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Surface roughness and effective stick-slip motion

I. V. Ponomarev* and A. E. Meyerovich†

Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817
~Received 17 May 2002; published 5 February 2003!

The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed.
When the hydrodynamic decay length~the viscous wave penetration depth! is larger than the correlation radius
~size! of random surface inhomogeneities, it is possible to replace a random rough surface by effective
stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization
of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly
via the correlation function of random surface inhomogeneities. The stick-slip length is always negative and
the effective change of viscosity near the surface is positive signifying the effective average hampering of the
hydrodynamic flows by the rough surface~stick rather than slip motion!. A simple hydrodynamic model
illustrates general hydrodynamic results. The effective boundary parameters are analyzed numerically for
Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the fre-
quency dependence of the dissipation allows one to extract the correlation radius~characteristic size! of the
surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.

DOI: 10.1103/PhysRevE.67.026302 PACS number~s!: 47.10.1g, 68.08.2p, 46.65.1g, 81.40.Pq
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I. INTRODUCTION

Progress in microtechnology and nanotechnology requ
a better understanding of boundary effects. For hydro
namic microflows, this means a better understanding
stick-slip motion near solid walls and, in particular, inform
tion on the dependence of the slip~or stick! length on the
properties of the walls. Despite the fact that similar issu
were first raised more than a hundred years ago@1–3#, the
slip length remains one of the least known transport coe
cients.

Traditionally, the most detailed information on bounda
slip is available for rarefied classical gases@4–7# in applica-
tion to vacuum technology, high altitude flights, and spa
research. More recently@8–15#, liquid 3He has become an
important source of information on surface slip. This is n
surprising since, in contrast to classical gases, one can e
vary the quasiparticle mean free path in3He by changing
temperature, thus allowing experiments in a wide range
Knudsen numbers.

The miniaturization of experimental systems renewed
terest to slip effects in normal liquids with short free paths
which the slip length is in nanometer range. This slip leng
though very small, is, nevertheless, extremely important
hydrodynamic flows in nanochannels and microchannels
brication, etc. Modern experimental techniques, includ
the atomic force microscopy@16–19#, experiments with
powder or self-assembled monolayers@20–22#, optical meth-
ods@23#, quartz crystal microbalance@24#, etc., revealed the
importance of~partial! surface slip for hydrodynamic flow
in narrow channels and layers between solid walls.

The conventional gas and hydrodynamic theories ass
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that there are two main sources of noticeable boundary s
large bulk mean free path, as in rarefied gases@7# or 3He ~for
review, see Ref.@13#, and references therein! or, in dense
liquids with atomic-size free path, peculiarities of molecu
interaction with the wall~for review, see Ref.@25#, and ref-
erences therein! such as, for example, the molecular slip
formation of a gas-rich layer near the hydrophobic surfa
In the former case, the slip length is assumed to be pro
tional to the large bulk mean free pathLb , Lsl5aLb . In the
latter case, the boundary slip is associated with molec
interaction with the wall and becomes noticeable only
special cases such as hydrophobic walls, electrolytes, l
molecules, etc.

The change in the flow patterns caused by the roughn
of the walls, though often acknowledged as the third pot
tial source of stick-slip motion near the walls, is usually d
regarded. The reason is the complexity of the flows n
rough walls and the resulting difficulty in formulating gen
eral quantitative conclusions. It is understood that the bou
ary corrugation changes the liquid and gas flows in a w
layer with a thickness comparable to the parameters of
corrugation. However, this change is considered to be
sufficiently large for flows in wider channels to merit a d
tailed theoretical analysis of this complicated hydrodynam
issue. Besides, it is not always easy to treatrandom wall
roughness in a consistent quantitative way. In the case
dilute gases, it seems reasonable to ignore small-scale
face inhomogeneities on the scale smaller than the large
mean free pathLb . In the case of dense liquids, the theo
@26–28# indicates that the microscale surface roughness
ders the flow near the wall and can, by itself, become
origin of the no-slip boundary condition; apart from this ge
eral conclusion, the details of the roughness-induced chan
in the flow are assumed to be case specific. On the o
hand, the numerical methods@29,30# are not sufficiently well
developed so that to include simultaneously the change
molecular forces near the liquid-solid interface and the co
plicated geometry~random roughness! of the surface~for
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some recent progress in this direction, see Ref.@31#!.
Experimentally microflows and nanoflows can exhib

depending on the experimental setup and the wetting p
erties of the liquid-solid interface, full range of slip prope
ties from complete slippage to partial slip to no slip to sti
~‘‘freezing’’ !. So far, there is no systematic analysis of t
additional effects introduced by surface roughness on
scale comparable to the bulk-driven stick-slip length. Fr
this point of view, the situation is not yet satisfactory esp
cially if one takes into account current interest to microflo
and nanoflows, for which the roughness-driven change
flow patterns close to the walls are not negligible. For na
flows, this deficiency of the existing theory could becom
inexcusable.

Recent analysis of a slip near a model surface with p
odic irregularities@32# demonstrated that the slip lengthLsl
in dilute gases contains not only the bulk componentaLb ,
but also the contribution from the averaged surface cur
ture, L sl

215a21L b
212R21. An application of the corre-

sponding boundary condition to several types of curv
walls @33# resulted in an interesting expression for an effe
tive slip length which could, under certain circumstances,
equivalent to large-scale surface roughness. However, t
results@32,33# were obtained for few special types of regul
surface inhomogeneities only. In the case of microscale
nanoscale defects, it is more realistically to suggest that
faces haverandomcorrugation. What is more, in some case
especially in the hydrodynamic limitLb→0, it is not clear
how to use the effective boundary parameters of R
@32,33#.

