 1k
schemes. Analytical or computational calculations of the ay,2) = &ly.2
corrugation-inducedy require a set of wave functions that This wave function assumes a slow variation of the wall
can be used as a basis. The use of the basis set assumes Hripe along the channglR>j,jlI/L(R is the “size” of in-
all wave functions are defined in the same space. For rarhomogeneities, i.e., the correlation radius of surface corruga-
domly corrugated walls, especially with the boundary condi+ion). This condition differs from the perturbative condition
tion =0, the domain of existence of the wave functions is(3) and is sufficient for the calculation of the matrix elements
not the same as for the flat-geometry functiad® and the  and the reflection coefficient. However, ttransportcalcu-
proper basis set cannot be introduced explicitly. Thitig,  lations use the perturbative Boltzmann equation, which re-
cannot be easily calculated using the functiof® as an quires an extra condition of the smallness of the wall corru-
expansion basis. As a result, the second term in(Bgis  gation. As a result, théransport restrictions in Ref. 19 are
much more complicated than the first. This issue arises imrquivalent to supplementing of E€B), | <R,L, by a strong
almost any theory of systems with random rough walls.  extra conditionqgR>S(S is the number of occupied and/or
The energy factor in this second term indicates that thisaccessible minibangsTaken together, these restrictions are
term does not contribute to the Waldmann-Snider@y.As  stronger than the ones used in other calculations. On the
it is shown in Ref. 6, the contribution of this term is large positive side, the adiabatic method, when applicable, makes
only in the resonance situations when E2). breaks down. the physics transparent. The adiabatic method fails in the
In this paper we do not consider the quantum resonance d@uantum resonance regime.
main and assume that E@) is valid. Then the only issue is
the calculation of the scattering probabiliy;;. in Eq. (2), 3. Mapping transformation

. . ~ 0 .
i.e., of the matrix elementsy{”|V|y{?) of the corrugation- One of two approaches used in this paper is the exact
induced perturbatioV. The real question is, of course, how mapping of the problem with the corrugated boundaries onto
to define this “corrugation-induced perturbati®f’ math- ~ @n equivalent problem with flat boundaries and distorted

ematically. After that, the calculation of the matrix elementsPulk- This angroach to transport was suggested first by Te-
becomes straightforward. sanovicet al?® and Trivedi and Ashcroft without an ex-

plicit expression for the coordinate transformation. Indepen-
_ dently, one of the authors and S. Stepannté-®and, later,
B. Theoretical approaches Bratkovsky and Rashke®&Vintroduced the explicit Migdal-

There are numerous theoretical approaches to scatteridtfe mapping transformation for transport and localization
by surface corrugation. We will mention only those that arecalculations. In a different context, the mapping transforma-
best suited for transport and dissipative phenomena and idglon approach to systems with nonuniform walls has been
nore the ones aimed at description of wave fronts, diffractiorsed for electromagnetic and acoustic wave scattering, dif-
patterns, spectral shifts, mean field corrections, etc. Thedéaction patterns, wave guides, etc. for many yeaee Refs.
approaches, though not equally convenient and general, leZd4.8,9 and 26—34 and references therein
to identical results outside of the quantum resonance region. This method provides an unambiguous definition of the
Inside the quantum resonance region, the cumbersome calerrugation-induced perturbatiod. For a single random
culations are system specific, while most of the existing aprough wall, x=¢(y,z), the flattening transformation is a
proaches fail. simple coordinate shift,

(6)
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X=x—¢&(y,2). (7) corrections tov (12) related to this additional transformation
in y,z plane are small and can be disregarded outside of the

anomalous quantum resonance re@bhvl. Thus, in non-
p= Py, E,yl: ﬁ)y,z_ g;lfax, (8) resonance calculations, one can leave the coordingtes

R R unchanged and disregard the Jacobian-generated terms in the

transforms the Hamiltonian Ho(p,r) into Hy(P,R) integrals. By leaving these coordinates unchanged, one can,

+\”/(p,R,{§}) with a random bulk paﬁ/ that depends on the Wwith the same accuracy, extend the two-wall mapping trans-
wall corrugation£(y,z). For example, the quadratic Hamil- formation to the multilayer geometry by applying the coor-
tonianl3|0= p2/2m is transformed into dinate transformation&l0) and(11) to each layer indepen-
dently. Inside the resonance region, this cannot be done since
Ho(P)= Ho(P)+V,|:|o(P)= P2/2m, V= _(5{/4_ fé)lsx/m the forced change of thg z coordinates makes the momenta
in each layer different from each other.
The calculation of the matrix elements of the perturbation

The conjugate momentum transformation,

(the distortion opgrato‘?/ is linearized in displacemers). (9), (12), and (193 is straightforward. Though the mapping
~ Two walls (5) with the average spacirigcan be flattened  transformation and the intermediate expressions for the ma-
simultaneously by stretching the film, trix elements are different for each geometry, the final ex-

pression for the transition probabilitie®/;; (q,q’) with

_ X+ 412~ £512 (10) €j(@)=¢;:(q") for the transport Eq.(2) is not system-
1-&/L=&LT specific with the exception of the quantum resonance regime.

# The mapping transformation approach seems indispens-
able because of its consistency and known accuracy on each
step of the calculation. At present, this is the only viable

Y=y, Z=z (11) approach for calculations in the anomalous quantum reso-
: Lo . nance regime.

