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Surface roughness and size effects in quantized films
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The effect of random surface roughness on quantum size effects in thin films is discussed. The conductivity
of quantized metal films is analyzed for different types of experimentally identified correlation functions of
surface inhomogeneities including the Gaussian, exponential, power-law correlators, and correlators with a
power-law decay of the power density spectral function. The dependence of the conductivityhe film
thicknessL, correlation radius of inhomogeneiti®& and the fermion density is investigated. The goal is to
help in extracting surface parameters from transport measurements and to determine the importance of the
choice of the proper surface correlator for transport theory. A peculiar size effect is predicted for quantized
films with large correlation radius of random surface corrugation. The effect exists for inhomogeneities with
Gaussian and exponential power spectrum; if the decay of power spectrum is slow, the films exhibit usual
quantum size effect. The conductivity exhibits well-pronounced oscillations as a function of channel width
L or density of fermions, and large steps as a function of the correlation rRditizese oscillations and steps
are explained and their positions identified. This phenomenon, which is reminiscent of magnetic breakthrough,
can allow direct observation of the quantum size effect in conductivity of nanoscale metal films. The only
region with a nearly universal behavior of transport is the region in which particle wavelength is close to the
correlation radius of surface inhomogeneities.
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[. INTRODUCTION transport problems are more interesting in systems with
weak rather than with strong roughness. Transport in systems
Progress in material technology, especially in nanofabriwith strong roughness is trivial: each wall collision com-
cation, ultrathin-film manufacturing, ultraclean and high- pletely dephases the particles and the mean free path cannot
vacuum systems, etc., requires better understanding @&¥xceed the distance between the walls.
boundary scattering in physical processes. The boundary ef- The prevalent way to characterize the random surface
fects should be an integral part of any study of quantunfoughness and/or thickness fluctuations is to use the correla-
wires, wells, and films. Boundary scattering is especially im-tion function of surface inhomogeneities:
portant for transport in ultrathin and/or clean systems in

which the particle mean free path is comparable to the sys- 1
tem size. {(9=L(g)=(&(s))é(si+9)=A"" | &(s)é(si+9)dsy,
Below we consider the effect of random surface rough- (1)

ness on quantum transport in quantized quasi-two-
dimensional(quasi-2D systems such as, for example, ultra- where the vectos gives the 2D coordinates along the sur-
thin metal films. The main issue is to find how sensitive isface, £(s) describes the deviation of the position of the sur-
the transport along such film to the statistical properties oface in the point with 2D coordinates from its average
random surface inhomogeneitighickness fluctuationsAn  position, (¢(s)) =0, andA is the averaging area. Here it is
important by-product of our systematic comparison of differ-assumed that the correlation properties of the surface do not
ent classes of random surface inhomogeneities is the predidepend on direction. Two main characteristics of the surface
tion of a new type of size effect in quantized films. This correlation functions are the average amplitud¢height” )
effect manifests itself as large oscillations of conductivity | and correlation radiug'size” ) R of surface inhomogene-
as a function of the film thickneds In contrast to the usual ities.
quantum size effedQSB), the peaks can be observed only at  Any transport theory for systems with rough boundaries
relatively large values of. The distance between the peaks should provide the explicit dependence of the particle mean
is large and is roughly proportional t. The observation of free path(or the conductivity along the wallon the cor-
this QSE opens an experimental method of identification ofelator of surface inhomogeneitig¢$s). Without bulk scat-
the type of surface roughness. tering, the conductivityr is determined by the relation be-
The choice of quasi-2D systems is explained by a desireween three length scales: particle wavelength width of
to avoid divergence of surface fluctuations and strong localthe channell; and correlation radius of inhomogeneiti&s,
ization effects which are inherent to 1D systems and make # the roughness is weak, the fourth length paramegsters
systematic quantitative study of the effect of surface inhomothe conductivity as a coefficient:
geneities on transport virtually impossible. In contrast to 1D

systems, the randomly fluctuating 2D surfaces are practically o2 |2
stable while the localization length in systems with weak o=——f(A,L,R). 2
surface roughness is exponentially largen general, the e
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Note that this 2D conductivity differs by a length unit from culty which one does not encounter in semiconductors. The
the usual 3D conductivity and, as a result, has a dimensiorperiod of the QSE oscillations in the dependerndg.) is
ality of conductance. usually small, almost atomic, ¢ (below, except for final
The form of the surface correlatdi(s) can vary from results,2A=1). For this reason typical experimental objects
surface to surface. Most of the theoretical calculations asare lead or semimetal films such as bismuth. Below we pre-
sume that this correlator is Gaussian. The numerical simulgdict a new type of QSE with large-period oscillations of
tions, on the other hand, often rely on various generators fof (L) at relatively large values oL that could lead to
random rough surfaces without paying much attention to th@bservation of a QSE in a wider group of metals. Large-
correlation function of the generated inhomogeneities. BottPeriod QSE oscillations have already been obsefsed the
approaches are not satisfactory since the experiments on s€cond Ref. 5 however, sketchy experimental details do not
face scattering and diffraction patterns show that real surdllow one to identify reliably this observation as the new
faces exhibit surface correlatof® of various forms:?Even  type of QSE predicted below. Our results can also resolve the
one and the same film can exhibit various correlation proplong-standing controversy on the influence of the structure of
erties on different stages of growth. As a result, the behaviofe nanoscale film on its resistivity. _ _
of the functionsf (A,L,R) in Eqg. (2), which reflects the cor- Recently, we developed a transparent semianalytical for-
relation properties of inhomogeneities, can vary from surfacénalism for transport in systems with rough boundaries that
to surface even when the main correlation paramétensiR allows simple uniform calculations in a wide range of param-
remain the same. eters and for various types of roughness with and without
The correlation functiongl) are characterized by differ- bulk spatteringl.z‘?“This formalism unites approacr;es by Te-
ent long-range behavior that can be reliably identified inS@novicetal, ° Fishman and Caleckf, Kawabat?;, Mey-
various surface diffraction and scattering experiments. Wha@rovich and S. Stepaniarifs.and Makarovet al.® (for a
we would like to know is how sensitive is thprticle trans- ~ Prief comparison between different theoretical approaches
port to the form of the surface correlator. In contrast to sur-S€€ Refs. 13 and 20Below we apply this formalism with an
face diffraction and scattering data with angular and/oréXplicit purpose of studying the dependence of the transport
wavelength scanning, the transport coefficients are integrdlo€fficients on the shape of the correlation function of sur-
parameters that include angular and wavelength averaginé’f.lce inhomogeneities. The well-deflned_ limits of ap_pllcabn-
This leaves the question of how sensitive is the conductivityly Of our approach to metal and semiconductor films are
to the shape of the surface correlator wide open. In additiordiscussed in detail in Refs. 13 and 14. _
we are asking a question whether it is possible to identify the Since the 2D mobility of particles is described by essen-
type of surface inhomogeneities from transport experimentdally the same equations as the exponent in the expression
in ultrathin films or multilayer systems without prior infor- for the localization length in films, our study provides the
mation on the form of the surface correlator. The interrelatedlependence of the localization length on the type of the cor-
question is, of course, to what extent one should pay atterf€lation function of random surface inhomogeneities.
tion to the details of the correlator of surface inhomogene- The paper has the following structure. In the next section
ities in analytical or numerical transport calculations for par-We introduce various types of surface correlation functions.
ticles with large mean free paths. The former issue hasection lil briefly describes the transport equation used for
already been raised in Refs. 3 and 4 for a small set of surfaceonductivity (mobility) calculations in QSE conditions. The
correlators on the basis of the Born approximation for wallfesults of transport calculations for different types of correla-
scattering. Below we present a systematic study which i$0rs are given in Sec. IV. Conclusions and experimental im-
based on a more general transport formalism and involves Blications are discussed in Sec. V. Appendix A contains use-
variety of classes of surface correlators. ful analytical expressions for the power density spectral
In short, we want to compare functiofigA,L,R) in Eq. functions of inhompgeneitie; responsible for the behavior of
(2) calculated for various types of the correlation functionsScattering probabilities for different types of correlators. Ap-
£(s) in a wide range of parameters. We start from degenerat@endix B deals with the positions of new type of QSE peaks.
ballistic fermions in quantized metal films. The choice is not
arbitrary: transport in such systems involves the minimal de-
gree of averagingintegration) and can be the most sensitive
to the long-range properties of the surface correlatbys
The quantum size effect in metal films is a subject of We consider an infinite 2D chann@r film) of the aver-
intensive experimental study. Recent QSE experiments withge thickness with random rough boundaries
quantized metal films include conductivityspectroscop§,
susceptibility’ and scanning tunneling microscdpgSTM)
measurements. One of the signature features of the QSE in
metals is a pronounced sawlike dependence of conductivity
on, for example, film thickness(L). This dependence was (the walls are assumed hard with infinite potentidhe in-
predicted for both bufkand surfac® scattering. Experimen- homogeneities are smadl; »(y,z)<L, and random with zero
tally, the QSE in conductivity was studied for metals in Refs.average,(&;)=(&,)=0. Their correlation function;,(s)
5 and 11(for earlier results see references theretowever, and its Fourier imagé;.(q), which is often called the power
experiments on the QSE in metals have to overcome a diffispectral density function or power spectrum, are defined as