Below, we address the issue of hydrodynamic flows n
rough walls with small-scalerandominhomogeneities. Since
the hydrodynamic calculations near inhomogeneous w
are extremely complicated@30#, it is highly desirable to map
this problem onto the problem with some effective bound
condition on an ideal flat wall. This general effective boun
ary condition should contain information about geometri
and statistical properties of the real corrugated surface
ensure a proper behavior of physical variables. The der
tion of this simple effective boundary condition is the ma
objective of the paper. We will show that this boundary co
dition contains two effective parameters: stick-slip leng
and renormalized viscosity. We will also demonstrate that
results for attenuation in torsional oscillator experiments
provide valuable information about the statistical type of s
face inhomogeneities and give the values of the main g
metrical parameters of the surface roughness.

In this paper, we are interested exclusively in the con
bution to the effective surface stick-slip coming from t
surface roughness and ignore the slip terms originating f
the wetting-related processes. Therefore, we start from a
ditional no-slip boundary condition on the wall with rando
inhomogeneities. Though in Sec. V of the paper, we disc
how to use this effective stick-slip length in conjunction wi
other sources of the surface slip, this broader issue requ
separate analysis.

In the following section, we present the main hydrod
namic equations and find a general expression for the str
function in systems with random rough walls~the details of
02630
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the derivation are given in Appendix A!. Comparison of this
hydrodynamic result with the expressions for the stick-s
motion near flat walls allows us to get the expression for
effective stick-slip parameters in Sec. III. For clarification
the physical meaning of the parameters in the somewhat
expected effective boundary condition, we present a sim
hydrodynamic model for a boundary layer in Appendix
Section IV contains analytical and numerical results for
surfaces with various statistical types of inhomogeneities
Sec. V, we present the conclusions and discuss further s
that can broaden the impact of our results.

II. HYDRODYNAMIC FLOWS ALONG ROUGH WALLS

To determine an effective slip or stick length, one has
solve an appropriate hydrodynamic problem with a bound
condition on a random rough wall and to compare the res
with those for a similar problem with a slip boundary cond
tion on a smooth wall. Several ‘‘typical’’ hydrodynami
problems @34# have been generalized recently in order
cover boundaries with slight roughness@35–38#. For our pur-
poses, the most appropriate problem is the problem of hyd
dynamic flows excited by tangential oscillations of a rou
wall. The advantages are the convenience of the experim
tal setup with a standard transverse oscillator, a choice
several observables such as hydrodynamic velocity and
components of the shear impedance, and the presence
extra variable—frequencyv—which allows one to vary the
ratio of the hydrodynamic decay length to the size of w
inhomogeneities. Since this problem has already been s
ied in Ref.@35#, though by a different method, we will only
briefly outline our hydrodynamic formalism in Appendix
and present some additional results.

We consider semi-infinite viscous fluid restricted by
rough solid wall. For simplicity, roughness is assumed to
one-dimensional and have a profile described by a rand
function Y5J(X) with the zero mean value,̂J(X)&50.
The wall is homogeneous in theZ direction~see Fig. 1!. This
inhomogeneous surface is characterized by two len
parameters—the average amplitudeh and correlation radius
~size! R of surface inhomogeneities. We consider the case
slight roughness,

e5h/R!1. ~1!

In other situations, any general description of hydrodynam
flows near rough walls is virtually impossible.

The wall oscillates inX-direction with the velocity

FIG. 1. General geometry of the model.
2-2
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SURFACE ROUGHNESS AND EFFECTIVE STICK-SLIP MOTION PHYSICAL REVIEW E67, 026302 ~2003!
U~ t !5exu0cos~vt !. ~2!

The hydrodynamic boundary condition is the condition
zero velocityV on the wall in the reference frame, in whic
the wall is at rest,

VS X2E U~ t !dt,Y5JS X2E U~ t !dtD D50. ~3!

Two important hydrodynamic length scales are the de
length~or viscous wave penetration depth! d and the ampli-
tude of the boundary oscillations,a,

d5A2n/v, a5u0 /v, ~4!

wheren5h/r is the kinematic viscosity.
It is convenient to chooseh, R, and the amplitude of the

wall velocity u0 as the scaling parameters and introduce
mensionless variables as

v5V/u0 , x5X/R, y5Y/R, j~x!5J~X/R!/h.
~5!

When the fluctuations ofj(x) are statistically independen
and the higher momenta can be expressed through the se
one, the random surface roughness is actually described
by the unknown random functionj(x) with the zero average
but by the correlation functionz(x),

z~x![^j~x1!j~x11x!&5
1

AE2`

`

j~x1!j~x11x!dx1 , ~6!

^j~kx!j~kx8!&52pd~kx1kx8!z~kx!,

whereA is dimensionless flat surface area of the wall. E
perimentally, the correlation functionsz(x) @or its Fourier
image, also known as the power spectrum,z(kx)] can exhibit
different types of long-range behavior and assume vari
forms @39#. Particular examples of the surface correlators
analyzed in Sec. IV. Note that in our dimensionless notati
~5!, the correlation radius of surface inhomogeneities is eq
to 1.

The liquid is considered incompressible, divv50. In
variables~5!, the dimensionless Navier-Stokes equation c
be written as

1

v0

] curl v

]t
2¹2curl v5Re@~curl v“ !v2~v“ !curl v#,

~7!

where the characteristic frequencyv0 and the Reynolds
number Re are

v05
n

R2
, Re5

u0R

n
[

a

R

v

v0
~8!