The conjugate momentum transformation identifies the ef-

fectiye random_ bulk distortioﬁ/{gl,z}. In the case of qua- 4. Direct perturbation calculation

dratic Hamiltoniarf2-24

while the coordinates in the plane of the wall may be le
unchanged,

The simplest approach is to calculate directly the matrix
- . - elements of the potential using the wave functions for flat
Va2, Vi= 7Pk (120 geometry as has been suggested by Fishman and CHlecki
for two-wall systems without interwall correlation of inho-
~ 1[/X 1 L mogeneitiegsee also Ref. 36
Vy,z=ﬁ{(tg’+y,z— §§Ly,z) PyPy.» In this subsection, this approach is extended to particles
with an arbitrary spectrun¥(p), multilayer systems with

. P2
H=-—+V, V
2m

Il
<
<

+
<

. 1 . corrugated external and interlayer walls, and to systems with
+ Py,z(rgg—y,z_zgl—y,z) Px}’ possible interwall interference and with a nonuniform poten-
tial between the walls. The transparent interlayer walls sepa-

E.=E, g, rate different layers of a multilayer system from each other

and are characterized by finite steplike junipg, of poten-
and the problem with the corrugated walls is mapped ontaial. The potential becomes infinite on external impenetrable
the equivalent bulk problem with flat wallX=+L/2, and  walls.
randomly distorted bulky. Similar mapping transformation In this approach, the walls are replaced by some infinitely
can be used for cylindrical geomety/If the particle spec- narrow potential (x). If the straight wallkx=x,, is described
trum e(p) is nonquadratic, the mapping transformatid®) by U(x), the corrugated walk=x,+ &,(y,z) is described
and(11) leads to a more complicated, but still treatable, ex-by U(x+¢,)=U(x)+V, V=¢,dU/dx. On internal inter-
pression for the effective bulk distortiov. If the potential  faces,dU/dx=[U],8(x—x,) and the matrix elementy;,

field U(x) between the walls is not uniform, the distortion ~ of the “perturbation”V are
in Eq. (12) should be supplemented by

U 10U
—(X=X)~ > ——

™ 5 o LEa(1=2XIL) = & (1+2XIL))]. Vid= J exfis(4=0")1&,(9Wi[U],8(x—x,) ¥ dx ds

(13) (14

One should be cautious when using the mapping transfor- ,
mation in the form(10) and (11): the Jacobian) of this =£(9=9")[U]¥i(Xa) Wi(Xa),
transformationJ# 1. The standard diagrammatic or pertur-
bative techniques implicitly assume that the Jacoldiarl.  wheresis the coordinate in the plangz, q is the conju-
To avoid mistakes, one can restore the volume+al by  gate momentum, and the unperturbed wave functions for the
supplementing the transformatio(10) by an additional flat geometryW; are chosen real.
stretching the system ig,z directions instead of Eq11). On external walls, the potentid) becomes infinite and
This has been done in Ref. 6. The result shows that thehould be excluded from the integrals
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(r?U/r?X)lk=f \Pl(ﬂU/ﬂX)\I’kdX

z—f U/ +v,,)dx, (15
using the Schrodinger equation for the motiorxidirection,

(p22m+U) V=€V, . (16)
Then

—f U(W! W\ + W, W] )dx
1 122 122
=5m [V ps W+ Wy pyWildx

- Ekf ‘Ifi'\lfkdx— €if ‘Pi\l’&dx,

and the integration by parts yields

U ,

X ik:(fi_ek)quiq,kdx
! P! J v+, i v/ d 1
>m i o Ykt Wi Wi dx (17)

1
~(em a0 [ Wi S )
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C. Scattering probabilities and correlation functions
of surface corrugation

The corrugation-induced bulklike matrix elemerns,
(14) and (18) play the same role for boundary scattering as
the scattering amplitude for scattering by bulk impurities.
The role of the impurity cross section is played by the tran-
sition probability which should be averaged over random
inhomogeneitieg

w0~ 2 Vg ) =3, Wi @),
=3

(20

Since the matrix elemendg;, (14) and(18) are linear in
£, the transition probabilitiegV (20) are quadratic irf. Their
averages are expressed via the correlation functions of sur-
face corrugation defined as

§ag(|8|)=<§a(sl)§g(sl+3)>gzf £,(81)ép(s+9)dsy,
(21)

éaﬁ(q>=f d?s €97, 4(5).

The correlation functiong,, describe the intrawall correla-
tions of inhomogeneities, anf), s(a# B) = { g, the interwall
correlations. Usually, the inhomogeneities on all surfaces are
similar, {,,={gg, but are not correlated between different
surfaces{, . z=0. Occasionally, the corrugations of differ-

o . 37
Since we are interested only in the processes withouBnt boundaries can be correlated with each otfierg+0.

changes in energy, EQ), i.e., only in the first term in the

Experimentally, the correlation functid21) is not neces-

. . 138 . . . .
right-hand side in Eq4), the first term in the right-hand side Sarily Gaussiaft:®® When possible, we avoid specifying the

of Eq. (17) should be disregarded. The final expression forform of the correlation function and express the results via
the matrix elements of the corrugation-induced “perturba-the angular harmonics dfy(s). In applications and numeri-

tion” of the external wall ) is [cf. Eq. (14)]

1
Vi (€iq= €iq) = = 5 £a(A=0) W] (X) Wi(Xy).
(18)

When the particle spectrum is not quadratic, the calculation

should be slightly modified. Instead of E{.8), one gets

Lii" (=€),
ti,q'i'(quzfj'q'):[%[&(q -0
17

+(=D)IT g (q =g)]. (19)

The full matrix elemen;, is the sum over of V{&) for
all interlayer interface¢l4) and external wall$18) [or (19)].

