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Surface roughness and effective stick-slip motion
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The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed.
When the hydrodynamic decay lendthe viscous wave penetration depih larger than the correlation radius
(size of random surface inhomogeneities, it is possible to replace a random rough surface by effective
stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization
of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly
via the correlation function of random surface inhomogeneities. The stick-slip length is always negative and
the effective change of viscosity near the surface is positive signifying the effective average hampering of the
hydrodynamic flows by the rough surfa¢stick rather than slip motion A simple hydrodynamic model
illustrates general hydrodynamic results. The effective boundary parameters are analyzed numerically for
Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the fre-
guency dependence of the dissipation allows one to extract the correlation (eltémacteristic sizeof the
surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.
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I. INTRODUCTION that there are two main sources of noticeable boundary slip:
large bulk mean free path, as in rarefied g43ésr 3He (for
Progress in microtechnology and nanotechnology requireseview, see Ref[13], and references thergimr, in dense
a better understanding of boundary effects. For hydrodyliquids with atomic-size free path, peculiarities of molecular
namic microflows, this means a better understanding ofnteraction with the wallfor review, see Ref[25], and ref-
stick-slip motion near solid walls and, in particular, informa- erences therejnsuch as, for example, the molecular slip or
tion on the dependence of the slipr stick length on the formation of a gas-rich layer near the hydrophobic surface.
properties of the walls. Despite the fact that similar issuesn the former case, the slip length is assumed to be propor-
were first raised more than a hundred years [ge3], the  tional to the large bulk mean free pafly, L= aLy. In the
slip length remains one of the least known transport coeffi{atter case, the boundary slip is associated with molecular
cients. interaction with the wall and becomes noticeable only in
Traditionally, the most detailed information on boundary special cases such as hydrophobic walls, electrolytes, large
slip is available for rarefied classical ga$éds-7] in applica- molecules, etc.
tion to vacuum technology, high altitude flights, and space The change in the flow patterns caused by the roughness
research. More recentf8—15], liquid *He has become an of the walls, though often acknowledged as the third poten-
important source of information on surface slip. This is nottial source of stick-slip motion near the walls, is usually dis-
surprising since, in contrast to classical gases, one can easilggarded. The reason is the complexity of the flows near
vary the quasiparticle mean free path i#le by changing rough walls and the resulting difficulty in formulating gen-
temperature, thus allowing experiments in a wide range oéral quantitative conclusions. It is understood that the bound-
Knudsen numbers. ary corrugation changes the liquid and gas flows in a wall
The miniaturization of experimental systems renewed indayer with a thickness comparable to the parameters of the
terest to slip effects in normal liquids with short free paths, incorrugation. However, this change is considered to be not
which the slip length is in nanometer range. This slip lengthsufficiently large for flows in wider channels to merit a de-
though very small, is, nevertheless, extremely important forailed theoretical analysis of this complicated hydrodynamic
hydrodynamic flows in nanochannels and microchannels, luissue. Besides, it is not always easy to tremtdom wall
brication, etc. Modern experimental techniques, includingroughness in a consistent quantitative way. In the case of
the atomic force microscopy16—19, experiments with dilute gases, it seems reasonable to ignore small-scale sur-
powder or self-assembled monolayf26—22, optical meth-  face inhomogeneities on the scale smaller than the large bulk
ods[23], quartz crystal microbaland@4], etc., revealed the mean free patiC,. In the case of dense liquids, the theory
importance of(partia) surface slip for hydrodynamic flows [26—2§ indicates that the microscale surface roughness hin-
in narrow channels and layers between solid walls. ders the flow near the wall and can, by itself, become the
The conventional gas and hydrodynamic theories assumerigin of the no-slip boundary condition; apart from this gen-
eral conclusion, the details of the roughness-induced changes
in the flow are assumed to be case specific. On the other
*Electronic address: ilya@qc.edu; present address: Department band, the numerical methof29,30 are not sufficiently well
Physics, Queens College of CUNY, Kissena Blvd. Flushing, NYdeveloped so that to include simultaneously the change in
11367. molecular forces near the liquid-solid interface and the com-
Electronic address: Alexander_Meyerovich@uri.edu plicated geometry(random roughne$sof the surface(for

1063-651X/2003/6@)/02630212)/$20.00 67 026302-1 ©2003 The American Physical Society



I. V. PONOMAREV AND A. E. MEYEROVICH PHYSICAL REVIEW E67, 026302 (2003

some recent progress in this direction, see R&f]).
Experimentally microflows and nanoflows can exhibit,
depending on the experimental setup and the wetting prop-

erties of the liquid-solid interface, full range of slip proper-
ties from complete slippage to partial slip to no slip to stick
(“freezing”). So far, there is no systematic analysis of the
additional effects introduced by surface roughness on the
scale comparable to the bulk-driven stick-slip length. From
this point of view, the situation is not yet satisfactory espe-
cially if one takes into account current interest to microflows FIG. 1. General geometry of the model.
and nanoflows, for which the roughness-driven change of