~the inverse frequency parameterv0
21 is often called the dif-

fusion time of vorticity!. Since the first term in Eq.~7! has an
order of (v/v0)curl v, the hydrodynamic flows are chara
terized by the dimensionless parameter
02630
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L5Av/v05A2R/d, ~9!

which describes the ratio of the size of inhomogeneitiesR to
the hydrodynamic decay lengthd. Two dimensionless pa
rameters,e andL, are the main parameters of the proble

Below, we consider the linearized Navier-Stokes equat
without the nonlinear term on the right-hand side~RHS! of
Eq. ~7!. For small frequencies,v/v0!1, this linearization is
justified for very small Reynolds numbers Re!1. In the op-
posite limit of high frequencies,v/v0@1, this requires
smallness of the amplitude of oscillationsa in comparison
with the tangential size of surface inhomogeneitiesR at ar-
bitrary Reynolds numbers@34# Re, a/R!1. The linearized
Eq. ~7! for curl v can be, as usual, rewritten as the fourt
order differential equation for the scalar stream functi
c(x,y),

vx5
]c

]y
, vy52

]c

]x
. ~10!

In our problem, all hydrodynamic variables contain ha
monic time dependence. After the transformation to the
ordinate frame oscillating with the wall, the hydrodynam
equations and boundary conditions for the stream func
acquire the form

2 iL2¹2c2¹4c50, ~11!

]c„x,ej~x!…

]y
51,

]c„x,ej~x!…

]x
50, ~12!

c~x,`!5const. ~13!

The solution of the linearized Navier-Stokes equations~11!–
~13! is quite difficult because the boundary condition~12!
involves the rough wall with random inhomogeneities. Usi
a coordinate transformationy→y2j(x), we can reduce the
Navier-Stokes equation to an equivalent equation with
boundary condition on the perfect flat wall. However, th
new equation, as a result of the transformation-driven cha
in derivatives, acquires several additional termsV̂c that in-
volve the combinations of derivatives ofc and the random
function j(x). To deal with these terms, we find the explic
form of the Green’s function with the proper boundary co
dition. Then the problem reduces to a rather transparen
tegral equation

c~kx ,y!5c inh~kx ,y!1E
0

`

dy8G~kx ,y,y8!

3E
2`

` dkx8

2p
V̂~kx2kx8 ,y8!c~kx8 ,y8!. ~14!

This procedure and the explicit expressions for the unp
turbed inhomogeneous solutionc inh(kx ,y), the perturbation
V̂, and the Green’s function are given in Appendix A.
some sense, we shifted the difficulty from the boundary c
dition to the bulk equations with random sources of the s
cial form. Note that Eq.~14! is still exact and, in principle,
2-3
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I. V. PONOMAREV AND A. E. MEYEROVICH PHYSICAL REVIEW E67, 026302 ~2003!
could be solved without the perturbation theory. The expl
form of Green’s function is such that one can extract
main part of the solution in the closed form. Another possi
approach to Eq.~14! is to apply the Wiener-Hermite func
tional expansion@40,41#.

Note, that, in contrast to the attempts of replacing
rough surfaces by an effective thin layer of bulk scatter
@28#, our procedure of replacing the random surface rou
ness by anequivalentbulk contribution is exact. What is
more, the roughness-driven contributions to the flows
expressed explicitly via the geometrical profile of the rou
surface.

Here, we solve Eq.~14! by iterations as an expansion
the small parameter:c5c01ec11e2c21••• The first
three terms for the stream function have the following form

c0~kx ,y!5
2p

il
d~kx!exp~ ily!, ~15!

c1~kx,y!5j~kx!Feily1
il

s22s1
~es1y2es2y!G , ~16!

^c2~kx ,y!&5d~kx!E
2`

`

dkx8z~kx8!

3Fs11s2

il
~ ileily1s1es1y2s2es2y!G ,

~17!

where we exclude uninteresting constant terms and

s152ukxu, s25Akx
22 iL2[2a1 ib,

a,b5
1

A2
A~kx

41L4!1/26kx
2>0,

l5eip/4L. ~18!

Since for further calculations we need only the express
for c2 which is averaged over the random surface inhom
geneities, Eq.~17! gives only the compact expression f
^c2(kx ,y)&.

These expressions for the stream function provide
roughness-driven corrections for the velocity and rate of
ergy dissipation~see Appendix A!:

^vx&5Re$ei (ly2vt)@11 ile2,1#%, ^vy&50, ~19!

,15E
0

`dkx

p
z~kx!$s11s22 il/2%, ~20!

Q52
hu0

2

2R

L

A2
@11e2L2,2#, ~21!

,25E
0

`dt

p
z~ tL!f~ t !, f~ t !512A~11t4!1/22t2.

~22!
02630
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The equation for the energy dissipation is averaged over b
the surface roughness and the over period of oscillatio
This expression coincides with the result of Ref.@35# ob-
tained with the help of the Rayleigh perturbation method

Stream function also allows one to find corrections to
roughness-driven friction force. These calculations should
done more carefully than for standard flat geometry: the f
tion force is parallel to the actual surface and, in the case
the oscillatingrough wall, has both componentsFx andFy .
One should also take into account they component of veloc-
ity, which is absent in the case of flat geometry. A straig
forward calculation for the averaged square of absolute va
of dimensionless friction force gives

F5
hu0

R
f, ^ f 2&5

L2

2 F11
e2L2

p E
0

`

dtz~Lt !f2~ t !G .
~23!

This expression is different from a simple experimental de
nition of the effective friction forceFe f f52Q/u0.

At low frequencies~large decay lengths,L!1), Eqs.~19!
and ~21! for parameters,1,2 reduce to

,1522E
0

`dkx

p
z~kx!kx1O~L!,

,2511O~L ln L!,

and the equations for the velocity and attenuation acquire
following form:

^vx&5ReH ei (ly2vt)F12Lei3p/4

3e2S 2E
0

`dkx

p
z~kx!kx1O~L! D G J , ~24!

Q52
hu0

2

2R

L

A2
@11L2e2

„11O~L ln L!…#. ~25!

