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Abstract

Comparative effects of elastic scattering by random surface inhomogeneities and bulk impurities
are discussed for ultrathin quantised systems. A simple general surface collision operator is
derived outside of the quantum resonance domain. Analytical and semi-analytical applications
to corrugation-defined localisation and transport in various types of physical systems are
presented.

1. Introduction

At first glance, the elastic scattering by random surface inhomogeneities should
not be very different from scattering by bulk defects such as impurities. However,
while the basic effects of impurity scattering are described in textbooks, a similar
simple account of surface scattering is missing (see Voronovich 1994). Below
we identify the processes for which the effects of weak scattering by random
surface inhomogeneities and impurities are indeed similar. We derive a bulk-like
surface collision operator that can be used as a general boundary condition in
a wide range of parameters and apply it analytically or semi-analytically to
diverse problems such as transport in ultrathin systems, bouncing ball motion,
localisation of particles by corrugated substrates, multilayer systems, etc.

One always has a full set of functions that can be used as a basis for impurity
problems. For randomly corrugated walls, especially with the boundary condition
ψ = 0, the domain of existence of the wave functions and the proper basis for
exact expansions are not defined. The resulting difficulties can be illustrated by
the matrix element of the Hamiltonian Ĥ = Ĥ0 + V̂ with the wave functions
ψ = ψ(0) + δψ (here Ĥ0 and ψ(0) describe the ‘flat’ geometry; V̂ and δψ are the
corrugation-induced changes):

δ〈ψ1|Ĥ|ψ2〉 = 〈ψ(0)
1 |V̂ |ψ

(0)
2 〉+ (E1 − E2)〈δψ1|ψ(0)

2 〉 .

The first term is the standard perturbative matrix element V12. The second
term with the corrugation-induced δψ is much more complicated and cannot be
easily evaluated without the proper basis. This term disappears for processes
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with E1 = E2 clearing the way to an impurity-like perturbative description of
boundary scattering. We will see that the corrugation-related matrix elements
V12 calculated under the condition E1 = E2 are almost the same irrespective of
particle spectra, types of walls, interfaces, and bulk fields between them.

The effect of random surface corrugation on transport and localisation of
particles along random rough walls can be approached in two steps. The first one
is to determine the set of physical conditions under which one can perform the
perturbative calculations with E1 = E2 in the intermediate states and circumvent
the difficulty caused by the lack of the proper expansion basis. After this is
done, one can use the standard bulk-like transport technique similar to that for
bulk impurities. The main issue is how to define the corrugation-induced part
V̂ of the Hamiltonian unambiguously.

As the first step, the present authors have derived diagrammatically a quantum
transport equation for systems with weak scattering by random rough walls
or bulk impurities (Meyerovich and Stepaniants 1998). The essential difference
from the standard Keldysh technique in combination with impurity averaging
(see Rammer and Smith 1986) is the quantisation of motion in the x-direction
perpendicular to the walls; the motion along the walls remains quasiclassical.
This quantisation requires the replacement of the 3D bulk energy spectrum ε(p)
by a set of 2D minibands εj(q) and results in the matrix form of the transport
equation. Almost always, this quantum transport equation with weak surface or
impurity scattering acquires the simple Boltzmann–Waldmann–Snider form

dnj(q)
dt

= 2π
∑
j′

∫
Wjj′(q− q′)[nj′(q′)− nj(q)]δ(εjq − εj′q′)

d2q′

(2π)2 , (1)

where nj(q) is the distribution function of particles in miniband εj(q), q is the
2D momentum in the direction parallel to the walls, and Wjj′(q− q′) is the
probability of collision-induced transitions between the states (j,q) and (j′,q′). In
the range of parameters in which equation (1) is valid, the remaining problem is
to relate the transition probabilities Wjj′(q− q′) for scattering by random rough
walls to the statistical and geometrical properties of surface inhomogeneities.