This approach, by design, disregards the resonance co

tributions and the second term in the expressinfor the

cal calculations, when the form d¢f,(s) has to be specified,
we use the most common Gaussian correlation function

Lap(9) =12 gexp(—S?12R% ),

Lap(@) =212 4R% s exp( — 0%R% 4/2). (22)

%’o avoid the parameter clutter, we assume in numerical ap-
plications that all correlation radR,; are the same, while
the amplitudes of inhomogeneities may be different with
some typical scalé

Lap(S) =a,4l% exp(—s%/2R?). (23

The matrix element¥;, (14) and(18) allow direct calcu-
lation of the corrugation-induced transition probabilities
Wj;(9,9") (200 between the quantum stateg,d) and
i",q’). For transparent interlayer walls with finite changes
In potential [U], (14), the corrugation-induced transition

matrix elements. The accuracy is not always clear; it can bgrobab|llt|es(20) are

evaluated from the comparison with the more consistent aB_ , * * *
mapping transformation approach. We used both approaches Wijr=Re {ap(a=a")[U][U ]Bwiawj'“wjﬂwi’ﬁ]’24
outside of the quantum resonance domain. The transition (24)
probabilitiesW calculated using the matrix elemeifigh and where¥;,=W¥(x,). Diagonal termswj”}‘f(q_q,) describe

(18) turned out to be the same as the ones calculate¥ for the transitions caused by repeated scattering from one inter-
(9), (12), and (13) under the conditiorE;=E, though the face a. The termsW*? with a# B8 describe the effect of
matrix elements/;, themselves were not identical. interwall interference in consecutive scattering from two dif-
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ferent corrugated surfaces. For external impenetrable walldn effect, we replaced a boundary problem for the 3D trans-
the probabilitieswW (18) and (20) are port equation by the matrix collision operator that couples a
set of 2D transport Eq$29). This matrix-transport equation
and the relaxation time operator closely resemble those for
the bulk impurity problem. The angular harmonics of the
surface correlation functior®)(|q—q;; ) — ¢M(la—a;;.]),
and the external wall4)- interlayer wall (3) interference play the role of the impurity transport cross section,
term in the transition probability is oy (|a—aj. ) =@ =
Equationg29) for the distribution functiong;(q) are still
(26) very complicated. The level of complexity depends on the
number of equation$ and by the range af for which this
set should be solved. The number of equations is given by
the numberS of occupied or energetically accessible mini-
bandse;(q) and can be very large or even infinite. In each
equation, the arguments of the distribution functiensand
vjr, q, andqj;-(q), are different reflecting the integral nature
of the collision operator. Sometimes, the number of equa-
P B 2 tions and the number of the relevant valuesgobecome
Capl) L€ja~ €ral [8,5—(1—8,5)(—1)']. finite. For degenerate fermions, the valuesgodnd g;;, in
L? 21782 hd «h the equation fow;(q) are the Fermi moment andq;. for
(i%-i3 © on 1ow anag;
27) minibandsj andj’, Eg=€;(q;)=¢;:(d;/), while the num-
ber S of the occupied miniband&;(0)<Eg) is restricted by
The most prominent feature of the above scattering probthe Fermi energ\Eg. For the single-particle problems, the
abilities is that these expressions are not system specific analues ofq and qj;; are the momenta; and q;, of the
the form of the equations is universal. All system-specificparticle with the overall energf in the minibandsj and

\/\/<“B>:—Re[gaﬁqr* v, W, B] (25)

WA = Re({aB[U]B\If* 8 P

i’ i’ ,3)

Equation(24) for internal interfaces can be used for particles
with any spectrume(p) = e(—p), while Egs.(25) and (26)
assumee= p?/2m. For particles with an arbitrary spectrum
e(p)=¢€(—p) (19 in a homogeneous two-wall system, Eq.
(25) should be replaced by

(@B) _
Wi =

information is hidden, in the form of simple constant factors,j’, E=¢€;(q;)=¢;.(q;.), while only a finite number of the
in the boundary values of the wave functiofws their de-  minibands,e;(0)<E, are energetically accessible. In other
rivatives for ideal flat geometry. situations, as, for example, for particles with the Boltzmann
distribution function, the number of occupied minibands is
D. Standard Waldmann-Snider transport equation technically infinite, while the equations should be solved for
and the relaxation time all values ofq.

In three important situations the equations decouple from
The transport equation outside of the quantum resonance h h h A di |1
region Q7~1 has the standard Boltzmann-Waldmann-€3Ch other, the matrixr;, becomes diagonal,r;,
Snider form (2) and is determined by the sum of all =(1/7)&j;., and Egs(29) can be solved analytically. This

corrugation-inducedV(«? happens wheiii) only the first(lowes) quantum statg is
occupied or is energetically accessibfsj=j'=1; then
dn: d2q’ the set(29) reduces to a single equation
dtJ =27 2 W(a )[nj,—nj]é(ejq—ej,q,)m. 5
28 ~=3 (O -t (s
TL ap Vi1

The integration ovedq’ is done using the5 function,
5(qu_ Ej/q/) = 5(q, _q” I)/V“ ’y Whel’eq” /(q) is the solu-
tion of the equation €(q;:)=¢€(a) and Vjj' |eading to a suppression of the interband transitions in com-

— ! H H H
=(9€j1q:19Q")q1 =g, for isotropiC €jq. As always in the  ,5s0n 1 intraband scattering; ., <Wj;
transport theory, the angular integration is eliminated by us-

(il) L<R; the small clearance between the surfaces makes
the energy gaps between the minibar(dl]s,,ocllL2 large

ing the angular harmonics. The currents are given by the first 1 1 N N q”

harmonic of the d|str|but|oml](1)=v the equation for which 2 2 4 2 [(O)W( - mW( /3)] (32)
involves only the zeroth and first harmom@s”\N” (9,957 : Vii-

of W(q—q;;) over the angleqq” , (ii ) the particle wavelength is larggR<1, and all the tran-

sition probabilitiesW are constant®W=~2wW(q=0) with
the zero first harmonicPW=0 (quantum reflection, cf.

dV](q)/dt:_Z VJr(q”r)/’T”r, (29) Ref. 35
i
2 qjj 1_ (wp) g i’
i E (S OWtah) _ 5. (l)W(aﬁ))L _—E W;; (0)— (32
: i’ i I i’ ) Ty ap Viir
Tij’ a,B.j" ijrr J 1)
_— In all other cases, Eq$29) remain coupled and should be