flow patterns close to the walls are not negligible. For nanothe derivation are given in Appendix)AComparison of this
flows, this deficiency of the existing theory could becomenydrodynamic result with the expressions for the stick-slip
inexcusable. _ _ ‘motion near flat walls allows us to get the expression for the
Recent analysis of a slip near a model surface with perieffective stick-slip parameters in Sec. Ill. For clarification of
odic irregularities32] demonstrated that the slip lengl;  the physical meaning of the parameters in the somewhat un-
in dilute gases contains not only the bulk componen,,  expected effective boundary condition, we present a simple
but also the contribution from the averaged surface curvahydrodynamic model for a boundary layer in Appendix B.
ture, Lg'=a 1L, —R™. An application of the corre- Section IV contains analytical and numerical results for the
sponding boundary condition to several types of curvedsurfaces with various statistical types of inhomogeneities. In
walls [33] resulted in an interesting expression for an effec-Sec. V, we present the conclusions and discuss further steps
tive slip length which could, under certain circumstances, behat can broaden the impact of our results.
equivalent to large-scale surface roughness. However, these
results[3_2,33| were o_bFained for few special typgs of regular HYDRODYNAMIC FLOWS ALONG ROUGH WALLS
surface inhomogeneities only. In the case of microscale and
nanoscale defects, it is more realistically to suggest that sur- To determine an effective slip or stick length, one has to
faces haveandomcorrugation. What is more, in some cases,solve an appropriate hydrodynamic problem with a boundary
especially in the hydrodynamic limi€,— 0, it is not clear condition on a random rough wall and to compare the results
how to use the effective boundary parameters of Refswith those for a similar problem with a slip boundary condi-
[32,33. tion on a smooth wall. Several “typical” hydrodynamic
Below, we address the issue of hydrodynamic flows neaproblems[34] have been generalized recently in order to
rough walls with small-scaleandominhomogeneities. Since cover boundaries with slight roughnd8§—38. For our pur-
the hydrodynamic calculations near inhomogeneous wallposes, the most appropriate problem is the problem of hydro-
are extremely complicatd@®0], it is highly desirable to map dynamic flows excited by tangential oscillations of a rough
this problem onto the problem with some effective boundarywall. The advantages are the convenience of the experimen-
condition on an ideal flat wall. This general effective bound-tal setup with a standard transverse oscillator, a choice of
ary condition should contain information about geometricalseveral observables such as hydrodynamic velocity and two
and statistical properties of the real corrugated surface ancbomponents of the shear impedance, and the presence of an
ensure a proper behavior of physical variables. The derivaextra variable—frequency—which allows one to vary the
tion of this simple effective boundary condition is the mainratio of the hydrodynamic decay length to the size of wall
objective of the paper. We will show that this boundary con-inhomogeneities. Since this problem has already been stud-
dition contains two effective parameters: stick-slip lengthied in Ref.[35], though by a different method, we will only
and renormalized viscosity. We will also demonstrate that thdoriefly outline our hydrodynamic formalism in Appendix A
results for attenuation in torsional oscillator experiments carand present some additional results.
provide valuable information about the statistical type of sur- We consider semi-infinite viscous fluid restricted by a
face inhomogeneities and give the values of the main geaough solid wall. For simplicity, roughness is assumed to be
metrical parameters of the surface roughness. one-dimensional and have a profile described by a random
In this paper, we are interested exclusively in the contri-function Y=Z(X) with the zero mean valug,Z(X))=0.
bution to the effective surface stick-slip coming from the The wall is homogeneous in tizedirection(see Fig. 1 This
surface roughness and ignore the slip terms originating fronmhomogeneous surface is characterized by two length
the wetting-related processes. Therefore, we start from a trggarameters—the average amplitudand correlation radius
ditional no-slip boundary condition on the wall with random (size R of surface inhomogeneities. We consider the case of
inhomogeneities. Though in Sec. V of the paper, we discusslight roughness,
how to use this effective stick-slip length in conjunction with
other sources of the surface slip, this broader issue requires e=h/R<1. (1)
separate analysis.
In the following section, we present the main hydrody- In other situations, any general description of hydrodynamic
namic equations and find a general expression for the streaftows near rough walls is virtually impossible.
function in systems with random rough walthe details of The wall oscillates inX-direction with the velocity
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U(t) = e,uycos wt). 2) A= \Jwlwy= 2R/, (9)

The hydrodynamic boundary condition is the condition ofwhich describes the ratio of the size of inhomogeneiide
zero velocityV on the wall in the reference frame, in which the hydrodynamic decay length. Two dimensionless pa-
the wall is at rest, rameterse and A, are the main parameters of the problem.
Below, we consider the linearized Navier-Stokes equation
):0_ 3) without the nonlinear term on the right-hand sidRHS) of
Eq. (7). For small frequenciesy/ wy<<1, this linearization is

) , justified for very small Reynolds numbers R&. In the op-
Two important hydrodynamic length scales are the deca¥)osite limit of high frequenciesw/wy>1, this requires

length (or viscous wave penetration depthand the ampli-  gmajiness of the amplitude of oscillatioasin comparison
tude of the boundary oscillationa, with the tangential size of surface inhomogeneifeat ar-
o _ bitrary Reynolds numberf34] Re, a/R<1. The linearized
o=V2viw, a=ulw, (4) Eq. (7) for curl v can be, as usual, rewritten as the fourth-
wherev= 7/p is the kinematic viscosity.

v(x—J U(t)dt,Y=E(X—f U(t)dt

order differential equation for the scalar stream function

It is convenient to choosk, R, and the amplitude of the ¥(%.¥),
wall velocity ug as the scaling parameters and introduce di- o oy
mensionless variables as Uy -