Equation (1) cannot be used in a narrow quantum resonance region in which
the gaps between the quantised energy levels Ω are comparable to the effective
corrugation-induced transition probability, Ωτ ∼ 1. Since the energy gaps Ω
increase with decreasing spacing L between the walls as 1/L2, this presence of
an anomalous quantum resonance domain is inevitable with miniaturisation of
the system. The quantum resonance regime Ωτ ∼ 1 corresponds to a moderately
large number S of minibands εjq accessible to a particle with energy E and is
described by one of the conditions (Meyerovich and Stepaniants 1998):

S ∼ (LR/`2) 2
3 > 1, L2/R2 ;

1 < S ∼ (L2/R`) 2
3 < L2/R2 , (2)

where ` and R are the average ‘height’ (amplitude) and ‘size’ (correlation radius)
of surface corrugation. The second equation should be used when the correlation
radius of the surface inhomogeneities is much smaller than the spacing between the
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walls, R¿ L, and the first one should be used elsewhere. [Note that our method
requires that the amplitude of the inhomogeneities ` should be much smaller than
their correlation radius and spacing between the walls, `¿ R,L. This condition
means that the inhomogeneities have small amplitude and are not sharp and that
the particle phase and direction of momentum do not change much after a single
collision with the wall; in the opposite case of strong roughness the mean free
path L ∼ L and the transport problem becomes trivial.] The quasiclassical range
of large quantum numbers S À 1, as well as the ultra-quantum limit of small
S, are outside of the quantum resonance domain (2). In the quantum resonance
regime, transport processes are coupled to off-diagonal (mixed) quantum states
and cannot be approximated by equation (1) which accounts only for the diagonal
(pure) states. This resonance coupling makes the description of weak impurity
and surface scattering becomes almost intractable.

Outside of this quantum resonance region, the coupling to the off-diagonal
mixed states is small. The case Ωτ ¿ 1 is effectively a single-band case, while at
Ωτ À 1 the contribution of the off-diagonal states contains 1/Ωτ and is small.
The emerging quantum transport equation for pure states with quasiclassical
motion along the walls reduces to equation (1). As an additional benefit, equation
(1) contains the energy δ-function in the collision operator and allows one to
ignore the lack of the basis wave functions, at least in the second order in
boundary scattering.

Below we study only the ‘normal’ regime (1) and show that the surface-induced
transition probability W is system-independent for a wide range of systems and
physical problems.

2. Corrugation-Driven Collision Operator

There are several approaches to calculation of the matrix elements of the ‘corrugation-
induced perturbation’ V̂ and the corrugation-driven transition probabilities
Wjj′(q,q′) = 〈|Vjq,j′q′ |2〉ξ (here 〈...〉ξ is the averaging over the random surface
inhomogeneities).

One can start from the exact single-wall S-matrix (Voronovich 1994) and expand
it to a multi-wall situation and particles with different spectra. Unfortunately,
because of the interwall interference, the multi-wall S-matrix does not factorise
into a simple product of single-wall ones. As a result, this approach is not used
beyond the simplest single- or two-wall systems without interference (Makarov et
al. 1995).

The ‘adiabatic’ approximation for the wave function (Kawabata 1993) can
circumvent the lack of an explicit basis for wave functions in systems with
randomly corrugated boundaries. If the change of the wave function along the
channel with two randomly corrugated walls,

x = ±L/2∓ ξ1,2(y, z), 〈ξ1,2〉 = 0 (3)

is slow, one can start from the ‘adiabatic’ wave function

Ψ ∼ exp(iqyy + iqzz) sin
[
πj

x+ L/2− ξ2(y, z)
L− ξ1(y, z)− ξ2(y, z)