This collision operatorr~! can serve, outside of the solved numerically. The conditiofii) is purely geometrical

anomalous quantum resonance regime, as a general bourahd depends only on the preparation of the walls and the
ary condition for a wide range of confined ballistic systems.interwall spacing-. The other two situations require that the
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characteristic energy of particles should be small in compariens. The paper contains the analytical expressions for con-

son with the interwall gaps f/L? in the casei) or in com-  ductivity o, graphs ofo in different ranges opgR, R/L, and

parison with the quantum energymR in the case of quan- S, the analysis of interwall correlations for this geometry,

tum reflection(iii ). etc. Though the approach was less general than the one dis-
Equations(29)—(32) represent the main general result of cussed above, the results are the same and should not be

the paper. The next section contains the practical applicarepeated.

tions. The calculations can be done for any surface correlator

{(s). We will supplement the results by the commonly used C. Conductivity and mobility in ultrathin films:
Gaussian correlator2) with the hypergeometric angular Boltzmann particles
harmonics

The transport Eq(29) for particles with the Boltzmann
Oz — Vi =amayl?R2F(3/2,2-29°R?). (33 distribution function, in contrast to the degenerate fermions,
involves an infinite number of minibands and should be

solved for all values ofy, and not only for a set of Fermi

I1l. APPLICATIONS momentaqj _
A. Application of the general equations The convenient representation for the distributionsn
The form of the general equations for the effective reIax-Eq' (29)is
ation time (29—(32) is universal. All system-specific FL3 o
information—the energy spectrue(q) and the unperturbed vi(q)=— [{’“ €ig xi(Q) (34)
wave functions¥(x,) is hidden in the expressions for the J wiTI? T )

transition probabilitiedV (24)—(27). . . . .
The practical application of these equations is straightfor{F 1S the driving force. Then the conductivitymobility)

ward. One should start from the Schrodinger equation for th&cauires the form

“flat” geometry with uncorrugated surfaces and find the en-

. e?L3 — €
ergy spectrume;(q) and the values of unperturbed wave ; J'qzexr{'u TEJq}Xj(Q)dq, (35

functions¥;(x,) on interlayer interfaces anﬂj’(xa) on ex- 7T 27°T12m
ternal walls. These data, together with the correlation func-

tion of surface corrugation, provide the transition probabili-While the transport Eq29) becomes

ties W}f,ﬁ)(q,q’) (24)—(27) and their angular harmonics .

©DWAYA) Then one should solve the transport E2) or, _L'm S ()T

. L . . . . . q= 42 XJ’(q”’) Tijr - (36)
in simpler situations, use the expressions for the kinetic co- T

efficients via the relaxation time0)—(32).

Below this procedure is illustrated for diverse physical The relaxation timesy;,(q) are defined by Eq(29). _
systems with various geometries. To avoid cumbersome equations, we give the analytical

results directly for the Gaussian distribution of inhomogene-

B. Conductivity and mobility in ultrathin films: ities and evaluate the dimensionless conductiVIfyR/L ,x)

degenerate particles defined as
The most direct application is the calculation of diffusion, 22| 2
conductivity, and mobility coefficients for particles in films o=——ZII(RIL,x), (37)
and channels with an average clearahdeetween the cor- o
rugated walls in the absence of external figlgk). This was
done in detail in our previous pageior degenerate fermi- Z=2NL%m, x=qrR=y2mTR

(0]
' FIG. 1. Functiond,(x), Eq. (39).
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14 T T

[
: FIG. 2. Function®,(x), Eq. (39).

When the clearance between the walls is snepll, <1,
the thermal energy is small in comparison to the interband

L , L2 1
gaps and only the lowest minibarg, has a noticeable oc- M= — o L) R
cupation. Then the dimensionless conductivy) becomes 8R2 a1+ s+ 285, 1(arb)P2(arR),
L2 1 > exp(— 77X
=——F—>5— (38 D,(x)= ; (39

8R2 Ayt axnt2a;’

> exp(— w2 2x?)

Interband transitions are suppressed in comparison with = dyyexp —Yy)
intraband scattering iR/L>1 [this is a sufficient condition <I>2(x)=f — >
for grL=1; for smallg;L <1 one returns to the single-band 0 1F1(3/2,2,=2yx7)
situation (38)]. Then the dimensionless conductivity Functionsd,(x) and®d,(x) are plotted in Figs. 1 and 2.
II(R/L,qtR) decouples into the product of two single-  The third analytical case is the case of long-wave particles

parameter function®,(qsL) and®,(q;R) grR<1
|
LZ
~sRania 3(q7L);
2 71_212 “l= 1> Q(kj)(x)_Q(kj) (X)
D)= — |2 exp ——|| 2 S5 -+k+1 : (40)
X X i=1 )% k=1 k(k+1)(2k+1D)[1+6(—1)! " a,/(atazn (2k+1)]
QP (x) = (k?—j2+x% m?)exp — m?k?/x?).
I

Function®4(x) is plotted in Fig. 3. D. Single-particle diffusion in thin films and narrow channels

A numerical example fofl (37) in an intermediate range  The single-particle diffusion in channels and films with
of parameters is given in Fig. 4 for two values of the inter-corrugated walls is similar to the diffusion problem for de-
wall correlation amplitudea;,;=0 (solid curve and a;,  generate fermions. In equilibrium, a particle with enefgy
=0.8 (dotted ling. As expected, the gradual filling of mini- can be in any ofS accessible minibandse;(q) = (1/
bands for Boltzmann particles results in much smoothepm)[(7j/L)?+q?] for which €;(0)<E. The equilibrium
curves than for degenerate fermions in Ref. 6 for which thedistribution functionn(© is
singularities ino reflect abrupt changes in the number of
occupied minibands with changing Fermi energy. The effect
of interwall correlations is also less dramatic than in the de-

generate case. n©(q)=2> n§°)(q)=m182 SE—€(q). (4D
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@5

1 app=0— -
a1z = 0.4(ar + az) - -

FIG. 3. Function®;(x), Eq.(40), for two val-
ues of the interwall correlation amplitude;,
=0 (solid curve and a;,/(a;;+a,,) =0.4 (dot-

ted line.