II. CORRELATION FUNCTION OF SURFACE
INHOMOGENEITIES

X=L12=&1(y,2), X=—LI2+&,(y,2) )
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_ 2|2
Gi(18) = (&i(s) E(s1+9)) =A lj &(s)é(s1+9)dsy, ()= g {(@=27°R*Ko(aR), (10
ig- * deserves a special comment. This correlator is often consid-
— 2 —
§ik(|CI|)—J d°s éqs(ik(|5|)—27TJO {ik(8)Jo(as)sds ered as “unphysical.” Its Fourier imagé0) contains a func-
(4)  tion Ko(qR) that diverges logarithmically at long wave-

_ _ lengthsg—0. The issue to what extent the correlators are
wheres=(y,z) andq=(qy,q_) are the 2D vectors. In NOMO- «ypygical” and can be reproduced experimentally is irrel-

geneous systems, the correlation function depends only 0Qant in our context. For us, the fact that the Lorentzian
the distance between poinjis —s,| and not on coordinates cqrelator is sometimes used in calculations is sufficient
themselves. The correlation functiogg, and {5, describe  engygh to consider this correlator in the paper. To deal with
intrawall correlations of inhomogeneities ade,={21 are  he divergency, one can truncate the Lorentzian correlator at
the mteryyall corre]anons. Usually, but not always, th_e '”ho'large distancegthe common practice is to make a cut-off at
mogeneities on different walls are not correlated with eachne gistances about 0.1 of the system lefgtAnother op-
other, {1,=0. Thus, everywhere, except for Sec. IVE, it is tjo s to use the generalized power-law correld@rwith
assumed that;,=0. To avoid parameter clutter, we also gmg]| , instead of the LorentziaL0). In order not to intro-
assume that the correlation parameters are the same on bjfjce additional parameters, we use the untruncated equation
walls, 5'112 {=1¢. Then the eﬁectwe correlator contains (10). Even though the divergence &f,(qR—0) does not
2{(s) with {(s) given by equations below. lead to any singularities in transport coefficients, the trans-
Surface inhomogeneities exhibit a variety of types of theport coefficients for Lorentzian surfacésee below often
correlation functions:” To have a meaningful comparison, hehave qualitatively different from systems with other types
we consider the correlation functions that involve only two of random inhomogeneities, even from the systé@swith
characteristic parameters: namely, the amplitideerage gmall .. [Sometimes, the divergence of the power spectrum
height | and the correlation radiugverage sizeR of sur- gy is associated with the fractal nature of the surfate;

face inhomogeneities. _ _ _ . what extent our transport formalism can be used for films
The most commonly used in theoretical applications is th&yith fractal surfaces is an open question.
Gaussian correlation function The last class of correlation functions covers the power-
{(s)=12exp —s22R?),  {(q)=2mI2R2%exp( — 2R%/2), law correlators in momentum space:
. (= —20R = TR Ry
. I . . . _ 7 s)= S/R).
including its I|m|t fo.r small correlation radiuR—0, i.e., the q (1+q2RE)I 2T(1+ 1) A
S-type correlations: (11)
U(s)=1°R?8(s)Is, {(q)=2mI°R®. (6)  The correlators from this group include the Lorentzian in

. . . momentum spack =0 that was observed in Ref.(2ee also
Sometimes, a better fit to experimental data on surfacgs 4) and the exponential correlaté?) at A =1/2.

scattering is provided by the use of the exponential correla- The constants in all these correlators are chosen in such a
tion function way that the value o (q=0)=2wI°R? is the same. This
2e2 provides a reasonable basis of comparison for transport co-
2ml°R @) efficients in films with all these different types of random

(1+g?R?)%?’ surfaces. Indeed, the scattering cross sectiorfei0 does

not depend on the details of short-range and midrange struc-
ture of surface inhomogeneities. Therefore, at Fermi mo-
mentaqez— 0 (more precisely, atjrR<1), the transport co-

{(s)=1%exp—s/R), ((q)=

or by the even more long-range, power-law correlators

2
{(s)= 2ul efficients should be the same for all random surfaf€ke
(1+sY/R2)L1Hw’ only exception is the Lorentziafl0) for which ¢(q) di-
verges at smald.]
,o, (AR In what follows we compare the transport properties of
{(@)=27I"R mK“(qR) (8 the films(5)—(11) in various ranges of the film thickness

correlation radiusR, and particle wavelengtiA = 1/qg (or

with different values of the parameter. The most com- 2D particle densityN).
monly used are the Staras function wjih=1 and the cor-

relator with = 1/2 which has the exponential power spec- I1l. TRANSPORT EQUATION FOR BALLISTIC
trum £(q): DEGENERATE FERMIONS IN QUANTIZED FILMS
£(q)=271%R%xp — qR). 9 The QSE is caused by quantization of motion in the di-

rection perpendicular to the filnp,— 7rj/L, and leads to a
The use of the Lorentzian correlator, which differs from split of the energy spectrura(p) into a set of minibands,
the definition(8) at u— 0 by the factoru in the numerator, €(py,q)— €(j/L,q)=¢€;(q). For simplicity, we consider
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circular Fermi surfaces;(q) = e : where n(l)z v;6(e—ep)eE is the first angular harmonic of
the dlstrlbutlon functiom;(q) atq=q;, andW(O 1)(qJ ,djr)
( ):%[(wj/L)erqu], 0;=0r;=[2me¢ are thE\zeroth and flrst harmonics ‘n)_t(q] qJ )_ over the
angleq;q;, . For some of the correlation function from the
— (ajIL)2]2, (12) previous section the angular harmonics can be calculated

analytically (see Appendix A For others, this calculation is
whereq; is the Fermi momentum for the minibandOne  performed numerically.

can introduce the overall Fermi momentum as The solution of Eqs(19) provides the conductivity of the
film:
qr=1/Ag=(2meg)*2 (13
The relationship between this Fermi momentgmand the _ 9_2 (@)a; (20)
2D density of fermiondN, in quantized films is somewhat 7 382 5 vi(d;)g; -
cumbersomé?
Equations(19) have simple analytical solution when the
] . . o1
N=> Nj=(S/27r)[q,2:—(7r/L)2(S+ 1)(2S+1)/6], matrix 7;;; can be approximated by a diagonal matrix;
(14) 5“ ’ /’TJ .

whereS is the number of the occupied minibands: e?
=—— 2 o’ (22)
2 < i 7
S=Int[qeL/]. (15) 3htm ]
If the density of fermions is the same as in the bulk, thenThis happens when the matrw(. is almost or exactly di-
N,=nsL wheren; is the usual bulk density. Even in this agonal, W(l) W, and

case, the number of the occupied minibag&lsaccording to
Egs. (14), (15), is a complicated function of. Asymptoti-