]
. (4)
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This requires a slow variation of the wall shape along the channel, qRÀ j, j`/L
(where R is the ‘size’ of inhomogeneities, i.e. the correlation radius of surface
corrugation). This restriction, by itself, is not perturbative and is sufficient for
the calculation of the matrix elements and the reflection coefficient. However,
the transport calculations rely on the perturbative Boltzmann equation which
requires an extra condition on the smallness of the wall corrugation, `¿ R,L.
In the end, the ‘adiabatic’ transport restrictions are equivalent to supplementing
the perturbative condition `¿ R,L by a strong extra condition qRÀ S (where
S is the number of occupied and/or accessible minibands). Taken together, these
restrictions are stronger than the ones used in purely perturbative calculations.
On the positive side, the adiabatic method, when applicable, makes the physics
transparent. The adiabatic method fails in the quantum resonance regime.

The most consistent approach is the exact mapping of the problem with
the corrugated boundaries onto an equivalent problem with flat boundaries and
distorted bulk (Tesanovic et al. 1986; Trivedi and Ashcroft 1988; Meyerovich
and Stepaniants 1994, 1995, 1997). For a single wall x = x0 + ξ(y, z), the
flattening is a simple coordinate shift, X = x− ξ(y, z). The conjugate momentum
transformation, p̂x = P̂x, p̂y,z = P̂y,z−ξ

′
y,zP̂x transforms the Hamiltonian Ĥ0(p, r)

into Ĥ0(P,R) + V̂ (P,R, ξ) with a random bulk part V̂ that depends on
the wall corrugation ξ(y, z). With two walls with the average clearance L,
x = ±L/2 ∓ ξ1,2(y, z), both walls can be flattened simultaneously by stretching
the film, X = [x+ ξ1/2− ξ2/2]/[1− ξ1/L− ξ2/L], Y = y, Z = z. The conjugate
momentum transformation p̂→ P̂ identifies explicitly the effective random bulk
distortion V̂ {ξ1,2}. The matrix elements of V̂ with the wave functions ψ0

for the flat geometry provide the transition probabilities Wjj′(q,q′). Though
the Jacobian J of this transformation is J 6= 1, the Jacobian-generated terms
in W are small outside the resonance region (2) and can be disregarded (for
a detailed analysis of the mapping transformation approach and bibliography
see Meyerovich and Stepaniants, 1998). With the same accuracy, the two-wall
results can be extended to the multilayer geometry by applying the coordinate
transformations to each layer independently. The mapping transformation approach
provides a rigorous mathematical definition of the ‘corrugation-induced’ bulk-like
perturbation V̂ and allows one to control the accuracy at each step of the
calculations.

At present, the mapping transformation method is the only one that can extend
the calculations to the quantum resonance region (2) though the Jacobian-generated
terms make the results non-universal (system-specific) and hinder the application
to multilayer systems.

The fourth and the simplest approach is to replace a wall by some potential
U(x) and to calculate the distortion V = ξ∂U/∂x related to the corrugation-driven
ambiguity in the wall’s position, U(x+ ξ) = U0 + ξ∂U/∂x (Fishman and Calecki
1989, 1991). This approach assumes the energy conservation in all intermediate
states and cannot be used in the quantum resonance regime.

We expanded the last approach to multi-wall systems with interwall interference.
Since the accuracy of this approach is unclear, the results were controlled using
the more consistent mapping transformation approach. Outside of the quantum
resonance regime, both approaches led to the same universal results for a wide
range of systems such as:



Ultrathin Quantised Systems 57

• systems with a single random rough wall x = ξ(y, z), 〈ξ〉 = 0; the particles
are bound to it by some attractive potential U(x), U(x → ∞) = 0;
U =∞ on the wall
• single-wall systems, x = ξ(y, z), with particles confined near the wall by a

holding potential, such as gravity or an electric field, with U(x→∞) =∞
• systems with two impenetrable rough external walls, x = ±L/2∓ξ1,2(y, z),
〈ξ1,2〉 = 0, with an arbitrary potential U(x) in-between; U = ∞ on the
walls
• layered systems with corrugated transparent interfaces between the layers,
x = xα + ξα(y, z), and an arbitrary bulk potential U(x) in-between
(the potential changes abruptly by [U ]α on the interface); the overall
confinement in the x-direction is ensured either by impenetrable external
walls or by a holding potential
• particles with an arbitrary spectrum ε(p) = ε(−p), such as p2/2m,

‘relativistic’ spectrum cp, spectra with gaps, etc., for these geometries.