Zw, Uy 07_X (10)

v=V/ug, Xx=X/R, y=YIR, &Xx)=E(X/R)/h. i , i
(5) In our _problem, all hydrodynamic variables contain har-
monic time dependence. After the transformation to the co-
When the fluctuations of(x) are statistically independent ordinate frame oscillating with the wall, the hydrodynamic
and the higher momenta can be expressed through the secoaguations and boundary conditions for the stream function
one, the random surface roughness is actually described natquire the form
by the unknown random functiof(x) with the zero average,

but by the correlation functiogi(x), —iA?V2y— V=0, 1Y
1 (= (X, €£(X)) IP(x,€&(x))

g(X)E<§(X1)§(X1+X)>:KJimg(Xl)g(Xl_l'X)Xmv (6) 2y =1, X =0, (12

(E(k)E(KY) =278k, + k) L (Ky), #(x,0) = const. (13

whereA is dimensionless flat surface area of the wall. Ex- ' n€ solution of the linearized Navier-Stokes equatitiiy—
perimentally, the correlation function&(x) [or its Fourier (13 is quite difficult because the boundary condititt?)
image, also known as the power spectrdiik,)] can exhibit mvolves_ the rough wall vv_|th random inhomogeneities. Using
different types of long-range behavior and assume varioug coordinate transformation—y— &(x), we can reduce the
forms[39]. Particular examples of the surface correlators ard\avier-Stokes equation to an equivalent equation with the
analyzed in Sec. IV. Note that in our dimensionless notation®oundary condition on the perfect flat wall. However, this
(5), the correlation radius of surface inhomogeneities is equdl€W €quation, as a result of the transformation-driven change
to 1. in derivatives, acquires several additional tervhg that in-

The liquid is considered incompressible, ®i¥0. In  volve the combinations of derivatives g¢f and the random
variables(5), the dimensionless Navier-Stokes equation carfunction §(x). To deal with these terms, we find the explicit

be written as form of the Green'’s function with the proper boundary con-
dition. Then the problem reduces to a rather transparent in-
1 dcurl v t I i
— —V2curl v=Rd (curl vW)v—(vV)curl v], egral equation
(O] ot -
@ Wk ) = hantloe)+ [ dy'Glkyy)
where the characteristic frequenay, and the Reynolds
number Re are = dkj . o o
xf_ SV y ek Y. (14
v R UR a o g
@oT 2 N TR G, ®  This procedure and the explicit expressions for the unper-

turbed inhomogeneous solutigh,,(k,,y), the perturbation
(the inverse frequency parametf»gl is often called the dif- V, and the Green's function are given in Appendix A. In
fusion time of vorticity. Since the first term in Eq7) has an  some sense, we shifted the difficulty from the boundary con-
order of (w/wg)curl v, the hydrodynamic flows are charac- dition to the bulk equations with random sources of the spe-
terized by the dimensionless parameter cial form. Note that Eq(14) is still exact and, in principle,
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could be solved without the perturbation theory. The explicitThe equation for the energy dissipation is averaged over both
form of Green’s function is such that one can extract thehe surface roughness and the over period of oscillations.
main part of the solution in the closed form. Another possibleThis expression coincides with the result of RES5] ob-
approach to Eq(14) is to apply the Wiener-Hermite func- tained with the help of the Rayleigh perturbation method.
tional expansiorf40,41]. Stream function also allows one to find corrections to the
Note, that, in contrast to the attempts of replacing theroughness-driven friction force. These calculations should be
rough surfaces by an effective thin layer of bulk scattererglone more carefully than for standard flat geometry: the fric-
[28], our procedure of replacing the random surface roughtion force is parallel to the actual surface and, in the case of
ness by arequivalentbulk contribution is exact. What is the oscillatingroughwall, has both components, andF, .
more, the roughness-driven contributions to the flows ar@®ne should also take into account gheomponent of veloc-
expressed explicitly via the geometrical profile of the roughity, which is absent in the case of flat geometry. A straight-
surface. forward calculation for the averaged square of absolute value
Here, we solve Eq(l4) by iterations as an expansion in of dimensionless friction force gives
the small parameteryy= o+ e+ €+ --- The first
three terms for the stream function have the following forms: . 77Uof (f_> A2
R 2

202 ro
14 €A f dt{(At)qﬁz(t)}

™ Jo

ho(ky,y) = ?—: d(kgexp(iny), (19 (23

This expression is different from a simple experimental defi-
(16) nition of the effective friction forcd=.¢;= — Q/u.
At low frequencieglarge decay lengths\ <1), Egs.(19)
and(21) for parameterg’; , reduce to

A
(esly — eSZY) ,

a(Kyy) = &(ky)

ey +
Sz

otk = otk [ akgaii) ak
b t=-2[ ko),

sl+82 i i>\y+ Sy _ Sy
T( e S,€ s,e%2Y)

17

where we exclude uninteresting constant terms and

si=—lkd, s= A= —arip,
1 4 4\1/2 2
a,B= —J(K'+ A% 2= 2=,

€,=1+0(AInA),

and the equations for the velocity and attenuation acquire the
following form:

<UX> — R% ei()\y—wt)[ 1_Aei377/4

2 *dk
2 X € 2f0 fg(k»kwom))“, (24
=€\, (18)
Since for further calculations we need only the expression nu(z) A 5 o
for ¢, which is averaged over the random surface inhomo- Q=- 2R E[lJFA € (1+O0(AInA))]. (29
geneities, Eq(17) gives only the compact expression for
(W2(ke.¥))- The fact that the main term ifi, is equal to 1 is due to our

These expressions for the stream function provide the, . o ; o
; . . choice of the normalization of the correlation function in Eq.
roughness-driven corrections for the velocity and rate of en- PN
ergy dissipationsee Appendix X (5) as{(x=0)=1 (see also Sec. IV
In the opposite limit of high frequencies>1,
() =Re(e™=9U[1+iNe?(1]}, (vy)=0, (19