Equations(29) reduce to a set of coupled linear equations 272 (L4 —j?

for distributions »;(q;) with the values of momentay; D= —(— PSRN ST (44

=\2mE— (m@j/L)?, mS\ w J4[Y]§ )_Yl(l)]

1 while for a long-wave particle RER<1,
S_rnqjvp:_; er(qj'r)/’i'jjr, (42) _2772< ) 3
15 - mS\ ) S(S+1)(2S+1)[£12(0)+£240)]
DVP:_E,Zl qjv;(d;), z 2
- X

2

whereVp is the density gradient that causes the diffusion, (1+ J) “5)

is the single-particle diffusion coefficient, andis still de-
fined by Eq.(29). The single-particle mobility coefficietitis
related toD by the Einstein equatioB =DbE.

The set of equations E¢42) is easily solved numerically.
Analytical solutions are available in the same three case
For low-energy particlesonly one band is accessible, Eq.
(30)],

. (43
e—1

2772( )4
7/ YOO

m
Y (OD=y OD(z)) = ODzy(7) + OV 5 2) + 200 1 2y),

wheree=2mE(L/7)?, zj=q;R. For ultrathin channel&1),

_ 6 (—1)1"5¢150)
1 2S+1 £44(0)+£25(0)

ot
=
—_

ik(0)={i(q=0).

For Gaussian correlations of inhomogeneities, these equa-
Yions reduce to

w (L 6 ®(zy)
2mI2R4\ ) ajtagxnt2ag;’
(46)
2
D(x)=

Fi[3/2,2-2x%]"

for the single-band occupancy,

8 T T T T T T T
75| R/L=0.1
ann = ax =1
7r a2 =00 —
ajp = 0 8
6.5 -
6 =
II 5.5
5 =
4.5
4 f—
35
3 1 Il 1 1 1 1 1 1

FIG. 4. FunctionII(x), Eq. (37), for R/L
=0.1, aj;=ay,=1, and two values of the inter-
wall correlation amplitudea;,=0 (solid curve
anda,,=0.8 (dotted ling.
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R/L = 0.003
ayz = 0.0 — 7
a1 =07 -+

2000

1500 -
FIG. 5. Function II(R/L,x), Xx=R/\

=R(2mE)*2 for the single-particle diffusion co-
J efficient (49) D=(L%mI»)II(R/L,x) at R/L
=0.003,a;;=a,,=1, a;,=0 (solid line and
a,,=0.7 (dotted ling.

1000 -

500 -

0 0.02 0.04 0.06 0.08 0.1

xr
- L\6 1 D(z) ing py vyall inhomogeneities defines the helium flow through
= 2= Iy . — (47) capillaries or superleaks at ultralow temperatures and the
2mSPR*\ 7/ antapt2an T o thermomechanical effect. In superflutHe, the results are

affected by Andreev reflection. To account for these pro-

for ultranarrow channel®/L>1, and !
cesses, the transport E@Q9 should be re-written as two

o L\6 6 coupled sets of equations for quasiparticles and quasiholes.
= 7ea —) > The form of the transport Eq29) formally does not
2mIFRT\ 7] S7(S+1)(28+ 1)(antaz) change irrespective of the particle spectrum while the transi-
s 2 tion probabilities acquire the forr27)
X2 G, (48)
=1j%(1+E8) o
J 17) [qu’ 6]’q]
e Wij (€ —€a) = T3 5 a0
- 6 (=1)"ay L= (°=1")
)—1J - Y]
25+1 antaz X[ L1t Lot 2(— 1) {45
for  long-wave particles [here =qjR=(2mE _
— w?j?/L?)Y?R]. An example of the smgle partlcle diffusion X O(€jrqr~ €jq)- (50)

coefficient, parameterized as
If only one energy miniband is occupied=¢€;(q,)

|_2 < €,(0), thesingle-particle diffusion coefficien30) is
2 ( ,Rv2m E) (49
2.2 (9€1q,10a1)°
is given in Fig. 5 forR/L=0.003, a;;=ay,=1, and two D(E)= OIS, — (51
values of interwall correlationg;,=0 (solid line) and a;, Y17 = Y17 du(de€jq /d)) -1
=0.7 (dotted ling. The contribution of interwall correlation
is an oscillating function of the numb&of minibandse;,  where the angular harmonics are defined as
accessible to a particle with ener§yand changes from de-
structive to constructive depending on whetl8as even or (0.)_(o,1) —q’ (0.1) —a’
odd. This is a general feature that can be observed for any Yii £aa(10; =y )+ T 0zal 0~y )
energy spectrum &<\ <L for not very large values db +2(_1)i+i’(0,1)512(|qj_q_’,|)_ (52)
At larger S especially in the quasiclassical regii@e 1, the )
contribution of interwall correlations vanishes. In the limit of ultranarrow channeld, <R, the interband
transitions are negligible in comparison with intraband scat-
E. Quasiparticles with nonquadratic energy spectrum tering and the diffusion coefficient i81)
So far, we were discussing the effect of weak surface
roughness on particles with quadratic energy spectrum, S oLYs (0€q. /ﬂqj)?’
€;(a)=[(mj/L)?+g?]/2m. In this subsection we analyze the D(E)= E YOy }2 J —. (53
single-particle diffusion coefficient for particles with a non- - Yii') qi(ﬁquj 19})

quadratic spectrum such as ballistic solid-state electrons or

quasiparticles in low-temperature helium systems with a lown the case of quantum reflecti@pR<1, all the correlators
probability of inelastic processes. The latter include phonong; (q—q’) in the kernel of the integral equation can be re-
€jq=cla?+ (mj/L)?]"%  *He quasiparticles in He ll, and placed by the constants,(0), and thediffusion coefficient
ballistic quasiparticles in low-temperatuféle. The scatter- of the quasiparticle with the enerdy= €jq is equal to
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TS
12 - R/L =314 q
10 F