We calculated the corrugation-induced transition probabilityWαβ
jj′ (q,q

′) between
the states Ψ(0)

jq = ψ
(0)
jq (x) exp(iq · s) (where Ψ(0)

jq is the wave function without
corrugation). For an interlayer interface α, the corrugation-induced perturbation
is V̂ (α) = ξα∂U/∂x = ξα[U ]αδ(x − xα), and the corrugation-induced transition
probabilities are

Wαβ
jj′ = Re

[
ζαβ(q− q′)[U ]α[U ]∗βψ

∗(0)
jα ψ

(0)
j′αψ

(0)
jβ ψ

∗(0)
j′β ] , (5)

where ψ
(0)
α = ψ(0)(x = xα), and ζ(q) is the Fourier image of the correlation

function of corrugation,

ζαβ(q) =
∫
ds eiq·s

∫
ds1 ξα(s1)ξβ(s1 + s) .

The terms in W with α = β describe the transitions caused by the multiple
scattering by the same wall, and the off-diagonal terms with α 6= β describe the
effect of interwall correlations of surface inhomogeneities on transitions.

For impenetrable external walls with U →∞, the potential should be excluded
from the matrix elements of ξα∂U/∂x with the help of the Schrödinger equation.
In the end, the probabilities W of transitions caused by scattering by rough
external walls are determined by the derivatives of unperturbed wave functions
on the walls:

W
(αβ)
jj′ =

1
4m2 Re[ζαβψ

∗(0)′

jα ψ
(0)′

j′α ψ
(0)′

jβ ψ
∗(0)′

j′β ] . (6)

The external wall (α)–interlayer interface (β) interference term in the scattering
probability is

W
(αβ)
jj′ = − 1

2m
Re
[
ζαβ [U ]βψ

∗(0)′

jα ψ
(0)′

j′α ψ
(0)
jβ ψ

∗(0)
j′β

]
. (7)

Equation (5) for internal interfaces is the same irrespective of the particle
spectrum, while equations (6) and (7) are written for ε = p2/2m [general equations
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for arbitrary ε(p) are too cumbersome]. For particles ε(p) in a homogeneous
two-wall system, equation (6) should be replaced by

W
(αβ)
jj′ =

ζαβj
2j
′2

L2

[εjq′ − εj′q]2

(j2 − j′2)2

[
δαβ −

1− δαβ
(−1)j+j

′

]
. (8)

Usually, the inhomogeneities from different surfaces α 6= β are not correlated
with each other and ζαβ = 0. If the surfaces α 6= β are correlated (Altfeder
et al. 1998), the interwall contribution is non-trivial: while W (αα) is always
positive, the sign of the interwall term W (αβ) with α 6= β is not fixed, and the
interwall interference can be constructive or destructive depending on a particular
realisation of the system; overall, W is positive since ζαα(q) + ζββ(q) ≥ 2|ζαβ(q)|.
For example, the interwall term for a homogeneous film with two impenetrable
external walls (6) is an oscillating function of the band indices,

W
(12)
jj′ = − 1

L2m2 (−1)j+j
′
(
πj

L

)2(
πj′

L

)2

Reζ12(q− q′) . (9)

Finally, the collision operator in equation (1) is determined by the sum of all
corrugation-induced W (αβ) over all walls,

dnj

dt
= 2π

∑
α,β,j′

∫
W

(αβ)
jj′ [nj′ − nj ]δ(εjq − εj′q′)

d2q′

(2π)2 . (10)