0
cally, at largeS, Z/mTj:Z Wj(j ’)_Wj(l)' (22)
J
= Int[ (3N,L?/ ) 13]. (16)  Then the conductivity21) is equal to
According to Refs. 12 and 13, scattering by random sur- o2 . q
face inhomogeneities results in intra- and interband transi- 5= > qu?: > ! .
tions €;(q) — €;+(q’) with transition probabilitie&V;;.(q,q’) 342m ] ' 3k2m? 4 S WO Wi
that are expressed explicitly via the surface correlation func- T i’ !
tion £(la—q'(): (23
Such a diagonalization occurs in three physical situations.
Wj;.(9,9")= oL — 5[t ot 200 — 1)t The simplest one is the one when only one miniband is oc-
cupied and
i\ 2 AW
m) (m
x| —| [ — 17 e? 2e%q? 1
L L g= qu§= ql 0 - (24)
3%2m 3%2m? W9 —w)

The generalization to other, more complicated energy spectra
is straightforward:

. L . The second case is the case of systems with large corre-
The transport equation for the distribution functions

lation lengthR>L. In such systems the intraband scattering
n;(a), is much stronger than the interband one and the off-diagonal
matrix elementsV;;, are small in comparison with the diag-

21
dnJ —ZWAE W [nj:—n;18(€jq— €)rq)— d’q onal ones(see Appendix A Then both matricesV!%.” are
dt ity ja” €ja’ . ij
(2m)?’ almost diagonal,
(18)
; ; WOD=W(ODs (25)
reduces, after standard transformations, to a set of linear i’ i i’
equations and the expression for the conductivity, £E83), reads
q]/m:_Z Vj/(qj/)/T“/, 2e2 2 qu 26
: 3p2m? T WO wiD’ (20
i — mE [5; WJ(JO) ”W(l)] (19) Such diagonalization of the matnck#\séjO A (25 atR>L can
Tij’ i’ often be an oversimplificatiofsee Sec. IV.
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The third situation with diagonewjfj,l is the case of small =0rL, x=R/Ar=0R, andy=R/L=x/z only two are inde-
gR. In this limit, the correlation function is a constant with Pendentx=yz Which two of these ratios should be used as
zero first harmonic: independent dimensionless variables depends on whether
one wants to display the dependencesobn A, L, or R
W=2wW(gR—0), WI=0. The study of the dependence of the conductivity on film

thicknesso(L), should be performed at constakg andR.

According to Eq(17), This means thatr(L) is best displayed by the function

2% 7Tj 2 71_jl 2 fL(Z:X)l
Wi (0= mZng(o)(T) (T) @0 2¢? R?
g o(L)= 5 I—ZfL(z,x=consb, (32
an
2e2 (L/a)* 5 Lq;)|? for various values ok=R/A¢.
o=— — . (28 Plots of the functionfg(y) at constant values of
fi 2S(S+1)(2S+1)¢(0) 9 \ A ) R
S(S+1)(25+1)£(0) 4 | 4] L,
Note that all our surface correlatafés) are introduced in 062 |2
such a way that in the long-wave limit{{q—0) they are, o(R) = i_fR(ylzzconSD, (33)
except for the Lorentziari1l0), equal to each other(0) fio)2

=271?2R?. This means that in this limit the conductivities

(28) are the same irrespective of the shape of the correlatof€7€Ct the dependene&(R). Similarly, plots of the function
fn(2) at constany=R/L,

2¢2 1 (L% 7?IR)? Lq;\2
O a7 S5+ 1) (254 1) > H) (29 L2t o
1 o(dr) =~ 1 fu(zy=cons}, (349
(cf. Ref. 16.
In all other situations Eqgs(19) are not diagonal and characterize the dependence of conductivity on density of
should be solved numerically. particlesN or the Fermi momenturgg .
The results for conductivitymobility) also provide the Below we compare these dimensionless functidpéz),

exponent in the expression for the localization lenBtithat ~ fg(y), andfy(z) for various types of correlation functions in
describes localization caused by particle scattering by ranwide ranges of parameters. Needless to say, the results at

dom wall inhomogeneitie&* —0 should coincide for all types of correlators except,
maybe, for the Lorentzian, since, by design, all the correla-
R=LexfmmSD#], (30 tion functions are the same in this linjitee Eq.(29)].

Curves in all figures below are labeled in a uniform way
by the type of surface correlator used in calculations. Curves
G correspond to Gaussian inhomogeneit@s CurvesL de-
scribe the surfaces with Lorentzian correlatigh6); curves
IV. RESULTS AND DISCUSSION M1, M5, and ug give the results for the correlato(8) with

A. General comments ©=0.1,0.5,0.9; and curvesy, A5, and\q correspond to Eq.

As is mentioned in the Introduction, the 2D conductivity (1D with A=0,0.5,0.9. Note that correlatqrs has the ex-

o of the film has the dimensionality of conductance and isgﬁ; ?ﬁgael)(%%\ﬁzgﬁsrz ggrlig?a)\tg;)d that correlatok; is actu
described by a dimensionless functidin Eg. (2). This func- '

tion, in turn, depends on the relation between three length
scales: particle Fermi wavelengthr=1/qr, width of the
channelL, and correlation radius of the surface inhomogene- Figures 1 and 2 for the functiof) (z,x=const), Eq(32),
ities R. The fourth length parametdris perturbative and show the dependence of the conductivit{l) for two dif-

where/L is the mean free path and the diffusion coefficibnt
is proportional to the conductivity-.

B. Dependence on the film thickness

enters the conductivity as a coefficient: ferent values ofR/Ag, x=1,10, for various types of the
correlation functions. The labeling of the curves
2e? L? G,L,u1,M5,49,M 0, 5,\g iS explained at the end of the pre-
o=y |_2f(AF L.R). (32) vious subsection. The main feature of the curves—namely,

their sawlike character—is well known. The sharp drops oc-
Note that we consider only the contribution from surfacecur when the number of the occupied minibands, @d),
roughness and disregard bulk scattering. As a result, the cochanges by 1, i.e., in the poirts- L/ A =k with integerk.
ductivity (31) diverges in the limit of vanishing inhomoge- The only unexpected feature is a “wrong” periodicity of the
neites | -0 or R—e. The proper account of bulk initial part of the Gaussian curv@ at small values of for

scattering® eliminates this divergence. x=10 (see the inset in Fig.)2This feature will be explained
The dimensionless functioh(Ar,L,R) depends only on later. The Lorentzian curve is different from others: ak
the ratio of these three lengths. Of three ratisL/Ag =10 the curve has already lost its QSE structure.
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X].OG 10 T T T T T
x 10
8.
12-6_ /\08_ ‘
1 2
S92 =06 | .
N =
6 f =oal i
20
Br “502— .
0.0 1 1 1 1

20 40 Z60 80 100

FIG. 1. Functionf (z,x=const), Eq.(32), atx=R/Ag=1 for
various correlation functions. The labeling of the curves is ex-
plained at the end of Sec. IV A. Cur¥& Gaussian correlatds).
Curvesu,us,mg. power-law correlatorg8) with ©=0.1,0.5,0.9.
Curvel: Lorentzian correlator. Curvesy,\5,\g: power-law corr-
elators in momentum spad#&1) with A=0,0.5,0.9[A=0.5 corre-
sponds to the exponential correlator in the coordinate spade
The sharp drops occur when the number of the occupied minibandss
S, Eg. (15), changes by 1, i.e., in the poinis=L/Ag=k# with )
integerk. o(L) at moderateR/A can be fitted by any type of the

correlator by a choice df. In this case, it is impossible to

At these relatively small values of the curves for all make any conclusion on the type of correlation function from
types of correlators have roughly the same shape though tHEansport measurements and it does not matter what cor-
exact values of the conductivity are differei€urves us relator to use in theoretical calculations. Meaningful analysis
and\s are indistinguishable in both Figs. 1 and 2, and curved€quires some beforehand information on the correlation pa-
G and ug are indistinguishable in Fig. 1To underscore this rameter.s. The only corr_elator that can be.lderjtmed is the
point, in Figs. 3 and 4 we plotted instead of the curfie) Lorentzian; hovyever, this type of correlation is the least
the normalized curves (2)/f,(z=2zyz) With the normaliza-  Probable and might be “unphysical.” _
tion coefficients ensuring that the values of the normalized 'N€ Situation changes dramatically at higherR/A¢ as
conductivity are equal to 1 at the highest valuesz f the IS Shown in Figs. $function f, (z,x=400)] and Fig. gnor-
plot. Strikingly, forx=1 (Fig. 3 all the normalized curves Malized functionf, (z,x=400)/f| (2= Znayx=400) ] for the
with these eight correlation functions lie within one bold line S2Me eight correlatofthe labeling of the curves is explained
and areall indistinguishable with this resolution. For larger in the end of Sec. IV A _
x, the difference is still insignificant: all the curves are com- e anticipated one feature: namely, the decrease in the
pressed between curvés and L. The only anomaly is the amplitude of sawteeth with mcreasnxgand even the disap-
loss of QSE structure by cunle pearance of such_ t_eet_h for the_Gaussuan correlator. The sharp