. FIG. 6. FunctionlI(R/L,x), x=Rwl/c, for

T x 104 the single-phonon diffusion coefficientD

61 8 =(L3c/I1>)II(R/L,x) atR/L=314,a;;=a,=1,

anda;,=0.

s 4

5 L 4

0 L

0
2 S I€jq. 2 the interface inhomogeneities and the value of the unper-
D(E)= < 21 (?Q'l turbed wave functiof¥;(x,)| on the interface,
1= J

2. ,2 5 Wi =2(a=a")|Uol?[¥(X0)|?| ¥/ (Xo)|?. (56)
;Y (071 (€j1q,~ €jq;,)

(jz_j'z)z(afj'qj,/aq]'f)
ei=(m/L)%/2m, Ugy=(m/L)?k/2m, Xo=L3,
For Gaussian correlation®2), Y (52) is expressed via the j=(m/L)%e, o=(m/L)"x 0 (57)

hypergeometric functionF;

(54) The unperturbed spectrue(q) =e;+ g°/2m,

S
>
j'=1

and the wave function on the interfac;(x,) should be
Y i/ (0)=2m[ay+azt2(~ 1)I1'a,,]12R? found from the Schrodinger equation,

(59 1 1
—tar‘[wé\/Lé_j]nL tarf m(1—5) Ve;— k]=0,

3, 22)
2,2, 2q]R . \/gj L—ej—K

The frequency dependence of the diffusion coefficient for B>k
“phonons” €;,=c[g®+ (mj/L)?]*? atR>L, ="

Y](JO)_ Y](]l): 47T(all+ 322+ 2a12)| 2R12F1

(58)
3 1 1 =
_ 2 2 E XER_CU) —tar'[ﬂ'é\/é_j]—F ——=tanf{ m(1- &) Vk—¢;]=0,
aptagt2a;, 12 \L° c/ \/é_j Vi—g
L3R ZS 1 2 &<x,
475xS =1 j* 20 0y ’ as a function of the wall positiod=Xx,/L and the potential
11| e 27 difference between the layers=2mU,(L/#)2. This infor-
mation on dimensionless parametégsé, «) and ;. (6,«)
s, TR =L2|W;(x0)[2|¥;/(x0)|? is sufficient to findW (56), solve
=X\ 0 the transport Eq.29), and find the conductivity and diffusion

o o _ . _ coefficients. The kinetic coefficients for a layered system de-
is illustrated in Fig. 6 for Gaussian correlation of inhomoge-pend not only on the characteristics of the corrugati,

neities. Sharp singularities in the curves appear in the pointgnd\ /R as in the previous sections, but also on the position
where the numbe® of minibandse;q accessible to the “pho-  and “strength” of the interfaces and .

non” with frequencyw increases by 1 with increasing,. In some sense, the effect of the transition from a single
layer to a multilayer system is similar to the result of change
F. Multilayer systems with corrugated interlayer walls in spectrum discussed in the previous subsection. The main

The effect of scattering by corrugated interlayer walls isdlfferer_me between the tyvo-layer me_tal f"T“ with a corru-
gated interface and a single-layer film with rough walls,

similar to that for scattering by a corrugated external wall. : -

The simplest illustration with the smallest number of param—apart from the obwousjactory, is the replacement of the
eters is a two-layer system with flat walis=0:L and a dquantum number§’ by e [for example, the expressions for
rough interfacex=x,+ £(y,z) between the layers, 0x, the Fermi momenta; in the harmonics(®Y(q;) become
<L. The potential changes on the interfacelty. The tran-  g’L% m?=v—¢; instead ofy—j]. If only the first miniband
sition probability(24) contains the correlation functiohof  e;+q?2m is occupied, then
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FIG. 7. FunctionIl(z), Eq. (62), for R/L

=0.01, potential strengtlk=90 for three posi-

1.4

1500 . . 1
tions of the interfaced=xy/L=3;5;3.

1000

0 500 1000 1500 2000 2500 3000
4me? [L\4 V—51(5 K) one bound state, the expression for the single-particle diffu-
o= — : . 59)  sion coefficient is similar to Eq43)
’ylle(ﬂ-) (O)g(qu)_(l)g(qu) (
In ultrathin system&R/L>1,
’ D(E)—ZWZ(L)G @ (64)
_Ame(Ls 1 vme(on) m 7/ ©¢(qR)-Di(aR)’
7T —~ 0 o) . (60
k= AT T Vi YL(gR) —E(qpR)
_ 1/2
For the long-wave particles, whereq=(2mE—e)) ™. _ _ o
In the case of Gaussian correlation of inhomogeneities,
2me? [L\4 y—e Equation(64) reduces to
"0 2(;) = —  ®
K
2 v L
J sl
Figure 7 presents the functidii(z), 2m*RYZ\ 7

2 4 . . . .
o= ze—LH(z,R/L,&,K), 7=2NL%m, (62 Whe_re t_he functiond (x) is defined by Eq.(46)._ Possible
2R K2 applications are weakly bound electron states in sofitte
. . : . , surface states inside He Il, and hydrogen atoms on helium
for the interface with the Gaussian correlation of inhomoge,1f4ce394|n the last two caseg;~1 K, L~12 A, while

neities at R/L=0.01 and the potential strength« at T~1 K the ripplon corrugation has parameteRs
=2m(L/m)2U,=90 for three positions of the interface, ~20 A, 1~08 A, and the coefficient in Eq(65) is
=Xo/L=13;3;5. The shape of the curves is less regular andy 17 /.’ R
is noticeably different from those for the conductivity of a '
single-layer film with rough walls.
H. Bouncing ball problem: electrons on helium surface,
G. Diffusion of particles bound to rough substrates neutrons in a gravitational trap, etc.