The fact that the main term in,2 is equal to 1 is due to ou
choice of the normalization of the correlation function in E
~5! asz(x50)51 ~see also Sec. IV!.

In the opposite limit of high frequenciesL@1,

Q'2
hu0

2

2R

L

A2
F11

e2

2 E0

`dkx

p
z~kx!kx

2G[Q0F11
e2

2
^j82&G .

~26!

This result has a simple physical explanation. In this lim
the decay length is much smaller than correlation rad
~size! of the wall inhomogeneitiesR. As a result, the dissi-
pation occurs in a very narrow layer near the wall with
which the wall can be considered as almost flat. Then
correction to dissipation stems simply from the increase
the surface area relatively to the flat boundary
2-4
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Q'2
hu0

2

2R

L

A2

1

L2 R dA52
hu0

2

2R

L

A2

1

LE A11e2j82dx.

~27!

Equation ~26! is simply the combination of the first two
terms in the Taylor expansion of Eq.~27! in small e.

In principle, it is possible to slightly modify our problem
by considering a torsional quartz crystal oscillator with de
sity rs , and thicknessd. If such a resonator has a roug
solid-fluid interface, the frequency shiftdv of the resonance
frequencyV0 acquires an additional roughness-driven co
ponent that can be described within the above formalism
should be given by similar equations. Such a frequency s
for a transverse oscillator is@35#

dv52
h

A2

L

R

1

rsd
H 11e2LE

0

`dkx

p
z~kx!

3@A~kx
41L4!1/21kx

22L1A2kx#J ,

wheref(y) is given by Eq.~22!. We do not want to dwell on
this issue; our interest in focused mainly on the roughne
driven corrections to the hydrodynamic flows and dissi
tion.

III. EFFECTIVE STICK-SLIP BOUNDARY CONDITIONS

The main objectives of this paper are to find when and
what extent the flows near random rough surface are equ
lent to stick-slip motion with some effective stick-sli
boundary conditions near flat surfaces,

ReH vx~x,0,t !2
,e f f

R

]vx~x,0,t !

]y J 5Re~e2 ivt!, ~28!

where the effective stick-slip length,e f f , in order to sim-
plify the applications of the results, is introduced with t
proper dimensionality of length while all other variables a
still dimensionless, Eq.~5!. With this boundary condition on
a flat wall, the velocity field is

vx~y,t !5ReF ei (ly2vt)

12ei3p/4L,e f f /R
G . ~29!

Since the roughness-generated corrections for velocity
small, the comparison between Eq~29! and Eqs.~19! and
~24! is possible only whenL,e f f /R!1, i.e., only for rela-
tively large decay lengths~low frequencies!

vx~y,t !' Re@ei (ly2vt)~11ei3p/4L,e f f /R!#. ~30!

In this case, the comparison with the roughness-driven
rection for the velocity, Eq.~24!, yields the following simple
expression for the effective stick-slip length,e f f5Re2,1:

,e f f522
h2

RE
0

`dkx

p
z~kx!kx. ~31!
02630
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The negative sign in Eq.~31! means that the boundar
roughness causes effective slow down of the liquid, i.e.,
coefficient,e f f ~31! is the stick length rather than the sli
length. In other words, there is an additional roughne
induced friction.

Surprisingly, the effective boundary conditions~28! and
~31!, taken by itself, cannot emulate the roughness-driv
attenuation~21!. The reason is the presence normal flo
near the boundary,vy(x), which are completely absen
within the effective stick-slip description~28! and ~29!, in
which vy50. The attempts to modify the boundary cond
tion ~28! so that to reproduce both the velocity and atten
tion correctly by, for example, introducing a two-compone
or complex stick-slip length, fail. In order to emulate th
correct behavior of liquid near a rough wall, one has not o
to introduce the stick-slip length~28! and ~31!, but also to
renormalize the viscosity near the wall as

he f f~y!5h@11bd~y!#, ~32!

where renormalization parameterb is given by

b'2
h2

R2
@,11L,2 /A2#, ~33!

or, in the case of smallL,

b'2F,e f f

R
1

L

A2

h2

R2G . ~34!

The effective boundary conditions~28!, ~31!, ~32!, and
~34! are the main results of this paper. These conditions
low one to replace the random rough boundary by an equ
lent problem with the flat boundary and the effective stic
slip length and renormalized viscosity. The necessity of
renormalization of the viscosity means that the rough surf
slows the flow down and changes the attenuation. Usua
the slip boundary condition is understood in terms of t
existence of a peculiar thin slip boundary layer with t
thickness of the order of the mean free path and with
properties that are somewhat different from the rest of
liquid. In the case of the rough walls, one should not on
introduce the effective stick-slip layer with the thickness th
is determined byd andR, but also to renormalize the viscos
ity in this layer explicitly. A simple physical model that clar
fies the meaning of the effective parameters is given in A
pendix B.

IV. COMPARISON FOR DIFFERENT TYPES
OF RANDOM INHOMOGENEITIES

In this section, we address the question whether it is p
sible to extract information on the properties of the rou
surface from the frequency dependence of attenuation
transverse oscillations. Statistical properties of the rand
surface are described by the correlation function of surf
inhomogeneities,J(X)5h2z(x), x5X/R, Eq. ~6!. Experi-
mentally, the correlation function can exhibit different typ
of long-range behavior and can assume various forms@39#.
2-5
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TABLE I. The position of the maximum of the funcion~35! and the value of stick-slip length Eq.~41! for different types of the surface
correlation function.