2 2 2
nuy A € [=dk, 5 €
=dky ~~%r |1t gf LKy |[=Qo 1+ (€9 |-
ezf—k S1+ - M2}, 20 V2 o

1= | o dkd{sir s —in2y (20 o6
77U(2) This result has a simple physical explanation. In this limit,
Qz_ﬁT[H e?A%(5), (21)  the decay length is much smaller than correlation radius

2 (size of the wall inhomogeneitieR. As a result, the dissi-

. pation occurs in a very narrow layer near the wall within
gzzf gg(m)(b(t)' ¢(t):1_\/mrt2_ which 'Fhe Wall_ca_n b_e considere_d as almost fla_t. Then the
om correction to dissipation stems simply from the increase in

(22)  the surface area relatively to the flat boundary
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g A 1 nué A 1 ’ The negative sign in Eq(31) means that the boundary
Q~——= —=— P dA=—— — —f 1+ €%¢ dx. roughness causes effective slow down of the liquid, i.e., the
2R 2.2 2R 2L coefficient€.¢; (31) is the stick length rather than the slip
(27) length. In other words, there is an additional roughness-
induced friction.

Surprisingly, the effective boundary conditiof®8) and
(31), taken by itself, cannot emulate the roughness-driven
attenuation(21). The reason is the presence normal flows
near the boundaryy,(x), which are completely absent

Equation (26) is simply the combination of the first two
terms in the Taylor expansion of E(7) in small e.

In principle, it is possible to slightly modify our problem
by considering a torsional quartz crystal oscillator with den-

sity ps, and thicknesgl. If such a resonator has a rough - . . AT - ;
solid-fluid interface, the frequency shifw of the resonance mt"hclﬂ zhi gﬁ?rcﬁgeatfgfnkptsshF,:Odrisocé:?;'?r(]i 8)b(iTr? d(azr?/),cl(?n di-
y=0.

frequency(}, acquires an additional roughness-driven Comi@on (28) so that to reproduce both the velocity and attenua-

Sﬁgslrc]jt g;at i(\:/ae?] kz)e i?rf]ﬁZEid Lﬁ:gg;hgua(?hogef:g”l?:rl:(s:msi? on correctly by, for example, introducing a two-component
9 y q ' q y r complex stick-slip length, fail. In order to emulate the

for a transverse oscillator {S5] correct behavior of liquid near a rough wall, one has not only
to introduce the stick-slip lengtt28) and (31), but also to

Sw=— 7 é i 1 EZAJw% L(ky) renormalize the viscosity near the wall as
J2 R psd T
7eti(Y) =1+ B4&(y)], (32)
4 / 2
X[VKGHAH T2+ G = A+ ‘/Ekx]] ; where renormalization parametgris given by

. . 2

whereg(y) is given by Eq(22). We do not want to dwell on _ h_
this issue; our interest in focused mainly on the roughness- '8~2R2[€1+A€2/‘/E]' (33

driven corrections to the hydrodynamic flows and dissipa-

tion. or, in the case of smalA,

Ill. EFFECTIVE STICK-SLIP BOUNDARY CONDITIONS 8~2 €eff+ A h? (34
The main objectives of this paper are to find when and to R J2Rr?|

what extent the flows near random rough surface are equiva-
lent to stick-slip motion with some effective stick-slip
boundary conditions near flat surfaces,

The effective boundary condition@8), (31), (32), and
(34) are the main results of this paper. These conditions al-
low one to replace the random rough boundary by an equiva-

Corr dUL(X,01) p lent problem with the flat boundary and the effective stick-
RB{UX(XDI)— R oy | Ree 'Y, (28 slip length and renormalized viscosity. The necessity of the
y renormalization of the viscosity means that the rough surface
where the effective stick-slip length,(;, in order to sim- slows the flow down and changes the attenuation. Usually,

plify the applications of the results, is introduced with theth€ Slip boundary condition is understood in terms of the
proper dimensionality of length while all other variables are€Xistence of a peculiar thin slip boundary layer with the

still dimensionless, Eq(5). With this boundary condition on thickness of the order of the mean free path and with the
a flat wall, the velocity field is properties that are somewhat different from the rest of the

liquid. In the case of the rough walls, one should not only
el\y—wt) introduce the effective stick-slip layer with the thickness that
vy(y,t)= Re{ : . (29)  is determined by andR, but also to renormalize the viscos-
1-e®™ A Lo /R ity in this layer explicitly. A simple physical model that clari-
] . . fies the meaning of the effective parameters is given in Ap-
Since the roughness-generated corrections for velocity argengix B.

small, the comparison between E29) and Egs.(19) and
(24) is possible only when\ ¢.;;/R<1, i.e., only for rela-
tively large decay lengthdow frequencies

IV. COMPARISON FOR DIFFERENT TYPES
OF RANDOM INHOMOGENEITIES

vy(y,H)~ RN eN(1+e3™ AL /R)].  (30) In this section, we address the question whether it is pos-

) _ ) ) sible to extract information on the properties of the rough
In this case, the comparison with the roughness-driven corgface from the frequency dependence of attenuation of
rection for the velocity, Eq(24), yields the following simple  {ransverse oscillations. Statistical properties of the random

expression for the effective stick-slip lengfl;;=Re?(: surface are described by the correlation function of surface
h2 redk inhomogeneitiesZ (X) =h?{(x), x=X/R, Eq. (6). Experi-
Corr= —2—f (k) Ky (31) mentally, the correlation function can exhibit different types
RJo 7 of long-range behavior and can assume various fdB3a
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TABLE I. The position of the maximum of the funcidi835) and the value of stick-slip length E¢t1) for different types of the surface
correlation function.