3. Effective Elastic Relaxation Time

The integration in the transport equation (10) over dq′ is done using the energy
δ-function, δ(εjq−εj′q′) = δ(q′−qjj′)/vjj′ , where qjj′ is the solution of the equation
εj′(qjj′) = εj(q), and vjj′ = (∂εj′q′/∂q′)q′=qjj′ is the velocity for isotropic εjq.
The angular integration is eliminated, as usual, by using the angular harmonics.
The currents are given by the first harmonic of the distribution n

(1)
j ≡ νj , the

equation for which involves only the zeroth and first harmonics (0,1)Wjj′(q, qjj′′)
of W (q− qjj′) over the angle q̂qjj′ ,

dνj(q)/dt = −
∑
j′

νj′(qjj′)/τjj′ ,

2
τjj′

=
∑
α,β,j′′

[
(δjj′ (0)W

(αβ)
jj′′ − δj′j′′ (1)W

(αβ)
jj′ )

qjj′′

vjj′′

]
. (11)

This collision operator (effective relaxation time) τ̂−1 in equation (11) serves
outside of the resonance region (2) as a general boundary condition for the
diverse types of systems described above. This matrix transport equation and the
relaxation time operator closely resemble those for the bulk impurity problem. The
angular harmonics of the surface correlation function in the scattering probabilities
(5)–(8), ζ(0)(|q− qjj′ |)− ζ(1)(|q− qjj′ |), play the role of the impurity transport
cross section, σtr(|q− qjj′ |) = σ(0) − σ(1).
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The set of S in equations (11) for the distribution functions νj(q) is complicated.
The level of complexity depends on the number of equations S and on the range
of q for which this set should be solved. The number of equations is the number
of occupied or energetically accessible minibands εj(q) and can be very large or
even infinite. In each equation, the arguments of the distribution functions νj
and νj′ , q and qjj′(q), are different reflecting the integral nature of the collision
operator. The number of equations becomes finite and involves only a finite set
of the values q in two situations. For degenerate fermions, the values of q and
qjj′ in the equation for νj(q) are the Fermi momenta qj and qj′ for minibands
j and j′, EF = εj(qj) = εj′(qj′), while the number of occupied minibands is
restricted by the Fermi energy EF . For single-particle problems, the values of
q and qjj′ are the momenta qj and qj′ of the particle with overall energy E
in the minibands j and j′, E = εj(qj) = εj′(qj′), while only a finite number of
the minibands are energetically accessible. In other situations, e.g. for particles
with the Boltzmann distribution function, the number of occupied minibands is
technically infinite, while the equations should be solved for all values of q.

In three important physical situations equations (11) decouple from each other
and the matrix τ−1

jj′ becomes diagonal, τ−1
jj′ = τ−1

j δjj′ . Then the set (11) can be
solved analytically. This happens when:

(i) only the first (lowest) quantum state j is energetically accessible, S = j = j′ = 1
and the set (11) reduces to a single linear equation with

2
τ11

=
∑
α,β

[
(0)W

(αβ)
11 − (1)W

(αβ)
11

] q11

v11

; (12)

(ii) the clearance between the surfaces is small, L¿ R, and the energy split
Ωjj′ ∝ 1/L2 between levels is large; then the interband transitions are negligible
in comparison to intraband scattering, Wj 6=j′ ¿Wjj , and

1
τjj′
' 1
τj
δjj′ ,

1
τj

= 1
2

∑
α,β

[(0)
W

(αβ)
jj −(1) W

(αβ)
jj

] qjj
vjj

; (13)

(iii) the particle wavelength is large, qR ¿ 1, and all W are constant with
(0)W = 2W (0), (1)W = 0 (quantum reflection):

1
τj

=
∑
α,β

∑
j′

W
(αβ)
jj′ (0)

qjj′

vjj′
. (14)

In all other cases, equations (11) have to be solved numerically.