Correlator type Form,z(x) Fourier image,z(k) Lmax ,1(L!1)

1 Gaussian exp(2x2) Apexp(2k2/4) 1.293 4/Ap
2 Power-law (11x2)2(m11/2) Ap

2m21G(m11/2)
ukumKm(uku)

4

Ap

G(m11)
G(m11/2)

2a m51/2: Lorentzian (11x2)21 p exp(2uku) 1.320 2
2b m53/2: Staras (11x2)22 p

2
(11uku)exp(2uku)

1.825 3

3 Power-law Fourier image 1

2n21G(n)
uxunKn(uxu) 2Ap

G(n11/2)
G(n)

(11k2)2$n11/2% 2

Ap

G(n11/2)
G(n)

1
n21/2

3a n51/2: exponential exp(2uxu) 2(11k2)21 no max `

3b n53/2 (11uxu)exp(2uxu) 4(11k2)22 1.238 4/p
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.
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Three broad classes of the correlation functionsz(x) and
their Fourier imagesz(k) ~the so-called power density spe
tral functions, or power spectra! are summarized in Table I
For better comparison, all the correlators are normalized
the same way,z(x50)51. Note, that this normalization dif
fers from the one used in Ref.@42# for conductivity of ultra-
thin films: the natural reference point for the conductiv
was its value in the limitkR→0 and all the correlation func
tions in Ref.@42# have been normalized usingz(k50)51.
For the hydrodynamic problem in this paper, the normali
tion z(x50)51 provides a better reference.

The most commonly used correlation function, name
the Gaussian correlator, is listed first. The next class of
correlation functions covers power-law correlators with t
exponentially decaying Fourier images~power spectra!,
ukumKm(uku). Here, the most widely used are the Lorentzi
correlator ~index m51/2) and the Staras correlator (m
53/2) with the exponentially decaying power spectra. T
third class of the correlation functions includes the conjug
correlators, namely, the exponentially decaying correla
with the power-law spectral functionz(k). In our dimension-
less notations, Eq.~ 5!, all the correlators have the correla
tion radius equal to one.

The most convenient observable is the frequency dep
dence of the relative attenuation, Eq.~21!,

DG~L!5
DQ

Le2Q0

[LE
0

`dt

p
z~ tL!f~ t !, ~35!

f~ t !512A~11t4!1/22t2. ~36!

In the limits t!1 and t@1, the functionf(t) has the fol-
lowing asymptotic expansions:

f~ t !'H t2/22t4/8, t!1

121/A2t, t@1.
~37!

Note, that the piecewise continuous function, defined by
expressions in Eq.~37! connected at the pointt5A2, gives a
good approximation forf(t) in the whole range oft. This
can be useful in simple approximations of the integral~35!.
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The integral~35! can be conveniently split into two parts
DG1 and DG2, which correspond to the contributions from
small and larget.

In the laminar limit,L!1, the main contribution come
from larget,

DG~L!;DG25L2L2ln~L!/A21O~L2!. ~38!

The first two terms in this expression are the same for
correlators of all types. Therefore, in the low-frequency lim
with large decay length, it is impossible to distinguish stat
tical properties of different surfaces. The physical reason
obvious: large-scale attenuation processes on the scale o
cay lengthd are not very sensitive to the details of surfa
inhomogeneities with the sizeR!d.

The situation is different in the opposite case of largeL.
In this limit for Gaussian and power-law correlators with t
exponential power spectra~types 1 and 2 in the Table I!, the
contribution from larget to the integral~35! is exponentially
small. An estimate of the contribution from smallk yields

DG~L!;DG1'E
0

`dk

p

k2z~k!

2L
52

1

2L

d2z~x!

dx2
ux505

C

L
,

~39!

whereC51 for the Gaussian correlator andC5m11/2 for
the power-law correlators.

For the correlators with the power-law power spectru
~correlators of the type 3 in the Table I!, the contribution
from larget, DG2, is

DG2;LE
0

1/L t2n21dt

~11t2!n11/2
;L122n.

The contribution from smallt, DG1, strongly depends on the
value of the exponentn. If 0,n,1, then the value ofDG1
is determined by the upper limit of the corresponding part
the integral and it is also proportional toL122n. If n.1,
then the first terms in the Taylor expansion forf(t) yields a
convergent integral proportional toL21, while the rest gives
the terms with the smaller exponentL122n:
2-6
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SURFACE ROUGHNESS AND EFFECTIVE STICK-SLIP MOTION PHYSICAL REVIEW E67, 026302 ~2003!
DG1;E
0

L dk

~11k2!$n11/2% F k2

2L
2

k4

8L3
1•••G

;
1

L
1OS 1

L2n21D .

Thus, the energy dissipation rate for the correlators with
power-law power spectrum is determined by the value of
index n,

DG~L,n!;H L122n, 0,n,1,

L21, n.1.
~40!

Comparison of the asymptotic behavior of the functi
DG(L) for small and largeL, Eqs.~38!–~40!, indicates that
this function should have a maximum atL5A2R/d;1 ex-
cept for the correlators with smalln. In experiment, the po-
sition of this maximum on the frequency dependence of
attenuation can become a direct measurement of the cor
tion radius~size! of the surface inhomogeneitiesR.

The numerical results are summarized in Fig. 2 wh
presents the functionsDG(L) for various correlators. Nu-
merical values of the position of the maximum forDG(L)
for various correlation functions are presented in the Tab

The last column in the table describes the dimension
roughness-driven stick-slip length,152,e f f /e

2R for vari-
ous correlators, Eq.~31! at smallL,

,1.2E
0

`dkx

p
z~kx!kx . ~41!