Correlator type Form{(x) Fourier image £ (k) A max €1(A<1)
1 Gaussian exp{x?) Jrexp(—k4/4) 1.293 YN
2 Power-law (1 x?) ~(rF12) Jr KK (KD 4 T(u+1)
27T (w+ 1/2) a J7 D(pn+172)
2a w=1/2: Lorentzian (Fx?>)1t mexp|K) 1.320 2
2b w=3/2: Staras (x%2 1.825 3

o
5 (1+ [k exp( k)

3 Power-law Fourier image 1 x| () 27 I'(v+ 1/2)(1+k2)’{”1’2} i r(v+1/2) 1
27711 () v I'(v) Jz T(») v—112

3a v=1/2: exponential expf|x)) 2(1+k?» 7t no max %

3b v=3/2 (1+]x])exp(=|x)) 4(1+Kk?) 2 1.238 4fr

Three broad classes of the correlation functigts) and  The integral(35) can be conveniently split into two parts,
their Fourier imageg(k) (the so-called power density spec- AI'; and AT'5, which correspond to the contributions from
tral functions, or power specfrare summarized in Table I. small and large.

For better comparison, all the correlators are normalized in In the laminar limit,A<1, the main contribution comes
the same way(x=0)= 1. Note, that this normalization dif- from larget,

fers from the one used in Rd#2] for conductivity of ultra-

thin films: the natural reference point for the conductivity AF(A)~AF2=A—A2In(A)/\/§+O(A2). (39
was its value in the limikR—0 and all the correlation func-

tions in Ref.[42] have been normalized usingk=0)=1. The first two terms in this expression are the same for the
For the hydrodynamic problem in this paper, the normaliza<orrelators of all types. Therefore, in the low-frequency limit
tion {(x=0)=1 provides a better reference. with large decay length, it is impossible to distinguish statis-

The most commonly used correlation function, namely,tical properties of different surfaces. The physical reason is
the Gaussian correlator, is listed first. The next class of th@bvious: large-scale attenuation processes on the scale of de-
correlation functions covers power-law correlators with thecay lengthd are not very sensitive to the details of surface
exponentially decaying Fourier image@ower spectra  inhomogeneities with the siz@< 5.

[k|“K ,(|k]). Here, the most widely used are the Lorentzian ~The situation is different in the opposite case of large
correlator (index w=1/2) and the Staras correlatog ( In this limit for Gaussian and power-law correlators with the
=3/2) with the exponentially decaying power spectra. Theexponential power spectitypes 1 and 2 in the Tablg, Ithe
third class of the correlation functions includes the conjugateontribution from largé to the integral35) is exponentially
correlators, namely, the exponentially decaying correlatorsmall. An estimate of the contribution from smaélyields

with the power-law spectral functiof(k). In our dimension-

less notations, Ed. 5), all the correlators have the correla- »dk k2¢(K) 1 d?Z(x) C
tion radius equal to one. AT(A)~Aly~ | — =—ox 5 x0T
The most convenient observable is the frequency depen- (39

dence of the relative attenuation, Eg1),
whereC=1 for the Gaussian correlator a@= p+ 1/2 for

AQ _  (-dt the power-law correlators.
AT(A)= AGZQOZAL ?g(tA)(b(t)’ (35 For the correlators with the power-law power spectrum
(correlators of the type 3 in the Tablg, the contribution
d(1)=1—(1+tHTP—¢2. (36) from larget, AT'», is
In the limits t<1 andt>1, the functioné(t) has the fol- AT~ A v e
lowing asymptotic expansions: 2 0 (1+t2)rF12 '

t212—t48, t<1

37) The contribution from smali, AT";, strongly depends on the
1-14/2t, t>1.

value of the exponent. If 0<v<1, then the value oAT";

is determined by the upper limit of the corresponding part of
Note, that the piecewise continuous function, defined by thehe integral and it is also proportional to!~2”. If v>1,
expressions in Eq37) connected at the point= /2, givesa then the first terms in the Taylor expansion tbft) yields a
good approximation fokp(t) in the whole range of. This  convergent integral proportional to~ !, while the rest gives
can be useful in simple approximations of the intedB&).  the terms with the smaller exponeft ~2”:

¢(t)~[
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10 L ILLLLL UL IR Se L B pOSSible where the hydrOdynamiC decay Ien@the viscous
—— v=02 7 ] wave penetration depths larger than the correlation radius
I ":l)jg /,;’: -——————3 (size of random surface inhomogeneities. The effective
= ] boundary conditions contain two constants: the stick-slip
length and the renormalization of viscosity near the bound-

ary. The stick-slip length and the renormalization coefficient
are expressed explicitly via the correlation function of sur-
face inhomogeneities. The corresponding expressions are
quite simple and can be easily used for analysis of experi-
mental data or in hydrodynamic computations. The effective
i ] stick-slip length is negative. It means that the effective aver-
; -zi'"""I-é'"""I-é""'"l-i""'"l B 2'3 4 age hampering of the hydrodynamic flow by the rough sur-
107107107 10" 1 10 10" 10" 10 face(stick rather than slip motionWhat is more, the renor-

A malization coefficient for the viscosity is positive also
pointing at additional resistance in the stick layer near the
rough surface.