The main conclusion here is that tekapeof the depen- drops in conductivity in the points where the number of the

denceo(L) at constantR and gr is not sensitive to and

FIG. 3. The same eight functiorfs(z,x=1) as in Fig. 1 nor-
malized by their value at=110, f| (2)/f (110). All eight normal-
ized curves are indistinguishable. The normalization coefficients are
curve G, f (110)=2.4x10%; curvel, f (110)=1.39x 10°; curve
w1, fL(110)=1.48x10"; curve us, . (110)=3.61x10% curve
e, L (110)=2.42<1C; curve o, f (110)=2.69x1CP; curve
f,(110)=3.65x 10°; curve\g, f,(110)=4.54x 1(F.

cannot provide any information on the type of the correlator 1.0 ' ' ' i '
at not very large values dR/Ag. Sincel is unknown and
enters the conductivity as a coefficient, the absolute values of =) 0.8 I )
o(L) cannot serve as a clue either: experimental data on g’oﬁ | ]
x10 T T =
2 < 04+ G B
8 -j:)c ' m - E:
=02t L .
~6F P ;
o : 0.0 coreali(} 1 1 1
e e - /S 20 40 60 80 100
~4r+ 5 1015 20 25 /oG Z
oy z ]
“5,)\52 FIG. 4. The same eight functiorfg(z,x=10) as in Fig. 2 nor-
2r L | malized by their value az=110, f (z)/f (110). All eight curves
X ] lie between normalized curvés andL and are barely distinguish-
able. The normalization coefficients are, cui@e f (110)=3.82
20 4 6 =0 100 x10% curve L, f (110)=1.17x10% curve u;, f (110)=1.48

X 10%; curve us, T (110)=2.59x10% curve ug, f (110)=1.32
FIG. 2. The same as in Fig. 1 for=10. The labeling of the X 10% curve Ao, f (110)=6.95X10% curve A5, f (110)=2.61
curves is explained at the end of Sec. IV A. X 10% curvelg, f(110)=5.7x 10
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of z for the Gaussian and power-law correlatgcsirves G
and u; in Figs. 5 and & It looks as if there is a transition
between two distinct regimes with several sharp oscillations
in the transition range. The effect looks even more striking in
Fig. 6 for the normalized curves which, in contrast to Fig. 5,
are plotted in a linear scale. This new type of QSE requires
an explanation.
These new oscillations are not related to abrupt changes
in the number of occupied miniban®gz): the oscillations
are less sharp, have a much larger period, and, most impor-
tant, appear only in a limited range ofvhere the number of
occupied minibandss is already large. These new oscilla-
20 40 6% 80 100 tions are observed for the correlators for which the interband
transitions are the smallest and the sawlike structure is
FIG. 5. Functionsf, (z,x=400) for the same eight types of syppressed—namely, for the Gaussian and power-law corre-
correlators as in Fig. 1. lation functions. The power spectrum for these correlators
£(q) goes to zero exponentially at large Then one would
occupied minibandSincreases by 1 is explained by opening expect that the off-diagondinterband transition probabili-
of S newscattering channels associated with interband tranties are exponentially small in comparison with intraband
sitions in and from this newly opened miniband. Without thescattering and that the conductivity can be well described by
interband transitions, the increase ®by 1 results not in a the “diagonal” approximation(26) that does not have an
sharp drop ino, but in an insignificant kink on the curve oscillation feature. This turns out not to be the case.
o(L) as it is shown in the third reference of Ref. 18. The The oscillations are indeed related to off-diagofiater-
interband transitions are described by the off-diagonal combangd scattering probabilitiesV;;, . A qualitative explanation
ponents of the matrix of transition probabiliti&¥;;, . With  of the effect and an estimate of the peak positions are the
increasingR/Ag, these off-diagonalinterband transition  following. Scattering by surface inhomogeneities changes
probabilities go to zero though with different rate for differ- the tangential momentum bjq~1/R. According to the
ent types of the correlation function. The rate of decrease ofnomentum conservation law, this scattering can cause the
the interband transition probabilities as a functionRsf\ interband transitionj«<j+1 only when q;—q;;1=Aq
for different correlation functions is discussed in Appendix~1/R. If the miniband index is relatively small andy;
A. This rate is a good predictor for observing the sawlike~1/\, thenqj_Qj+1~(qj2_qj2+1))\F/2- The energy con-
shape ofo(L) . The fastest decrease happens in the case Gfervation requires thmh?_qj{rl: m2(j+1)2L2— w2j?/L2
the Gaussian correlator; thus the curve for the Gaussian cor= 2 ;2j/L.2, The combination of these conservation laws de-

relator should be the smoothest and should exhibit the smalfines the peak positiorts;, which correspond to the opening

est traces of the sawteeth. Therefore, the visibility of theyf ropust interband transitiorjs—j + 1 and which are given
sawteeth on the experimental curve can be a clue to the forn@y equationd_j2~ 72jR\g. In dimensionless variables, this

of the correlation function. _ is equivalent to
What is completely unexpected is the appearance of a
new type of oscillation structure om(L) in a limited range

Zj~mjX. (35

Accordingly, with increasing film thickneds the transition

1.0 channel opens first for the electrons in the lowest miniband
- €1(q) with j=1. Note, that these are the grazing electrons
g 08 which are responsible for the dominant contribution to the
= conductivity. Thus, the conductivity drops almost by half at
= 0.6 the film thicknessz, ~ wx*'? where W;, becomes compa-
;’\' I rable to W;; and the effective cross-section doubles. At
g 04 higher value o, z,~ w(27)/?, a new channeW,; opens
%02 0 to the electrons from the next miniband=2 with p,
bl =27/L and the conductivity drops again, and so on. The
66 | only difference is that the contribution of the electrons from

the higher minibands falls rapidly with an increase in the
band index and the drops in conductivitg(L), which are

FIG. 6. The same eight functiorf (z,x=400) as in Fig. 5 associated with the opening of new scattering channels for
normalized by their value at=110, f,(z)/f_(110). The normal- €lectrons from these minibands, become smaller and smaller.

ization coefficients are curvé, f (110)=1.84x10°% curve L,  The number of the visible peaks on the cun#d) and their
f (110)=35.0; curve w;, f_ (110)=8.78<10% curve us, relative heights give a good visual estimate of the number of

f,(110)=1.25x 10*; curve ug, f (110)=5.35x10% curve \g, “important” minibands and of their relative contribution to
fL(110)=3.16; curveg, f (110)=1.76x 10%; curve\q, f (110)  the conductivity. With further increase in the film thickness,
=3.21x1C°. when L becomes larger.>R, the change of momentum
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Ag~1/R is sufficient to exciteall interband transitions and T — v —1/4
the ordinary QSE with the saw teeth at the pointsj is zj(x)~ 2 2] +1)x{|n[x\/§(1+1/1)]} ' (38)
restored.

The above explanation works for the films with the expo-|, 4 valuesz;(x=400)=33.4,43.6,51.8,58,9 . . agree well

Qith the positions of the conductivity drops on curve 1 of

which the size of inhomogeneitid® is well-defined. In the Figs. 5 and 6.

films with a non-exponential power spectrum of inhomoge- For the surface with power-law correlations of inhomoge-

_n_eities, i.e,hwith ;{r_nore uniform distributi(;]r_w of inho_mog?fne- neities(8) the solution of Eq(37) with logarithmic accuracy
ities over the siz&R in momentum space, this new size effect SAppendix B, Eq.(B9)] also resembles Eq35):

cannot be observed because the particles from all miniban
can always find the inohomogeneities of the right size that
ensure the interband transitions irrespective of what is the Zj(x)=mV(2] +1)x/4v,
separation between the walls.