V. SUMMARY AND DISCUSSION

In summary, we investigated the possibility of replacing
random rough surface by a set of effective stick-slip bou
ary conditions on an ideal flat surface. Such a replaceme
highly desirable for analysis of experimental data and
simplification of hydrodynamic computations for microcha
nels and nanochannels. The replacement turned out t

FIG. 2. Correction to the energy dissipation rate,DG as a func-
tion of the frequency parameterL for Gaussian andn correlators in
log-log scale.
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possible where the hydrodynamic decay length~the viscous
wave penetration depth! is larger than the correlation radiu
~size! of random surface inhomogeneities. The effecti
boundary conditions contain two constants: the stick-s
length and the renormalization of viscosity near the bou
ary. The stick-slip length and the renormalization coefficie
are expressed explicitly via the correlation function of s
face inhomogeneities. The corresponding expressions
quite simple and can be easily used for analysis of exp
mental data or in hydrodynamic computations. The effect
stick-slip length is negative. It means that the effective av
age hampering of the hydrodynamic flow by the rough s
face~stick rather than slip motion!. What is more, the renor
malization coefficient for the viscosity is positive als
pointing at additional resistance in the stick layer near
rough surface.

For a better understanding of the results, we presente
simple hydrodynamic model that illustrates our general
drodynamic calculations.

In the process of the derivation of the effective bounda
condition, we reduced the Navier-Stokes equation with
no-slip boundary condition on the random rough wall to t
exactly equivalent closed integral equation with the homo
neous boundary condition on the ideal flat wall. All the i
formation on the surface roughness is contained in the ke
of this integral equation. The equation can be solved by s
dard methods.

The effective boundary parameters were analyzed num
cally for three classes of surface correlators including
Gaussian, power-law, and exponentially decaying corre
tors. The energy dissipation near the rough surface was
culated as a function of frequency for these types of
correlation functions. The position of maximum on the fr
quency dependence of the dissipation allows one to ext
the correlation radius~characteristic size! of the surface in-
homogeneities directly from, for example, experiments w
torsional quartz oscillators.

In our particular hydrodynamic problem, the only hydr
dynamic parameter with the dimensionality of length, whi
can be used for scaling of surface inhomogeneities, is
decay lengthd. In principle, in microchannels and nanocha
nels there is another scaling parameter—the channel widtL.
Therefore, the next obvious step should be the evaluatio
the effective stick-slip length for ultrathin flow channels
the thicknessL, for which L is expected to gradually replac
the decay lengthd as the scaling parameter. The fact that o
main result for the effective stick-slip length, Eq.~31!, does
not contain the decay length explicitly, gives hope that
same equation for the effective slip length will hold in fini
channels as long as the channel widthL is larger than the
amplitude and the correlation radius of the surface inhom
geneitiesh andR.

In experiment, the measured slip length is a combinat
of the geometric, roughness-driven and physical, and m
lecular force-driven contributions. As it is shown above, t
geometric contribution is always negative~stick rather than
slip motion! and has the order of magnitude2h2/R. On the
other hand, the combined slip length can range betw
1–100 nm@16,17,19,22–25#. This slip length is routinely
2-7
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I. V. PONOMAREV AND A. E. MEYEROVICH PHYSICAL REVIEW E67, 026302 ~2003!
attributed to molecular forces. Since the roughness and
lecular forces provide the contributions of the opposite sig
the slip length attributed to molecular forces in experime
with unknown surface roughness can be seriously un
reported. The same concerns the renormalization of the
cosity near the surface and friction: the roughness-dri
renormalization corresponds to the increase in viscosity
friction, while the molecular force driven renormalizatio
especially for hydrophobic solids, corresponds to a decre
in viscosity and friction.

Depending on the geometric parameters of the surf
roughness, either one of the geometrical and physical co
butions can dominate the overall slip. This transition fro
the force-driven contributions to the roughness-driven c
tributions has been recently observed in experiments w
flows past the surfaces with different roughness but the s
hydrophobic chemistry@20#.

Quantitative analysis of experimental data requires
study of stick-slip motion which would take into accou
simultaneously the surface roughness and the molec
forces. For this, one would require calculation of t
roughness-driven contribution in microchannels when
boundary condition on ideal walls corresponds to a part
molecular force-driven slip. When the roughness-driven a
molecular force-driven contributions to the surface slip a
viscosity are independent, one would expect that the co
sponding transport coefficients obey the Matthiessen’s r
Unfortunately, this is not always so: recent study of flow
particles with large mean free path through microchann
with random rough walls revealed large classical interfere
between bulk and wall scattering which resulted in the v
lation of the Matthiessen’s rule@43# for bulk and wall-driven
transport coefficients. In the systems in which the source
slip is not the large free path, but nonwetting of the wa
such interference may be caused by renormalization of
lecular forces near walls due to the wall curvature.
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APPENDIX A: SOLUTION OF THE NAVIER-STOKES
EQUATION FOR FLUIDS RESTRICTED

BY RANDOM ROUGH WALLS

First, we assume that all the variables have the harmo
time dependence, exp(2ivt), transform the linearized
Navier-Stokes equation~7! to the noninertial coordinate
frame in which the wall is at rest,

vx\vx2exp~2 ivt !, x→x2E exp~2 ivt !dt,

and introduce the stream functionc(x,y) as

vx5
]c

]y
, vy52

]c

]x
. ~A1!
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In this reference frame, the Navier-Stokes equation~7! and
the boundary condition~3! can be rewritten as the following
equation for the stream function

2 iL2¹2c2¹4c50, ~A2!

]c„x,ej~x!…

]y
51,

]c„x,ej~x!…

]x
50, ~A3!

c~x,`!5const. ~A4!

The difficulty in solving Eqs.~A2!–~A4! originates from
the presence of a random functionj(x) in the boundary con-
dition. The next step is the coordinate transformation

x→x, y→y2ej~x!, ~A5!

that flattens the wall, making the boundary condition~12!
simple,

]c~x,0!

]y
51,

]c~x,0!

]x
5ejx~x!, c~x,`!5const.

~A6!