For a better understanding of the results, we presented a
simple hydrodynamic model that illustrates our general hy-

10

FIG. 2. Correction to the energy dissipation raid; as a func-
tion of the frequency parametdr for Gaussian and correlators in
log-log scale.

) 4 drodynamic calculations.
AT - ~ JA dk k__ k_+ o In the process of the derivation of the effective boundary
) (1+K2)+ U3 24 gA3 condition, we reduced the Navier-Stokes equation with the

no-slip boundary condition on the random rough wall to the
1 exactly equivalent closed integral equation with the homoge-
A2-1] neous boundary condition on the ideal flat wall. All the in-
formation on the surface roughness is contained in the kernel
é)f this integral equation. The equation can be solved by stan-
&ard methods.
The effective boundary parameters were analyzed numeri-
cally for three classes of surface correlators including the

! @)

Thus, the energy dissipation rate for the correlators with th
power-law power spectrum is determined by the value of th
index v,

A2 o< p<1, Gaussian, power-l_aw_, ar_1d exponentially decaying correla-
AT (A, v)~1 , 4 (400  tors. The energy dissipation near the rough surface was cal-
AT v>1 culated as a function of frequency for these types of the

correlation functions. The position of maximum on the fre-
quency dependence of the dissipation allows one to extract
the correlation radiugcharacteristic sizgeof the surface in-

Comparison of the asymptotic behavior of the function
AT'(A) for small and large\, Eqgs.(38)—(40), indicates that

this function should have a maximum at= \/,ER/5~1 €X- homogeneities directly from, for example, experiments with
cept for the correlators with smaill. In experiment, the po-  i5rsional quartz oscillators.

sition of_this maximum on the frequency dependence of the |, our particular hydrodynamic problem, the only hydro-
attenuation can become a direct measurement of the correlgynamic parameter with the dimensionality of length, which
tion radius(size of the surface inhomogeneiti€s _can be used for scaling of surface inhomogeneities, is the
The numerical results are summarized in Fig. 2 whichgecay lengths. In principle, in microchannels and nanochan-
presents the functional’(A) for various correlators. NU- e there is another scaling parameter—the channel width
merical values of the position of the maximum #I'(A)  Therefore, the next obvious step should be the evaluation of
for various correlation functions are presented in the Table o effective stick-slip length for ultrathin flow channels of

The last column in the table describes the dimensionlesg‘he thicknes., for which L is expected to gradually replace

roughness-driven stick-slip length = — €¢((/€°R for vari- e decay lengtl# as the scaling parameter. The fact that our
ous correlators, Eq31) at smallA, main result for the effective stick-slip length, E®1), does
dk not contain the decay length explicitly, gives hope that the
~ _x same equation for the effective slip length will hold in finite
o T channels as long as the channel widths larger than the

amplitude and the correlation radius of the surface inhomo-
V. SUMMARY AND DISCUSSION geneitiesh andR _ . o
In experiment, the measured slip length is a combination
In summary, we investigated the possibility of replacing aof the geometric, roughness-driven and physical, and mo-
random rough surface by a set of effective stick-slip bounddecular force-driven contributions. As it is shown above, the
ary conditions on an ideal flat surface. Such a replacement igeometric contribution is always negatiygick rather than
highly desirable for analysis of experimental data and/orslip motion and has the order of magnitudeh?/R. On the
simplification of hydrodynamic computations for microchan- other hand, the combined slip length can range between
nels and nanochannels. The replacement turned out to de-100 nm[16,17,19,22—2F This slip length is routinely
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attributed to molecular forces. Since the roughness and mdn this reference frame, the Navier-Stokes equatignand
lecular forces provide the contributions of the opposite signsthe boundary conditio3) can be rewritten as the following
the slip length attributed to molecular forces in experimentequation for the stream function

with unknown surface roughness can be seriously under-

reported. The same concerns the renormalization of the vis- —iA?V2y—V*y=0, (A2)
cosity near the surface and friction: the roughness-driven

renormalization corresponds to the increase in viscosity and Ip(x,e&(x))  Ip(X,e&(x))

friction, while the molecular force driven renormalization, ay =1 X =0, (A3)
especially for hydrophobic solids, corresponds to a decrease

in viscosity and friction. (X,0) = const. (A4)

Depending on the geometric parameters of the surface
roughness, either one of the geometrical and physical contri- The difficulty in solving Eqs(A2)—(A4) originates from
butions can dominate the overall slip. This transition fromthe presence of a random functig(x) in the boundary con-
the force-driven contributions to the roughness-driven condition. The next step is the coordinate transformation
tributions has been recently observed in experiments with
flows past the surfaces with different roughness but the same X=X,  y—y—e&(x), (AS5)
hydrophobic chemistry20]. i N
Quantitative analysis of experimental data requires thdhat flattens the wall, making the boundary conditid®)
study of stick-slip motion which would take into account Simple,
simultaneously the surface roughness and the molecular
forces. For this, one would require calculation of the le IP(x.0)
roughness-driven contribution in microchannels when the Iy ’ X
boundary condition on ideal walls corresponds to a partial, (A6)
molecular force-driven slip. When the roughness-driven an : o . .
molecular force-driven contributions to the surface slip an(i-he chan.ge in derivatives introduces the additional term
viscosity are independent, one would expect that the correY(§.9x)# into the RHS of Eq(A2),
sponding transport coefficients obey the Matthiessen’s rule. N 4O
Unfortunately, this is not always so: recent study of flow of —IANV Y=V Y=V(&,d0) ¢, (A7)
particles with large mean free path through microchannels
with random rough walls revealed large classical interferenc&/1€€
between bulk and wall scattering which resulted in the vio-
lation of the Matthiessen’s rulgl3] for bulk and wall-driven
transport coefficients. In the systems in which the source of |
slip is not the large free path, but nonwetting of the walls,  Vit=— (2N2 &yt N2 Exthry + A yuhyx+ B xuthyx
such interference may be caused by renormalization of mo-
lecular forces near walls due to the wall curvature.  Exoodly 280yt A6yxoct Hexyyyd,

=e€&,(X), ¥(X,)=const.