More accurate explanation is the following. The off-

diagonalw;;, is a function of v~ In(x(1+1/)){2 In[x(1+1/j) ]} % (39)

vij = |q;RI—d; RIA| =x|N1—(7jl2)>= 1— (7] '/2)?| This expression is barely sensitive ta This almost com-
) o ) _ plete independence of the peak positions freamcan be

and rapidly decreases with increasing (see Appendix A clearly seen in Fig. 6.
In general, the off-diagonak;;. is large at largeR (or x) The difference between this new type of size effect and
while the diagonal elements;;=0. However, for largez  the ysual sawlike QSE is dramatic. The sawlike drops in
(large S) some of the elements;;, with small j, which are  conductivity for the usual QSE occur in the poirts kar
close to the main diagonal, could become small even fofith integerk and are a direct consequence of the quantiza-
large x: tion of momentum in thin films. The interband transitions are
not germane to the existence or positions of this QSE and are
responsible only for the amplitude of the conductivity oscil-
lations. The drops in conductivity are equidistant with period
7 along thez axis, i.e., are equidistant as a function of film
[j changes from 1 to Ing/#)]. Then at largez the transi-  thickness. In contrast to this, the new QSE oscillations in
tionsj«<j+1 can become noticeable and E¢k9) become Figs. 5 and 6 are not related directly to the quantization of
coupled. This coupling changes the solution of transportnomentum and are a consequence of the exponential open-
equation and, therefore, conductivity. According to E4$9) ing of interband transitions between minibands with small
the coupling between the minibangdandj + 1 becomes no- quantum numbers at certain values of the film thickness. The

. sz .
Vj'j+1(J+1<Z/7T)~§(21+1) (36)

ticeable,rjfjﬂprj’jl, when transitions in and out of higher minibands remain sup-
pressed.(In some sense, the effect resembles magnetic
W, 1 (x,2) ~WD(x,2) =W (x,2). (37)  breakthrough between separated parts of the Fermi surface in

] ) . high magnetic field$.The peaks are roughly equidistant if
At fixed x, Eq.(37) can be considered as the equation for thep|otted against?; weak deviation from periodicity is due to
values ofz=z;(x) at which one can observe the opening of jogarithmic terms in Eqs(38) and (39). The period of the
transitionsj < j + 1. The opening of such transition channels new QSE is much larger than for the usual QSE. The large
is accompanied by drops in conductivity. Since for theperiod of oscillations can open the way to direct observation
Gaussian and power-law correlators the interband transitioBf the QSE in transport measurements in metal films in
probabilitiesW;;, depend exponentially on parametets,  which the usual QSE has atomic period and can hardly be
these drops in conductivity are sharp and deep as illustrateghserved. There is a strong possibility that the conductivity
in Figs. 5 and 6. Solutiong (x) of Egs.(37) are discussed in  oscillations reported in the last reference of Ref. 5 are actu-
Appendix B. Atz=z,(x), Wy, is the first of transition prob- ally this new type of QSE.
abilities to acquire the “normal” order of magnitude. At The initial part of the curves, u; in Figs. 5 and 6 for
=2,(X), W3 becomes noticeable, théis,, etc. The ampli- (L) is described analytically by Eq26) with appropriate
tudes of the drops rapidly decrease with increaginig the  values of W from Appendix A. This curve is close to the
end, when several interband channels ithz/ 7 are open,  power lawo oL (5" % (small « depends ox) and to experi-
a(L) becomes smooth, but with a much lower slope than inmental data of the third reference of Ref. 11. After the region
its initial part. The growth of transition probabilities for tran- of new QSE oscillations, the curves are again smooth, but
sitionsj«j+2 does not result in new oscillations in(L).  with a much smaller tangent. We do not have an analytical
In the pointsz(x) where W, ;,, becomes |argeW,§?j)+2 description for this regime. The numerical approximation can
~WO—W | the stateg and j+2 are already strongly be done equally well by either=A+BL'"# with small 8
coupled viaW; ;1 andW, ;1 ». (B also depends o) or a quadratic expressioa+bL

According to Appendix B, Eq(B4), the positions of the +cL2. This behavior explains the experimental datand
drops for films with Gaussian surface inhomogeneities ar¢he last Ref. 5. As a result, the power-law dependence of
similar to Eq.(35): o(L) is qualitatively different for ultrathin and more thicker
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FIG. 7. Functionsf (z,x=const) for Gaussian correlation of
surface inhomogeneities normalized by their valuezatl157, FIG. 8. Functionf(y,z=64.4), Eq.(33), near the minimum at

fL(2)/f(157). The values ok and normalization coefficients are y;_1 for various surface correlators. The labeling of the curves is
curve 1,x=1, f(157)=6.9x10°% curve 2,x=10, f(157)=9.9 explained at the end of Sec. IV A.

X 10% curve 3,x=25, f(157)=4.6x10% curve 4,x=55, f(157)
=3.8x10% curve 5, x=100, f(157)=4.75<10% curve 6, x

ini f th ivi R h val LA
=200, f(157)=9.1x 10%; curve 7,x=400, f(157)=2.3x 10P. minimum of the conductivityr(R) at such values of. At

R/A:<1 the particle wavelength is much larger than the
d- size of surface inhomogeneities and the scattering is almost
specular and does not contribute to the formation of the
mean free path. In the opposite linR{ A>1 the walls are
flat on the particle length scale and surface scattering also

period can be seen on the initial part of cusen Fig. 2 for d ¢ limit the effecti f th. Theref ¢
x=10. With growingz these new oscillations are overtaken 0€s not imit the efiectivé mean iree path. Thereforez a
= const the conductivity(R) for nondivergent correlators is

by the standard QSE. The transition from standard to the new

QSE is illustrated in Fig. 7 that contains normalized “curves'nﬁnite in both limits y—0 and y—o Wit.h a ”.“”"““m
G” for the Gaussian inhomogeneitie$, (z,x=const)f, (z aroundy~1/z. The curvesfz(y) close to this minimum are

—157), forx=1,10,25,55,100,200,400. It is clear from thesePlotted for different correlators in Fig. & 64.4; the label-
curves how the usual QSE is replaced by new oscillationd"9 of the curves is expl_alned in the .ef‘d of Sgc. I)./A IS
with increasingx. The “transitional” curve forx=>55 is es- Important that the position of the minimum, its W.'dth’ and
pecially interesting: it shows the new QSE at smatlend a  €VEN the order of magnitude of the functiép(y) in the

restoration of the standard QSE at higlzel his restoration minimum are roughly the same for all types of surface corr-

occurs when a noticeable number of interband transition§!2t0rs. This is, probably, the most universal feature of the
become open at higher It seems that such a restoration system. The only correlator that does not display a well-

does not happen on curves 50. This impression is wrong. d€fined minimum is Eq(11) ert]h 7}20 (the Lo:ent(zjian iﬂ
Such a restoration indeed occurs for curxes100,200,400, MOMeNtum space, curvig). This feature is related to the

but at values ofz that are much larger than those in the Iogarithmic di_vergence_ of ?his cor_relator in “real” space.
figure. At very largex, all curvesf, (z,x=const) consist of This feature is especially interesting because the surfaces

four parts: a rapid increase at smaliregion of new QSE with such inhomogeneities were observed in experifient.

oscillations, smooth monotonic part, and region of relatively. 'I;]he drops ino(L) at Iqrgez:zj(g), which are %nalthhed
smooth standard QSE oscillations at the largest values of I" he previous sectioriFigs. 5 and § correspond to the