The change in derivatives introduces the additional te
V̂(j,]x)c into the RHS of Eq.~A2!,

2 iL2¹2c2¹4c5V̂~j,]x!c, ~A7!

where

V̂5eV̂11e2V̂21e3V̂31e4V̂4 , ~A8!

V̂1c52~2l2jxcyx1l2jxxcy14jxxxcyx16jxxcyxx

1jxxxxcy12jxxcyyy14jxcyxxx14jxcyyyx!,

V̂2c5~l2jx
2cyy14jxxxjxcyy112jxjxxcyyx16jx

2cyyxx

12jx
2cyyyy13jxx

2 cyy!,

V̂3c522jx
2~3jxxcyyy12jxcyyyx!,

V̂4c5jx
4cyyyy,

and lower indices denote the differentiation of the functio
j andc.

The simplicity of boundary conditions in new coordinat
allows us to find the Green’s functionG(x2x8,y,y8) for the
operator on the LHS of Eqs.~A2! and~A7!. With the help of
this Green’s function, our initial problem with a bounda
condition on the random rough surface reduces to the c
pact integral equation,

c~kx ,y!5c inh~kx ,y!1E
0

`

dy8 G~kx ,y,y8!

3E
2`

` dkx8

2p
V̂~kx2kx8 ,y8!c~kx8 ,y8!, ~A9!
2-8
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SURFACE ROUGHNESS AND EFFECTIVE STICK-SLIP MOTION PHYSICAL REVIEW E67, 026302 ~2003!
where we performed the Fourier transformation inx direction
~in the new coordinate frame, the geometry of the bound
is independent ofx), and

c inh~kx ,y!5E
2`

`

dxe2 ikxxc~x,y! ~A10!

is a solution of Eq.~A2! with V̂50 and boundary condition
~A3!, ~A4!. With this definition ofc inh(kx ,y), the Green’s
function satisfies the homogeneous boundary conditions
the wall. Note, that Eq.~A9! is an exactequivalent of our
initial problem with the random rough wall and, in principl
can be solved for an arbitrary functionj(x).

The functionc inh(kx ,y) is determined by the characte
istic equation for the operator in LHS of Eq.~A2!:

ky
42~2kx

22 iL2!ky
22~ ikx

2L22kx
4!50. ~A11!

This equation has four solutions,

ky56s1 ,6s2 , ~A12!

s152ukxu, s25Akx
22 iL2[2a1 ib,

a,b5
1

A2
A~kx

41L4!1/26kx
2>0.

We are interested only in the functionsc inh(kx ,y) that de-
crease aty→`. Therefore, the general solution of the hom
geneous Eq.~A2! with the boundary condition~A3! has the
form

c inh~kx ,y!5
2p

il
d~kx!@eily21#1

ej~kx!

s22s1
@s2es1y2s1es2y#

~A13!

and contains the contribution withoute,c0(kx ,y), and the
term linear ine. Similar calculations yields the Green’s fun
tion

G~kx ,y,y8!5
1

2iL2 F 1

s2
~es2uy2y8u2es2(y1y8)!

2
1

s1
~es1uy2y8u2es1(y1y8)!G

31
1

iL2~s22s1!
@es1(y1y8)1es2(y1y8)

2es1y1s2y82es1y81s2y#. ~A14!

Note that the last result can be also obtained by noticing
our Green’s function is proportional to the difference b
tween the Green’s functions for the two-dimensional Lapla
and Helmholtz equations with the same boundary conditio

G~r ,r 8!5l22~GL2GH!,
02630
ry
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GL~r ,r 8!52
1

2p
ln~RS /RI !,

G2~r ,r 8!5
i

4
@H0

(1)~lRS!2H0
(1)~lRI !#,

RS,I5A~x2x8!21~y7y8!2.

In our case of slight roughness, it is sufficient to find on
the first three terms of the expansion of the stream func
c, Eq. ~A9!, in powers of the small parametere, c5c0

1ec11e2c21••• Since all the terms in the operatorV̂ con-
tain e, the only part ofc without e is the first term in Eq.
~A13! for c inh ,

c0~kx ,y!5
2p

il
d~kx!@exp~ ily!21#. ~A15!

The first-order term inc contains the remaining part ofc inh
and the first order term in the integral~A9! with

V̂1~kx ,]y!c052j~kx!@kx
2l21kx

4#eily.

Integration gives

c1~kx,y!5j~kx!Feily1
il

s22s1
~es1y2es2y!G . ~A16!

The calculation of the second-order term requires straig
forward integration for much more cumbersome expressio
However, the general expression forc2 is not required for
further calculations; it is sufficient to have only the expre
sion forc2 averaged over the surface inhomogeneities,^c2&.
The resulting expression for the stream function conta
products of the derivatives of the surface profilej (n)(x).
These products should be averaged over surface inhom
neities using the definition of the correlation functionz(x),
Eqs.~6!

^j (n)~x!j (m)~x8!&5~21!mz (n1m)~x2x8!. ~A17!

In the end, after substantial cancellations that accompany
averaging,

^c2~kx ,y!&5d~kx!E
2`

`

dkx8z~kx8!

3Fs11s2

il
~ ileily1s1es1y2s2es2y!G .

~A18!

Reversing the coordinate transformation of Eq.~A5! and
performing the related reexpansion ine,
2-9
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^vx~kx ,y2ej!&.vx
(0)~y!d~kx!

1e2F ^vx
(2)~kx ,y!&2 K j

]

]y
vx

(1)~kx ,y!L
1 K j2

2 L ]2

]y2
vx

(0)~y!d~kx!G ,

we get for the average velocity

^vx~x,y!&5exp~ ily!F11 il«2E
0

`dkx

p
z~kx!