Another application is single-particle diffusion of par- A similar class of problems is often referred to as a
ticles weakly bound to or adsorbed on rough substrates whetbouncing ball” problem. In this problem, a particle
the sizeL of the bound state is larger than the amplitude ofbounces repeatedly from a wall after being returned to it by
the surface inhomogeneitied,>|. Such particles move an external field. We are interested in a version of this prob-
along the substrate(q) = ; + g%/2m*, and experience scat- lem in which the reflection of the quantum particle by the
tering by its inhomogeneities. We will define the size of thestatic rough walk= &(y,z) is accompanied by scattering by
bound statel via the derivative of the unperturbed wave weak random surface inhomogeneitigs =0 and leads to

function on the wall, the particle diffusion along the wall. Two typical examples
are ultracold neutrons in a gravitational t*taand electrons
NP L pressed to helium or hydrogen surface by an electric field
W: X o (63) (see also proceedintfs. In both cases, the holding external

fields—mgx and eEx, respectively—are linear functions of
The coefficients in Eq63) are chosen in such a way so that coordinates making the problems identical.

for a channel with two impenetrable walls the valuelLoi The transition probability for scattering by the wall inho-
(63) would coincide with the channel width. If there is only mogeneities is given by Ed25),
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25 - T T T T T l
R/L=01
2 F N
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I FIG. 8. FunctionlI(H/R), Eq. (74), for R/L

1+ i =0.1.
0.5 _
0 1 Il Il 1 1 ] 1
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H/R
W,-,-,(q,q')é(ejq—ej,q,) D(vV2mEL?/R<1)
4 2 E—¢
§(q —-q) dX 5(€jq_€j'q') \

T mg?s 2 0 0
m*g-Sj=1 (O)g(qusirE) —(1)§<2qjsin§)
(66)

70
with the energy spectrurg; = €;+q 2/2m. The unperturbed (70
wave functions for the flat wall and linear holding potential Whereq?(E)=2m(E—¢;). In the case of Gaussian correla-

are the Airy functions tions, the diffusion coefficient is
. ~ 2 <
W,(x) = €19C, Al (2m2g) Y~ %)), 67) D(v2mEL/R<1)
S

where C; are the normalization coefficients. The energy =— 1 > Z E~ ¢ .
eigenvaluese;=2Y37%%; /mgL are given by the zeroes 7m*g®R?1%S =1 1F(3/2;2;-2q7R?)
of the Airy function, Ai(—)=0; ‘€153 =2.34; 4.09; 5.7 32R 4
5.52 . ... Thespacial scale is determined by the size of the - = (70
first, closest to the wall discrete state=(7w2%/m?g)'? Eq. 8.2mL32S

(63). Finally, the transition probabilitiet56) reduce to (the last equation is quasiclassical for a large number of ac-

, > 2 cessible miniband$>1; H=E/mgis the maximal jump
Wi (0,0") 5(€jq— €j:q') =M 9°L(q" —q) S(€jq— €jrqr).- amplitude.
(68) In the case of the long-wave particle§2mER=R/\

< ) )
The transport Eq(29) with the transition probabilities 1, the solution of Eq(29) yields

(68) can be solved analytically in the same three situations. S 4 HLZ
The single-particle diffusion coefficient in the first miniband D(R/A<1)= ———— 2 €)—>— —om
€,(q) is m 92825(0 = 572 M(0)

(72)
272 (L\® as or, for Gaussian correlations,
D(E)=—|—

m ™ (0)§(qu)_ (O)Z(qu) 1 S 2 HL3
D(RI\<1)= ————— E-¢)————
m [L)\® ( ) mmig?S?R?|? 121( %)~ mmSRI?

[the last expressions in Eq§.2) and(73) are quasiclassical,
where the last expressmn describes Gaussian correlations gf-1].

wall inhomogeneitiespi=2m(E—€;), and ®(x) is given A numerical example of the diffusion coefficient
by Eqg. (46). Particles cannot access the second miniband as
long as 4.13 \2mEL<5.45. 212
In the case of large interband spacing?/R\ D= WH(R“—'H/R) (74)

~\2mEL?/R<1, the interband transitions are suppressed
and the transport Eq$29) decouple. Then the diffusion co- is given in Fig. 8 H=E/mgis the amplitude of the particle
efficient is jumps.
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FIG. 9. Function®(x), Eqgs.(46) and(76).

One of the most interesting applications is the system of  R(E)=L(E)exd ¢(E)], ¢(E)=mmSE)D(E),
ultracold neutrorf§ in a gravitational trap with a macro- (75)
scopically inhomogeneous “floor.” The typical neutron pa-
rameters arel = (72/m?g)¥=1.58x10"2% c¢cm, 2mER WwhereSis the number of minibands;, accessible for a
=1.6x10°Rv (hereR is measured in cm, and the neutron particle with energyE.
velocity v=y2E/m-in cm/9. At present, the neutrons can be  The diffusion results from the previous sections provide
trapped with velocities down te=100 cm/s(jump ampli- an adequate description of the localization exponen5)
tudesH~5 cm)#** Parameters of the artificially created in various systems. Experimental observation of the weak 2D
roughness in experimeéfitwerel,R~10"2 cm. Experimen- localization(75) is possible when the exponeptis not very
tally, the velocity distribution around the average valuevof large, ¢<20. In order to have a reasonable localization
is very narrow and the fraction of low-velocity neutrons is length, one should try to decrease the particle en&gye-
insignificant. ThusH>1,R>L meaning thatS>1 and that crease the correlation radi&sand the thickness, and in-
the quasiclassical expression in H@1) provides a fairly  crease the amplitude of inhomogeneitlesNumerical esti-
accurate description_ of diffusion and relaxation parametersmates show that the 2D localizatidi@5) can be observed