4. Examples and Applications

The analytical calculations involving equations (12)–(14) can be performed for
any surface correlator ζ(s). The correlator should be specified in numerical
applications; the examples below use the most common Gaussian correlators
ζ(αβ)(s) = `2αβ exp(−s2/2R2

αβ) with the hypergeometric angular harmonics (0)ζ−(1)ζ

= 4π`2R2
1F 1( 3

2 ,2,−2q2R2). To avoid parameter clutter, we assume that Rαβ
are the same, Rαβ = R, while the amplitudes `αβ are different, `2αβ = aαβ`

2 (`
is the scale)
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The most direct application is the calculation of diffusion, conductivity, and
mobility coefficients for particles in quantised films and channels with an average
clearance L between the corrugated walls in the absence of external field U(x).
This has been done in detail in our previous paper for degenerate fermions
(Meyerovich and Stepaniants 1998). That paper contains the analytical expressions
for the conductivity σ, graphs of σ in different ranges of pFR, R/L and S, the
analysis of interwall correlations for this geometry, etc. A typical example is the
conductivity of an ultrathin metal film of thickness L at pFR¿ 1,

σ = (2e2L2/π4`2)Π(z,R/L) ,

Π
(
z,
R

L

)
=

3L2/4R2(a11 + a22)
S(z)(S(z) + 1)(2S(z) + 1)

S(z)∑
j=1

ν(z)− j2

j2[1 + Ξj ]
,

Ξj =
6

2S(z) + 1
(−1)j+S(z)a12

a11 + a22

, z =
2
π
NL2 ,

where N is the 2D density of electrons, and ν = (pFL/π)2. Here Ξj shows that
the interwall correlations cause an oscillating effect in conductivity, similar to
Fig. 2 below, depending on whether the number of occupied minibands S is even
or odd. The effect of interwall correlations gradually decreases with the increase
in S. Though the approach used by Meyerovich and Stepaniants (1998) was less
general than the one discussed above, the results are the same and need not be
repeated here.

The second example is the single-particle diffusion D in quantised systems
with rough walls,

D(L¿ R) =
L2/4πS`2R2

a11 + a22 + 2a12

S∑
j=1

v3
j /j

2qj(∂εjqj/∂j)
2

1
F1( 3

2 , 2,−2q2
jR

2)
. (15)

This equation can be used for quasiparticles with an arbitrary energy spectrum
ε(p). Examples are the single-electron diffusion in ultrathin metal films and
channels or quasiparticle diffusion through capillaries or superleak in superfluid
HeII.

Fig. 1 illustrates equation (15),

D(ω) =
L3c

`2
1

a11 + a22 + 2a12

Π(R/L,Rω/c) , (16)

for ‘phonons’ [particles with linear spectrum, ε(p) = cp] as a function of frequency
α = Rω/c at R/L = 314.

Fig. 2 shows the energy dependence of the single-particle diffusion coefficient

D(E) = (L2/m`2)Π(R/L,R
√

2mE) (17)

for particles with quadratic spectrum, p2/2m, α = R
√

2mE, in the opposite limit
LÀ R, for R/L = 0 ·003, a11,22 = 1 and two interwall amplitudes a12 = 0 and 0 ·7
(solid and dotted lines).
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Fig. 1. The function Π(α), α = Rω/c, for the single-phonon
diffusion coefficient (equation 16) at R/L = 314.

Fig. 2. Single-particle function Π(α), α = R
√

2mE, for the
single-particle diffusion coefficient (17) at R/L = 0 ·003, with
a11,22 = 1 and a12 = 0 (solid line) and a12 = 0 ·7 (dotted line).

The singularities (vertical drops) in Figs 1 and 2 occur at the points in which
the number S of energetically accessible minibands εj(q) = [(πj/L)2 + q2]/2m
increases by 1 with increasing particle energy. The reason for the drop in the
mean free path and transport coefficients is the opening of additional scattering
channels associated with transitions into and from this newly accessible miniband
and the corresponding step-like increase in the scattering cross section (for more
details see Meyerovich and Stepaniants 1997).