\A/: 6\71-1- 62\,\/2+ 63\’\/3+ 64\’\/4, (A8)
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APPENDIX A: SOLUTION OF THE NAVIER-STOKES
EQUATION FOR FLUIDS RESTRICTED and lower indices denote the differentiation of the functions
BY RANDOM ROUGH WALLS & and .
First, we assume that all the variables have the harmonigII JVC: j'sn:g I;:I;té/tc;]febgtrjggr?rsyfﬁgggglaczzs_lzln; V;f;igﬂp: tes
time. dependence, §x13(wt), transform the ””eafized operator on the LHS of Eq$A2) and(A?).Wi’th,the help of
;\rlgr\ggri-r?tvc\)/lr(liecsh theusvt;ﬂg ) attoretshte noninertial coordinate this Green’s function, our initial problem with a boundary
’ condition on the random rough surface reduces to the com-
pact integral equation,
Uy—Uy— eXp(—iwt), x—>x—J exp(—iwt)dt,

k,=-k,+fxd'Gk,,’
and introduce the stream functiaf(x,y) as VK Y) = dinn(kY) oY (ke.yy")

I I = dk]
=%y U (A1) Xf_wzw

7 V(ke—kg Ly wky,y"),  (A9)
IX

Ux
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where we performed the Fourier transformationx tirection

1
(in the new coordinate frame, the geometry of the boundary Gu(r,r)=—5_In(Rs/Ry),
is independent ox), and

Yinn(kx,y) = f :dxe*ikxw(x,y) (A10) Gz(r,r'):jz[Hgl)(hRs)—Hgl)()\RO],

is a solution of Eq(A2) with V=0 and boundary conditions Rg = Vx=x")2+(yxy')>2
(A3), (A4). With this definition of ¢;,,(ky,Y), the Green’s
function satisfies the homogeneous boundary conditions on |, qur case of slight roughness, it is sufficient to find only

the wall. Note, that Eq(A9) is anexactequivalent of our o first three terms of the expansion of the stream function
initial problem with the random rough wall and, in principle, ¥, Eq. (A9), in powers of the small parametet o=

can be solved for an arbitrary functigitx). 9 . . ~
The function;,n(Ky,y) is determined by the character- ;L.E‘ﬁﬁtﬁ ¢2+| o Stlncfe all_ttrf]]e ttern."lsgﬂ thf? otpteraM_rcog-
istic equation for the operator in LHS of E€A2): ain €, the only part ofy without € Is the first term in Eqg.
(A13) for lﬂinh'
ky— (2K —iADKS— (iIkiA2—kp)=0.  (Al1)

2 )
This equation has four solutions, Yo(ke.y) = K&(kx)[exp(l)\y) -1l (A15)

Ky=%51,%5,, (AL2) The first-order term iny contains the remaining part @f,,,

and the first order term in the integrgd9) with

V(K dy) o= — E(k[KIN2+ K ]e™Y.

1
V(ky+ A% 2 ki=0.

a,B=—
V2 Integration gives
We are interested only in the functions,,(ky,y) that de- _ in
crease ay— . Therefore, the general solution of the homo- (K y) = E(ky)| €™+ (e’Y—e%Y)|. (Al6)
geneous Eq(A2) with the boundary conditioA3) has the S27 %
form
The calculation of the second-order term requires straight-
27 o e&(ky) . . forward integration for much more cumbersome expressions.
Pinn(key) = - ok = 1]+ 52_51[529 Y—s16%']  However, the general expression fgs is not required for

(A13) further calculations; it is sufficient to have only the expres-
sion for ¢, averaged over the surface inhomogeneitjés, .

and contains the contribution withouto(k,,y), and the The resulting expression for the stream function contains

term linear ine. Similar calculations yields the Green’s func- products of the derivatives of the surface profié’(x).
tion These products should be averaged over surface inhomoge-

neities using the definition of the correlation functigx),
Egs.(6)

i(eszb’—Y'l —eS20+Y"))

lel,:
(kx,Y,y") 2iA2|S,

(EM(x)EM(x")y=(—1)M M (x—x"). (AL7)

1
— Z(esily=Y' | gsiy+y’) . .
(e e ) In the end, after substantial cancellations that accompany the

S1
averaging,

o [eS10+Y) 4 gSaly+y")

iA - * ’ ’

A s (ot )=o) [ dkiz)

—eSwytsy’ _ sy’ +szy]‘ (A14)
: - X _31+Sz irneN+ g, eS8y —g eSoy
Note that the last result can be also obtained by noticing that o (INe s e —se7) |

our Green’s function is proportional to the difference be-
tween the Green'’s functions for the two-dimensional Laplace (A18)
and Helmholtz equations with the same boundary conditions:
Reversing the coordinate transformation of E&5) and
G(r,r')=\"2%(G_.—Gy), performing the related reexpansionédn
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(Ux(ke,y— €€))=0{(y) 5(ky)

liquid 77

+e <v§2><kx,y>>—<§%v£1)<kx,y>>

§2 (92
+<3>a—y2v‘x°><y> 5(ky)

we get for the average velocity
FIG. 3. Schematic geometry of the problem.

ek,
(wtey)=expiing | 1+ine? [ ek

(?Ui O')Uk 1 égx
Tik= a_xk‘f'g ) :—1+62§2 1/
i I y=e¢ V X
X{s;+s; |)\/2}}, (A19) (A24)
wheres, ,s, are given by Eq(A12). Here,n is the unit vector normal to the surface and directed

The above equations for the stream function and velocityput of the liquid. The square of the absolute value of this
allow one to calculate the roughness-driven correction to théorce is
dissipation of energy and effective friction.