With increasingx, the amplitude of new QSE oscillations POINtS ¥(2) on the curvesfg(y). The positions of these
and the length of region separating new and old QSE inP0iNtsy;(2) are implicitly determined by Eqs38) and(39)
crease rapidly. for the Gaussian and power-law correlations provided that

x=yz. These values of are far away to the right from the
minimum in the curvesr(R) and cannot be presented in the
same figures. The feature that corresponds to the oscillations
The dependence of the conductivity on the correlation rafrom the previous section is clearly seen as a set of steps in
dius of surface inhomogeneities(R), is best illustrated by Fig. 9 for the same value @fas in Fig. 8,z=64.4 on curves
the functionfy(y,z=const), Eq.(33). Since the number of G andus for Gaussian and power-law inhomogeneities. For
the occupied minibandS does not depend on the correlation the surfaces with the Gaussian inhomogeneities, the first in-
radius of inhomogeneities, the curvihg'y) at constanz do  terband transitionW;, becomes visible forz=64.4 aty,
not exhibit the sawlike structure. Instead, the two main fea—~ 25, the next one at,~ 14, and so on. At these valuesyof
tures are the presence of the minimum fig(y) and the one can see well-pronounced steps on the c@we Fig. 9.
steplike structure that corresponds to the oscillations in FigsThe same feature, though barely discernible, is also observed
5 and 6. for the power-law correlatous.
The scattering of fermions by surface inhomogeneities is For comparison, curves, \y, and\s do not exhibit any
most effective alR/Ag~1, i.e., aty~1/z. This leads to a anomalies. Interestingly, the curve for the Lorentzian inho-

films. This type of behavior is different from the earlier stu
ied behavior ofs(L) at smallx=qeR<1 31316
The initiation of this new type of oscillations with a large

C. Dependence on the correlation radius
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10" E sents functionsfy(z,y=20), Eq. (34), for the Gaussian
10° k (curveG) and power-law f=0.5, curvews) correlators and
1082 for the correlator with a power-law power spectrum (
7 =0.5, curve\s). To compensate for different orders of mag-
'j.\loﬁ nitude of the data for these correlators, the functions are
e 10 normalized by their values at=126, f\(z)/fy(z=126).
=10 Curve A5 exhibits a sawlike behavior typical to the usual
10* QSE with periodr along thez axis. Curvess and us exhibit
10* new QSE oscillations with a much larger period.
10°
10
E. Interwall correlation of inhomogeneities
and quantum size effect
FIG. 9. The same functionfs(y,z=64), Eq.(33), as in Fig. 8 Surprisingly, the possibility of interwall correlation of sur-
at larger values of. The labeling of the curves is explained at the face inhomogeneities gives an interesting insight into the
end of Sec. IVA. usual and new QSE’s and provides an additional proof for

our explanation of QSE oscillations reported above. The
mogeneities is the only one that decreases with increasingstudy of the effect of interwall correlation of inhomogene-
after the initial increase at small(Fig. 8). How this feature ities has been initiated in Ref. 12 for Gaussian correlations.
is related to the peculiarities of the Lorentzian that have beeBelow we supplement those results for other types of surface

discussed in Sec. Il is unclear. The cuivgremains essen- correlators with an emphasis on the new QSE.
tially flat. To decrease the number of parameters, we assume that, as

in Ref. 12, the correlation functions of inhomogeneities on
both walls {;; and {,, are given by the same function
£11(8) = oo(S)=((s). The structure of the interwall cor-
relator of inhomogeneitieg; 5(s), is assumed to be the same
as for the intrawall correlations with the same correlation
The dependence of the conductivity on the density of radiusR. However, the amplituda of the interwall correla-
fermions,N, or their Fermi momentunyr is best displayed tions is different from the intrawall ones:
by the functionf\(z) at constany=R/L; see Eq(34). This
dependencer(N) is similar to o(L). The functiona(N) —r _
exhibits a clear sawlike structure of the usual QSE at not Eu=L2=L(8), ralS)=all(s). (40
very highy for all correlators. With increasing, the saw-
teeth disappear first for the Gaussian correl&oand then
for the power-law correlatorg;, but persist for the power-
law correlators in momentum spaag. Instead, at large
the functionsfy(z,y=const) for Gaussian and power-law

D. Dependence on the Fermi momentum
and density of fermions

To compare the effect of such interwall correlations for dif-
ferent classes of the functiaf(s), we calculate the relative
change of conductivityr (i.e., functionsf, ,fg,fy) caused
by the introduction of such correlations:

inhomogeneities exhibit a new type of QSE oscillations simi- F)_f

lar to that forf, (z,x=const) in Sec. IV B. The positions of = , (42)
these oscillations can be found from E¢38) and(39) after f

the substitutionx=yz. wheref® andf are the functiong, gy calculated with and

This_effect ig illustrated in Fig. 1@the Iabeli'ng of the  \ithout interwall correlations. An additional benefit is that
curves is explained at the end of Sec. IV, Ahe figure pre-  he functions® for all types of correlators are automati-
cally normalized thus eliminating a difference by orders of

g ] magnitude between the functiofisg  for different types of
—_ correlation functions.
§ In the presence of such interwall correlations, the transi-
30_5 i X5 ] f[ion probabilities\(vjj (9,9"), Eq.(17), become proportional,
= in accordance with Ref. 12, to
= #

4 2[1+a(-1) 1" 1¢(g—qf |). (42
20 40 60 80 100 120 The most interesting effects of the interwall correlations are

related to the oscillating structure of the term wihn Eq.
FIG. 10. Normalized function fy(zy=20), Eq. (34) (42). If the interband transition probabilitié¥; .;,(q,q") are
f(2)/fr(z=126), for three surface correlators. The normalizationlarge i.e., if (|g;—q;,[) is not small forj’+#j, then the

coefficients are curves, f (126)=1.1x10% curve us, f (126)  contribution of the term witha in Eq. (42) has a different
=4.5x10"; curve\s, | (126)=1.4xX10% sign for differentW;;, depending on whethgrt+j" is even or
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FIG_‘ 11. Relative changep™™, Eq. (41), of the function FIG. 12. Relative change®’®, Eq. (41), of the function
fL(z,x=1), Eq.(32), for the interwall correlation amplitud&t0), N X . .
- ) . . . fL(z,x=400), Eq.(32), for the interwall correlation amplitud@ )
a=0.75, for various correlation functions of surface |nhomogene-a_0 75 for four correlation functions of surface inhomogeneities
ities. The labeling of the curves is explained at the end of Sec. IVAZ,_ ™ 9 '

L : . — . The labeling of the curves is explained at the end of Sec. IVA.
All curves exhibit almost identical oscillations as it should be for a o I - .
Curvel ;5 exhibits oscillations in accordance with the usual QSE for
well-developed usual QSE.

curve s in Fig. 6. CurvesG, L, and us are flat at smalk, ¢{°">

. . o =—3/7, Eq. (43). Oscillations on curve$ and us confirm the
‘?dd- T(E)'S should result in an _OSC'"atmg structure of the fl,mc'explanation of the new QSE as an exponential appearance of tran-
thn.qs , Eq.. (41), as a funptlon of the number of occqpled sitionsj—j+1 at certain values of
minibandssS, i.e., as a function of film thickneds (the exis-
tence of such oscillations was first reported in Ref. 12 for

Gaussian inhomogeneitjesThe period of such oscillations an oscillation structure; this is clearly seen in Fig. 12. The

should be equal to that for t.he stgnqard QSE and b aM5aussian and power-law correlat@sand us, according to
plitude S.hOUId decrease rapidly W'th. mc_reaslngSmcg our ec. IVB, ensure the absence of interband transitions at
explanation of the standard QSE ties it to large mterbancfmalII '

iond(075)= _3/7 i
transitions, the oscillation nature of the functigh®, Eq. mall and moderate where the functiong 3/7 in

o Fig. 12. Our explanation for the new type of QSE in Sec.
(41), should exist in the same range of parameters as thR/B is an abrupt sequential appearance of noticeable inter-
standard QSE. In accordance with Sec. IV B, these oscill Pl Seq P

tions should be noticeable for the functiosh(®(z,x “band transitions;, Was, Wa, etc. at certain values of

a 0 at i for all t f surf lat This | z=z;. Since the term witta in Eq. (42) is negative for all
.—cons) at smaik for all types of surface correiators. This 1s transitionsj’=j*+ 1, one should observe spikes in conduc-
illustrated in Fig. 11 x=1) for the correlator§s, L, A5, ws.