A similar system is the system of electrons above heliumy|most exclusively for low-energy particles for which only
or hydrogen surface in weak electric field. Numerically, inia first minibande, , is accessibleS(E)=1. At higher en-
fields€=10°® V/cm, mgin the above equations should be ergies, the exponel%VS) becomes too large.
replaced b}"gg: 1.6x10°° erg/cm, \.Nh||e|_=(772/6m?g)1/3 Comparison of Eqs(46), (65), and (69) for diffusion of
=3.78<10°° cm. The electron-helium systéhf® differs e low-energy particles within the single miniband shows

from the trapped ultracold neutrons in two ways. First, thejnat the localization exponent can be written in a universal
inhomogeneities of the surface of liquid helium or thick he-f5rm as

lium films are ripplons (at T~1 K, R~20 A, |

~0.8 A) and are not static. Though this does not necessar- 2 (L\®  ®(qR)
ily change the results, a more direct application is the elec- o(E)= m (_ q (76)
tron system above a thin helium film on the surface of inho- 2RY2\m| agtagt2a

mogeneous solid substrate in a setup similar to the quasi-1D

electron-helium system of Ref. 47 or electrons on solid hy{in single-wall systems, the factor &/;+az,+2a;,) should
drogen. The scale of inhomogeneities in a setup of the*fype be replaced by 1L The plot of function®(x), Eg. (46), is

is large,|~R~1um>L meaning thatS>1 and that one given in Fig. 9. This function grows very rapidly with in-
should use the quasiclassical results for diffusion coefficientcreasingx, and one is unlikely to see localization fgiR
Another peculiarity is that the electron in strong electric field>1.5. The universality of the coefficient in E¢6) for all
creates a dimple on the helium surface. This makes the ethese diverse systems is explained by the choice of coeffi-
fective mass dependent on the electric field and leads, in theients in the definition of the spatial scalevia the derivative
limit of large fields, to selftrapping or auto-localization of of the normalized wave function on the w#l3).

electrons in heavy ripplonic polarons. As a result, our de- After qR reaches a certain critical valug=q.R, the sec-
scription can be used without modifications only in the rela-ond energy miniband becomes accessible and the localiza-
tively low electric fields. The most promising application of tion exponenty is not described by Eq76) and Fig. 9 any
this type may be the system of electrons on the surface ghore. These critical values, are different for different sys-

solid hydrogen. tems. For example, for channels with two impenetrable walls
x.=0.R=37R/L; for a bouncing ball, the critical value is
I. Scattering by surface inhomogeneities and localization smaller, X.= qCR521’3772’3(~62—~61) 1’2(R/L) —3.57R/L.

The above expressions for diffusion coeffici@tE) and These critical values ok.=q.R are outside Fig. 9 for all
mean-free pathC=2D/v determine thgweak localization = L=<R. The localization with more than one accessible mini-
lengthR for particles with energf (Refs. 14 and B bands can be observed only fBfL<1. The multiband lo-
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calization exponent is not universal because the spectra arfdce roughness on particle spectra, mean field, diffraction
interband gaps depend on the system geometry though thpatterns, etc. In short, the answer is no. A simple picture
typical energy dependence of the localization exponent reexists only for the effects that can be described with the help

sembles the sawlike curve in Fig. 6. of collision integrals with the energy functions &(E;
—E,) in them (2). The wall-induced spectral changes in-
IV. DISCUSSION AND SUMMARY volve parts of the collision operator not with the ener@y

. ' functions 6(E,—E,), but with the principal part integrals

In summary, we derived general expressions for the relaxp(1/E,—E,). As a result, such processes should take into
ation time operator for ballistic particles scattered by weakyccount the termsE(l—Ez)((SzplW(zo)} in the matrix ele-
surface roughness in quantized systems. These expressiqfgnts(4). These terms, in turn, are not universal and cannot
provide, often analytically, the values of transport and localye easily incorporated into the equations.
ization parameters. The results are illustrated for such di- similar argument explains the difficulty of calculations in
verse systems as classical or degenerate particles in ultrathife quantum resonance regime. In this regime, there is a
films and channels, multilayer systems, single-particle diffu-strong coupling between pure and mixed quantum states of
sion, diffusion of particles weakly bound to rough substratesparticles (coupling between diagonal and off-diagonal
quantum bouncing balls with rough walls, etc. Green’s functionsthat requires to include the principal part

Outside of the quantum resonance region, the transpofhtegrals along with the energy functions even in the parts
equation and relaxation time operat@29), expressions of the collision operator responsible for transport. Even intu-
(24)—-(27) for the transition probabilities via the intra- and jtjvely, it is clear that in resonance the matrix elemerts (
interwall correlation functions of surface corrugation, and_E2)<5¢1|,/j(20)> do not disappear from the equations. We

the analytical expressiong30)—(32) for the corrugation- \ ant to emphasize that all these difficulties associated with
induced relaxation time, are system independent. All systemy,o resonance regime exist fquantizedfilms with usual

specific information is hidden in the energy spectreftt)  pyik impurities as well. As it was shown in Ref. 6, the quan-

and the values of unperturbed wave functiofi¢x,) (or tum resonance regim@;., 7~ 1 corresponds to a moderatel
their derivativey on the walls. Inside the resonance region qime; . 7 P y

described in Ref. 6, the situation is much more complicate(!f'j‘rge numbesS of accessible minibands;,. The quasiclas-

even numerically. At present, we cannot provide any generasf'caI domain of large quantum numbese-1 (thick films)

expressions, including those for effective scattering prob—and _the ultraquantum case of smSII(uItr_athln filmg are
tside of the anomalous resonance region.

abilities, for this regime and can approach the problem onI)PuThe next step should be the simultaneous study of bound-

on a system-by-system basis. Needless to say, all the diffi- R S . . )
culties associated with the resonance region disappear in t y and bulk scattering in th'r.] f|Ims’ including the interfer-
ence terms beyond the Matthiessen’s rule.

guasiclassical regime, i.e., for large-scale systems.

Most of the problems discussed in the paper are either
transport problems or transport-related ones. The natural
guestion is whether it is possible to get a similar description This work was supported by NSF Grant No. DMR-
for other physical problems such as the effect of weak sur9705304.
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