3$s11s22 il/2%G , ~A19!

wheres1 ,s2 are given by Eq.~A12!.
The above equations for the stream function and velo

allow one to calculate the roughness-driven correction to
dissipation of energy and effective friction.

Time average of the bulk dissipation per unit area of
wall can be expressed via the stream functionc as

Q52
hu0

2

2R

1

AE dVK S ]v i

]xk
1

]vk

]xi
D 2L

52
hu0

2

R

1

AE dV^4Cxy
2 1~Cyy2Cxx!

2&, ~A20!

whereC(r ,t)5Re@c(r )e2 ivt#, an overline denotes the tim
average over the period of oscillations and^•••& stands for
the statistical average over the random surface inhomog
ities. The time averageC ik

2 5 1
2 c ikc ik* .

After the coordinate transformation~A5!, the attenuation
up to the second order term ine reduces to

Q52
hu0

2

2R E
0

`

dy@Q(0)1e2Q(2)#, ~A21!

Q(0)5ucyy
(0)u25L2e2A2Ly,

Q(2)5^ucyy
(1)1jxxcy

(0)2cxx
(1)u212ujxcyy

(0)2cxy
(1)u212ucxy

(1)u2

12Re@cyy
(0)* ~cyy

(2)1jxxcy
(1)!#&.

Finally, we get

Q52
hu0

2

2R

L

A2
H 11e2LE dkx

2p
z~kx!

3@L2A~kx
41L4!1/22kx

2#J . ~A22!

The friction force acting on the area unit of the surface
@34#

F5
hu0

R
f, f i52p iknk , ~A23!
02630
y
e

e

e-
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p ik5S ]v i

]xk
1

]vk

]xi
D

y5ej

, n5
1

A11e2jx
2 S ejx

21D .

~A24!

Here,n is the unit vector normal to the surface and direct
out of the liquid. The square of the absolute value of t
force is

f 25 f x
21 f y

25pxy
2 1

pyy
2 1e2j82pxx

2

11e2j8 2
, ~A25!

or, via the stream function,

f 25@~cyy2cxx!
214cxy

2 #uy5«j . ~A26!

In new coordinates~A5!, this expression reduces to

^ f 2&5^~112e2jx
2!cyy

2 ~x,0!&.

After separating the real and imaginary parts and expand
in e, we finally get

^ f 2&5
L2

2 S 11e2E
0

`dkx

p
z~kx!@L2A~kx

41L4!1/22kx
2#2D .

~A27!

Note that in this problem the friction force introduced b
Eq. ~A23! does not determine, after integration over the s
face, the full energy dissipation. In the case of inhomo
neous rough boundaries there is an additional dissipa
contribution related to the term with pressure,Pni , in the
expression for the full force acting on the unit area of t
surface. If one defines the friction force not via the stre
tensor, Eq.~A23!, but assumes the experimental definitio
according toF52Q/u0, then the roughness-driven corre
tion to the friction force will be given by Eq.~A22! rather
than by Eq.~A27!. Another anomaly of this problem is tha
one should always take into account both components of
friction force.

APPENDIX B: TWO-LAYER MODEL

The necessity of using two boundary parameters inst
of a single stick-slip length can be illustrated by the follow
ing simple model. Let us consider tangential oscillations
viscous liquid which is separated from a solid substrate b
layer of another liquid with a slightly higher viscosityh1

FIG. 3. Schematic geometry of the problem.
2-10
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.h and the same density~see Fig. 3!. In effect, we model a
rough surface by a layer of viscous liquid with somewh
different properties than in the bulk. The model has t
parameters: the thickness of the layerd and dimensionless
ratio g,

g5
hl

h1l1
[

L1

L
&1.

Assuming that the velocity in both liquids is proportion
to exp(2ivt), we get the following equations of motion:

2 ivv12n1

d2v1

d y2
50, 2 ivv2n

d2v

d y2
50,

v1~0!51, v1~d!5v~d!,

h1

dv1~d!

d y
5h

dv~d!

d y
.

The solution is

v1~y!5Aeil1(y2d)1Be2 il1(y2d),

v2~y!5Ceily

with

A,B5Ceild
16g

2
,

C5
e2 ild

cos~l1d!2 igsin~l1d!
.

Time average of the rate of the energy dissipation per
consists of contributions from both liquids:

Q5QI1QII ,

QI52h1E
0

d

dyFReS ]v1

]y
e2 ivtD G2

52uCeildu2h1L1

1

8A2
@~11g!2~eA2l1d21!

1~12g!2~12e2A2l1d!12~g221!sin~A2l1d!#,
02630
t

it

QII 52hE
d

`

dyFReS ]v2

]y
e2 ivtD G2

52uCeildu2
hL

2A2
.

If the thickness of the layerd is smaller than the deca
lengthd, l1d!1,

C→12ei3p/4Ld~12g2!,

uCeildu2→12A2Ldg21L2d2g4,

v~y!'eily@12 ild~12g2!#

2Q'
hL

2A2
@11L2d2g2~12g2!#.

Note that the conditionl1d!1 does not necessarily mea
that the layer is very thin.

The last two equations show that in this limit

v~y>d!' Re$u0ei (ly2vt)@12ei3p/4Ld~12g2!#%,
~B1!

Q'
hu0

2L

2A2
@11L2d2g2~12g2!#. ~B2!

Comparison of Eqs.~B1! and ~B2! with Eqs. ~ 31!–~34!
gives the mapping of the effective viscous layer model o
the problem with a rough surface,

2d~12g2!5,e f f /R[e2,1 ,

d2g2~12g2!5e2,2.

In this limit d!d, the contribution of the layer to the
dissipation,QI , corresponds to thed-type renormalization of
the viscosity in the effective boundary condition of Sec.
with renormalization parameter

b5e2@2,11A2L,2#

given in Eq.~33!.
ett.
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