i i i, (3 -7
The figure is plotted for=0.75. The similarity of the func- g‘é'rt]ij”gl thleéef?(r)?/,ic;gérlﬁefut?gstoiﬁast,r;gn a c')ﬂrsg(”fana_
tions ¢{>"%(z,x=1) is striking, but not surprising. The flat ) 19 22 P P

fall i lained bel At hiah tion of the new QSE.
part of all curves at smat is explained below. At higher Figure 12 also provides insight into the anomalous behav-

values ofx, the interband transitior{eff-diagonalW;;. , Ed. jor of the conductivity for Lorentzian correlation of inhomo-
(42)] become more and more suppressed. When the intef:

band transitions become negligible, the only nonzero scatte eneities(10), curvelL. At 2<30, the interband transitions
, N IW(O.?S): B . .
ing probabilities are diagonalv;; that are proportional to are suppressed a 3/7. At higherz, the interband

, . transitions become more noticeable and start increasing, but
2h[1+a]§(|qu—qj . Eq.d(4ﬁ). Smc(:jeall_ \.N”. are scalled by very slowly. Why the curve remains smooth when a suffi-
the same factor *a and the wn uctivity Is Inversely pro-  cient number of transitions is already visible is still a puzzle.
portional toW, the function$(™(2) in the absence of the A yossible explanation is that oscillations should appear only

interband transition becomes a constant: at very largeS (or z) when their amplitude should be van-
1 ishingly small.
(&) ()= _
$@)= 1. (43
If a=0.75, the value of this constant is{®"*(z)=—3/7. V. SUMMARY AND CONCLUSIONS

E((ql;ation(43) also describes the initial part of all curves |, summary, we compared the behavior of conductivity
a, H . . .

¢i(2) for all values ofx at smallz when only the first  for various types of surface correlators in a wide range of
miniband is occupied=j=j’=1. This explains all curves parameters. The following conclusions can be important

in Fig. 11 having identical flat parts at small when analyzing the experimental data or discussing theoret-
Figure 12 illustratesp{®)(z,x=const) atx=400 anda ical predictions.
=0.75 for several correlators. At this value xfthe expo- (i) The rough shapes of the curves of the transport coef-

nential correlatons, Eq. (7), exhibits, according to the re- ficients are similar at small and moder&dor all types of
sults and explanation of Sec. IV B, the usual QSE. Thereforegorrelators though the orders of magnitude of the transport
the function¢(,_°'75)(z,x=400) for this correlator should have coefficients and more fine details of the curves can be differ-

155413-11



A. E. MEYEROVICH AND I. V. PONOMAREV PHYSICAL REVIEW B65 155413

ent. To make any definite conclusions from the rough shapeisig of interband transitions between minibands with small
of the experimental curves, one should have at least somguantum numbers at certain values of the film thickness. In
idea of the type of the correlation function of surface inho-some sense, the effect is reminiscent of magnetic break-
mogeneities and/or the value of the correlation radtuend  through that describes the opening of transitions between
the amplitude of inhomogeneitiésSincel plays the role of ~disconnected parts of the Fermi surface.
a scaling parameter, getting the values of parameters of sur- (Vi) Large period of new QSE oscillations opens the way
face inhomogeneities from experimental data on transpof© direct observation of the QSE in the conductivity of quan-
without any additional information on the correlation of in- tized metal fims and may be responsible for experimental
homogeneities could result in mistakes by orders of magnidata in the second reference of Ref. 5. An additional experi-
tude. In the same way, the use of the wrong correlator ifhental signature should be the appearance of these new QSE
theoretical calculations could result in absolutely wrong pre-0scillations only at relatively large values of the thickness of
dictions without evoking any warning signals from compari- quantized metal films.
son of the rough shapes of experimental and theoretical (iX) The Gaussian correlation of inhomogeneities affects
curves. particle transport in a unique way. First, the values of the
(i) The most universal feature is the shape of the curve§yansport coefficient are, except for the smallest correlation
and order of magnitude of-(R) near the minimum at radii, larger than for other, slower correlators by orders of
R/Ag~1. This minimum allows experimental evaluation of Mmagnitude. This is explained by this correlator having the
the correlation length of surface inhomogeneitResiithout shortest tails resulting in the least effective scattering. Sec-
any assumptions about the type of the correlation function.ond, this type of correlation does not exhibit a sawlike de-
(i ) The shape of the curves(L), o(N), ando(R) be-  Pendence of the transport coefficients on the system param-
comes very sensitive to the type of surface correlator at &ters except for small correlation radii Third, this type of
large correlation radius of inhomogeneitiéd, Experimen- correlation of the surface inhomogeneities leads to the
tally, this is important for better quality filmésee, for ex- above-mentioned new type of large-scale oscillations of the
ample, in Ref. 22in which STM and other usual methods transport coefficients. The combination of these features can
are not well suited for the study of the long-range behavio,make'the Gaussian correlator readily identifiable in transport
of the thickness fluctuations. Here transport measuremen@Xperiments.

can be used as a good alternative for identification and analy- (X) The Lorentzian correlation of inhomogeneities in con-
sis of the thickness fluctuations. figuration space is also readily identifiable by several abnor-

(|V) The underiying reason is Very high Sensitivity of cou- ma.l featureS. The Combination Of these features Could be
pling between quantum well states withw quantum num- another manifestation of an “unphysical” nature of this cor-
bers to film thickness and the long-range behavior of thdelator. If possible, this correlator should be avoided in the-
thickness fluctuations. This phenomenon is quite general arf@fétical and computational models. A power-law correlator
should lead to observable effects not only in metal films, buf8) with small indexu can serve as a good replacement in
for other types of quantum wells such as semiconductor filméhe calculations.
or quantum wave guidés. (xi) The results explain the observed difference in power-

(v) The persistence of the sawlike dependence of thdéaw regimes of the thickness dependence of the conductivity
transport coefficients on the thickness of the film, Fermi mo-o(L) between ultrathin and more thicker films.
mentum, or density of fermions should Signa| the |0ng_range (Xll) The relative contribution of the interwall correlation
nature of the surface correlations in momentum spcg.  ©Of surface inhomogeneities strongly depends on the type of
The observation of the sawlike structure Rr-L is a dis- QSE. For the usual QSE, the contribution of the interwall
tinct signature of the power-law decay of the power spectraforrelations is a rapidly decaying oscillation function of the
density function¢(q), though, by itself, is insufficient to f|lm thlcknes.s. For a QSE of the new type, this contnbut!on
make conclusions about the index in this power law. ThéS constant in a wide range of small and moderate thick-
easy suppression of the sawlike behavior points at the expdiesses, and becomes an oscillating function with a big period
nential decay of the power spectral density. The rate of thigh & limited range of large thicknesses.
suppression is significantly different for simple exponential
and Gaussian decays 6fq). ACKNOWLEDGMENT

(vi) Thickness fluctuations with Gaussian correlations and
correlations with exponential power spectrum lead to a new
type of QSE ino(L), o(N), ando(R) for surface inhomo-
geneities of a relatively large si# This new QSE produces APPENDIX A: TRANSITION PROBABILITIES
large oscillations inz(L) ander(N) and steps in dependence Various correlation functions from Sec. Il allow different

U.(R)' _The shacing be'wveen th_ese new QSE anc_)malles prcHegrees of analytical calculations of the scattering probabili-
vides important direct information on the correlation param-

! " S ties. The angular harmonics of the correlation function
eters of inhomogeneities. The peaks are almost equidistant (la—q']) in the transport equatioft9) are defined as
plotted against?. q-q port €q