Next, let us consider particles near a corrugated wall in a holding field mgx
such as ultra-cold neutrons in a gravitational trap (Lushchikov and Frank 1978;
Alfimenkov et al. 1992; Geltenbort et al. 1998; Malik et al. 1999) or electrons in
an electric field on the helium or hydrogen surface. The size of the first bound
state is L = (2m2g)−1/3; the energy levels εj/mgL are given by the zeros of
the Airy (wave) functions. The diffusion coefficient in the longwave limit α =
R
√

2mE ¿ 1 is

D(α¿ 1) =
2

m4g2S2ζ(0)

S∑
j=1

(E − εj)→ 8
5

HL3

mSζ(0)
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(the last equation is quasiclassical; H = E/mg is the amplitude of the particle
jumps).

The value of the diffusion coefficient D determines the mean free path L and
the localisation length R (Lee and Ramakrishnan 1985; McGurn and Maradudin
1984; Stepaniants et al. 1999):

R(E) = L(E) expϕ, ϕ = πmS(E)D(E) ,

where S is the number of accessible minibands εjq. For example, if only the first
miniband is occupied,

ϕ ≡ πmD =
2L6

R4`2
q2R2

1
F1( 3

2 ; 2;−2q2R2)
≡ 2L6

R4`2
Φ(qR) . (18)

The function Φ(x) is plotted in Fig. 3. Being applied to ultra-cold neutrons,
equation (18) shows that the weak localisation is feasible if the neutron velocities
are v < 2 cm s−1 (at present, the velocities of trapped neutrons exceed 10 cm
s−1). The possibility to observe localisation of electrons on helium or hydrogen
surfaces is more promising. Equation (18) can be applied to any particles with a
single 2D bound state ε0q = ε0 + q2/2m on a slightly corrugated substrate. One
can expect localisation for hydrogen particles bound to the surface of helium: at
T ∼ 1 K, the ripplon corrugation yields R ∼ 20 Å, ` ∼ 0 ·8 Å; then the coefficient
in (18) is 0 ·3, and the exponent ϕ < 12 for particles with momenta qR < 2.

Fig. 3. The function Φ(x) (see equation 18).

5. Summary

In summary, we analysed boundary scattering effects in ultrathin ballistic systems
with randomly corrugated walls. The general collision operator (11) provides a
simple quantitative, often analytical, description of dissipative, transport, and
localisation processes. This operator can be used, apart from the diverse examples
discussed above, for transport in multilayered media in application to giant
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magnetoresistance, heat transfer from trap walls to ultra-cold particles, etc. The
extension to a simultaneous description of surface and bulk scattering, including
the surface–bulk interference beyond the Matthiessen’s rule, is straightforward.

The results provide a new insight into the difference between scattering by static
and dynamic surface inhomogeneities. The latter problem arises in thermalisation
between bulk and surface systems, the dynamic bouncing ball problem, scattering
by surface excitations, etc. In static problems, the collision operator originates
from 〈|Vjj′(q,q′)|2〉ξδ(εjq− εj′q′). In a non-static case, this δ-function changes to
δ(εjq − εj′q′ − ω) and the quantum problem becomes anomalous (2) if the ratio
of any pair of variables ω, Ωij , 1/τ is comparable to unity. This widens the
anomalous quantum regime (2) for dynamic problems.

The anomalous quantum resonance regime Ωjj′τ ∼ 1 given by (2) is fundamentally
different. So far, it was analysed only for one- and two-wall geometries by the
mapping transformation method. The description is not universal and requires
system-specific calculations from the start (Meyerovich and Stepaniants 1998).
For multilayer systems, both global and layer-by-layer transformations lead to
singularities in the equations.

A more detailed account of the results will be published elsewhere.
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