. L . . 2 "2 2
Time average of the bulk dissipation per unit area of the myyt €& sy

2_¢2 2__2
wall can be expressed via the stream functjpas Pefafy=myt 1+€2¢'2 (A25)
5 E—
MU 1f v v\ or, via the stream function,
= - — — _t
2R A Xk IXi 5 ) 5
77u2 f :[(l/fyy_ ) +4l/fxy]|y:s§- (A26)
0

1 S
— 2
“"R Kf dV(AW 5+ (Wyy=Wy)®),  (A20)  |n new coordinate$AS), this expression reduces to

whereW (r,t)=Rd (r)e”'“!], an overline denotes the time (F2)=((1+2€2E5) y55,(x,0)).
average over the period of oscillations ahd -) stands for ] ] ) ]
the statistical average over the random surface inhomogenéfter separating the real and imaginary parts and expanding

ities. The time averag®? = 3 g o/ . in €, we finally get

After the coordinate transformatidii\5), the attenuation A2 »dk

up to the second order term inreduces to (f?)y= - |1+ eZJ L L(k)[A = (KE+ A% T2— kxz]z).
o

(A27)

2
nUp [~
Q=->r f dy[Q+2Q), (A21) o > .
0 Note that in this problem the friction force introduced by

_ Eq. (A23) does not determine, after integration over the sur-
QO=[yM?= A% 2N, face, the full energy dissipation. In the case of inhomoge-
neous rough boundaries there is an additional dissipative
Q@)= (g + Eoahl? — Q12+ 2| &) — w12+ 29| contribution related to the term with pressufn;, in the
)%/ 1(2) (1) expression for the full force acting on the unit area of the
+2Ra dyy” (Pyy + Exxily )])- surface. If one defines the friction force not via the stress
tensor, Eq.(A23), but assumes the experimental definition
according toF = — Q/ug, then the roughness-driven correc-
a2 A dk tion to the friction force will be given by EqA22) rather
Q=- 70 _( 1+ eZAJ —Xg(kx) than by Eq.(A27). Another anomaly of this problem is that
2m one should always take into account both components of the
friction force.

Finally, we get

X[A— V(K AH2— ki]] . (A22)

The friction force acting on the area unit of the surface is  The necessity of using two boundary parameters instead

APPENDIX B: TWO-LAYER MODEL

[34] of a single stick-slip length can be illustrated by the follow-
ing simple model. Let us consider tangential oscillations of
F— W_‘Jof fe— o (A23) viscous liquid which is separated from a solid substrate by a
R th ko layer of another liquid with a slightly higher viscosity,
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o 9 ) 2
Qu=- ﬁfd dy{ Re(ﬁiyze'wt”

>y and the same densitgee Fig. 3. In effect, we model a
rough surface by a layer of viscous liquid with somewhat
different properties than in the bulk. The model has two
parameters: the thickness of the layeand dimensionless

ratio 1y, :_|Ceixd|2ﬂ.
22
7N Ay
YT N N If the thickness of the layed is smaller than the decay

Assuming that the velocity in both liquids is proportional 1€ngthé, A1d<1,

to exp(—iwt), we get the following equations of motion: C—1—e3mpd(1— 1),

2 2
—iwvl—vlm=0, —iwv—vd—UZO, |Cei)‘d|2—>1—\/EAd'yz—FAZd2 4
dy? dy?
v(y)=eM[1-ind(1- %]
v1(0)=1, vy(d)=v(d),
nA
doy(d) _dv(d) —Q~ 1+ A% (1= ).
=gy ~Tdy - 2.2

Note that the conditiorh;d<<1 does not necessarily mean
that the layer is very thin.
The last two equations show that in this limit

The solution is

vi(y)=ArM0~d 4 geiMly—d)

vo(y)=Ce™ v(y=d)~ Re{uge' ™ “I[1-e3"Ad(1-+?)]},
" (B1)
wi
2
A
B _ o 242,201 _ .2
AB-ca i, Q~ 5 g LAY (A=) (B2)
e ind Comparison of Egs(B1l) and (B2) with Egs. ( 31)—(34)

C

gives the mapping of the effective viscous layer model onto
the problem with a rough surface,

Time average of the rate of the energy dissipation per unit
consists of contributions from both liquids:

~ cogh,d)—iysin(n.d)’
—d(1-9?)=Le/R=€%(y,

d?y?(1—y?) = €2¢,.

Q=Q+Qy,
d 70 P In this limit d<§, the contribution of the layer to the
Q=- 771J' dy[Re<_19iwt dissipationQ, , corresponds to thé-type renormalization of
0 ay the viscosity in the effective boundary condition of Sec. Il
1 with renormalization parameter
— _ Cei)\dZ A 1+ 2 ev“?)\ld_l
| | 7 18\/5[( 7) ( ) B:62[2€1+ \/§A€2]

+(1=y)3(1—e 29+ 2(42—1)sin(y2)1,d)],

given in Eq.(33).
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