(vii) In contrast to the usual sawlike QSE, the new QSE .
oscillations are not related directly to the quantization of §(|q—q’|)=£§(°)(q q’)+2 g(s)(q q')cogsy)
momentum and are a consequence of the exponential open- 2 ' =] ' '
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1 (2= whereC/, are the ultrasphericdlGegenbaugrpolynomials,
§(S)ZEJO {(x)cogsy)dy, (A)  and Quu=max@Q.Q’) and Qu,=min(Q,Q’). The off-
diagonal transition probabilities disappear exponentially at
wherey is the angle between the 2D vectarsaindq’. large [Q—Q'|, approximately as |Q—Q'[)* *%exp(-|Q
The harmonics for the Gaussian correlat®r are —Q'|), i.e., much slower than for the Gaussian correlator
(A2) but faster than for the correlatoA3).
g(O)(qj ,qj,):47T|ZRZ[e*QQ'|O(QQI)]ef(Q7Q’)2/2, The integrals in Eq98) can be simplified for the Lorent-
zian correlator:
— ! ’ _ e YAYA
{M(qj,0;) =471?R[e ?%1,(QQ")Je @ Q)’z,(AZ) £AQ,Q") =871 *RKo( Qpmand of Qi)
(1) "= 2 .
where Q=q;R, Q’'=q;/R. Note, that in Refs. 12-14 we ¢7(Q.Q") =47 "RKy(Qmad1(Qmin)- (AS)

used equivalent expressions with hypergeometric functionsjote that the functiork,(Q) diverges logarithmically a@
instead of modified Bessel functions. Expressions in square, (. This divergence is discussed in Secs. Il and IV.
brackets in EqsiAl) are smooth functions & andQ'. The The expressions for the harmoni@4) can also be sim-
exponential coefficients ekp(Q—Q')%/2], on the other piified for the Staras correlatoru=1, when Cl(cosg)
hand, are rapidly going to zero for larg®R if g;#q;.. This  —sjrf(n+1)¢]/sin ¢,

explains why the off-diagonal scattering probabilitié;

are much smaller than the diagonal ones at lafBeSuch a 2m

drastic difference between interband and intraband scattering | Cm(cosg)dgp=[0, m=2k+1; 2m, m=2k],
probabilities is a unique feature of the Gaussian correlator.

The physical consequences are discussed in Sec. IV.

2
For the exponential correlatdv) the harmonics are f Cﬁq(cosd))cosd) dp=[0, m=2k; 27, m=2k
0

8I°R?E(Q)) +1
@ e '
[1+(Q=Q")7] (Q+QH and the harmonicgA4) reduce to the rapidly converging
() sums of the Bessel functions with alternating coefficients.
¢(q;,a;7) For all other power-law correlators with different valuesuof
2052 2 2 _ A2 the integration should be performed numerically.
- 4°R™ A+ QT QB ~[1+(Q-Q)TIK(Y) The last group of correlators involves power-law behavior

QQ’ [1+(Q—-Q")?]V1+(Q+QHZ in momentum space, Eql1). This group includes the
Lorentzian in momentum space=0 that was observed in
0=2JQQ'/[1+(Q+Q")7], (A3)  Ref. 2 and the exponential correlat@, (A3) atA=1/2. In

general, the angular harmonics are
whereE andK are complete elliptic integrals. Here the diag-

onal and off-diagonal transition probabilitigsrobabilities of 471°R?

the intraband and interband scattepimtiffer mainly by the (0= PN PR IR
terms 1+ (Q—Q’)? in the denominator that are insignificant [1H(Q7=Q™) ™ +2(Q™+Q™)]

in comparison with the exponential factors for the Gaussian -

correlator above. The physical consequences are discussed in (W= Azl "R\ )

Sec. IV.

1
1+ (@ QP+ aQrr Qe MY
The power-lam8) correlation functions correspond to

Q=(1+Q*+Q')/1+(Q°-Q'%)*+2(Q*+Q"?)

§(°)=4I2R2§: (M_l_m)K,u-%—m(Qmax) I,u,+m(Qmin) (A6)
m=0 max min where P}(2) are the associated Legendre functions of the
o first kind. Note that the argumenf of the Legendre
xf CH(cosg)[Q%+Q'2—2QQ’ cosg ] d ¢, functions in our expressions is larger than 1. One should be
0

cautious when doing calculations with expressiqA®):
some of the handbookgand software packages, e.g.,

o

K (Qmay MATHEMATICA ) do not use the same normalization for Leg-
{(M=41°R? 20 (n+ m)% endre polynomials and Legendre functions, i.e., for functions
- max P1(Q) with integer and nonintegex.
| N2 In the case of the Lorentzian in momentum space0,
p,+m(Qm|n) 77
X Ci(coso)
o |2R2
o K(S)=1Ko(SIR),  {Q)=————, (A7)
X[Q?+Q'2—2QQ'cos¢#cosp de,  (Ad) A o 1+(QR)?’
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the harmonics T w/x(2j +1)
Zj(X): E 1+ T 174+ (B4)
J
g - 471 2R? In(Xﬁ J—)
ST e ey
Sincex=yz, these peak positiorng(x) can also be used to
(O (qi g0 get the peak positions for the conductivity at fixed;(y) as
e a solution of the following algebraic equation:
87°R2QQ’
= , - 2 2j+1
1+ (Q@-Q)%+2(Q7+Q'?) 7= UC 1)+J. . (B5)
1 In(zj(y)yﬁ—j )
X .
1+ Q%+ Q2+ V1+(Q?-Q?)?+2(Q°+Q")

Similar but more cumbersome calculations, can be per-
formed for the power-law correlatof8) . For example, if
n=1/2, Eq.(B2) reads

(A8)

Note that this correlator diverges in real spacs-at0.

w2
APPENDIX B: POSITIONS OF NEW QSE OSCILLATIONS 4j2J exp(—Zstint)sinzt dt
0
The peak positions are determined by the condition that "
the absolute value of the diagonal and the first off-diagonal —2(i+1 2j” ext( — 12+ 40.0. . .sirtt)dt
matrix elements in transport equatioh9) become compa- U+ 0 P(= v Qe at
rable: (B6)
Uy jea~1m;. where we introduced=; j.,=Q;— Q1. For largeQ;,

- _ - _ - _an asymptotic estimate for the integral in the left-hand side is
Rewriting this condition via transition probabilities 1/4Qj3- A rough asymptotic estimate for the integral in the

W](jo;l)(q,q’) we get right-hand side of the equation is
1 dt
[WiP(x,2) - WiPx,2) ]+ 2 W (6,2~ WY, 1(x,2), f exp — VP2 +4Q,Q) 11—
]’q&] 0 1_t
(B1)
1 2\QiQj 1
where W%Y(q. ,q:,) are the zeroth and first harmonics of w—f T exp — 12+ yA)dy.
o o 2VQ;Qj+170

W(q;—q;.) over the angleg;q; that can be expressed ex-
plicitly via the surface correlation functiofisee Eq(17) and In order to estimate this integral, we can substit¢%+_yz
Appendix A]. For largeq;R, the off-diagonal scattering prob- by

abilities W;; are exponentially suppressed for Gaussian and

power-law inhomogeneities, Eq9A2) and (A4): V\/](]Q)

~W§j.1>.>w}?j>+l~wjﬁ}j)+l. With logarithmic accuracy, the \/1}2+y2*>[
condition(B1) corresponds to the equation

v, for y<w,
y, for y>w.

Then
Wj(JQ)(X!Z)_W](jl)(X,Z):WJ((’:)j)+1(X,Z)_ (B2)
1 * 1
Taking into consideration the asymptotic behavior for Z—J exr(—\/vayz)dymz—e‘V(wﬁ 1).
modified Bessel functions in EgA2) for the Gaussian cor- QjJo Q

relator, £q.(B2) can be reduced to This leads to the following estimate for the peak positions:

. (B3 2= 7+ /%:1) 87)

J

2 (j+1)? . F{ 1(Q 02
2Q° VQ,Q+1 AR

where szx\/l—(a-rj/z)z. Whenz/7j>1, we can putQ wherev; is the root of the transcendental equation
~Qj+1~X in the denominator. The exponent should be

evaluated more carefully:Qj—Q,-+1~X772(2j+1)/222. vj=2InAj+In(1+v), Aj=x(1+1/j).
Then Eq.(B3) yields the following values of the peak posi-
tions: The last equation can be solved by iterations:
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SR ) W CO W ) WU

yO=2InA, vWY=In[2InA+1],....

Finally, with logarithmic accuracy, the solution of Eg.

(B6) for the positions of peaks becomes

X(2j+1)

v
Zj:E\/In{x\/ln[x(H— UDI(L+ 1))

(B8)

Similar asymptotic estimates for the power-law correlator

with arbitrary u yield

S

PHYSICAL REVIEWGS 155413

_17\/ X(2j+1)
"2 Vin[A[(2 Inaj#2r e

o L [ 2
I NT(et52)

It is clear from Eq.(B9) that the dependence of the peak

(B9)

positions onu is extremely weak.
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