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A theory of gravitational quantum states of ultracold neutrons in waveguides with absorbing/scattering walls
is presented. The theory covers recent experiments in which the ultracold neutrons were beamed between a
mirror and a rough scatterer/absorber. The analysis is based on a recently developed theory of quantum
transport along random rough walls which is modified in order to include leaky �absorbing� interfaces and,
more importantly, the low-amplitude high-aperture roughness. The calculations are focused on a regime where
the direct transitions into the continuous spectrum above the absorption threshold dominate the depletion of
neutrons from the gravitational states and are more efficient than the processes involving the intermediate
states. The theoretical results for the neutron count are sensitive to the correlation radius �lateral size� of surface
inhomogeneities and to the ratio of the particle energy to the absorption threshold in the weak-roughness limit.
The main impediment for observation of the higher gravitational states is the “overhang” of the particle wave
functions which can be overcome only by using scatterers with strong roughness. In general, strong roughness
with high amplitude is preferable if one wants just to detect the individual gravitational states, while strong-
roughness experiments with small amplitude and high aperture are preferable for the quantitative analysis of
the data. We also discuss ways to further improve the accuracy of calculations and to optimize the experimental
regime.
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I. INTRODUCTION

One of the recent discoveries in neutron physics was the
experimental observation of quantization of motion of ultra-
cold neutrons in a gravitational field �1�. By itself, the quan-
tization of motion of particles by a linear potential is a well-
known textbook problem in quantum mechanics and has
already been observed for other ultracold particles �for ex-
ample, for spin-polarized atomic hydrogen in a magnetic
field with a linear gradient �2��. However, the Earth gravita-
tional field is so weak and the energies of the corresponding
discrete quantum states for neutrons are so low �of the scale
of 1 peV� that the observation of such states is indeed a
major experimental challenge. What is more, the measure-
ments in this energy range open the door, for instance, to
experimental studies of the fundamental short-range forces
for neutrons near solid surfaces �see �3,4� and references
therein�. This unique opportunity is inherent to the high sen-
sitivity of the neutron wave functions in the gravitationally
bound quantum states of neutrons to the existence of any
new type of short-range forces between a neutron and a sur-
face.

The schematics of a typical experiment is the following. A
collimated beam of ultracold neutrons is sent between two,
usually horizontal, solid plates at a distance several mi-
crometers from each other. The material of the plates is such
that the neutrons hitting the plates with vertical velocity
above, approximately, 4 m/s get absorbed by the plates,
while the particles with a lower vertical component of veloc-
ity get reflected. One of the plates, usually the upper one, has
a rough surface, while the other one is an almost ideal mirror.
The quality of the mirror is surprisingly good: the single-
reflection losses are in the range 10−4–10−5. As a result of
scattering by a rough wall, the direction of the neutron ve-

locity changes and the neutrons can acquire a sufficiently
large vertical component of velocity to get absorbed by the
walls. Only the particles that have extremely small vertical
velocity �low gravitational energy� do not reach the rough
scatterer �the upper plate� and, therefore, are not scattered
and absorbed. These particles get through the system and are
counted by the exit counter. �In practice, the bottom mirror is
often made longer than the scatterer or absorber and the en-
trance to the neutron counter is collimated with a long hori-
zontal narrow slit. With such a configuration, the absorption
is not the only source of neutron loss. The purpose of this slit
is to avoid counting of neutrons which exit at a large angle to
the mirror surface and could otherwise get counted, albeit
with a small probability, either directly or after scattering by
the spectrometer walls.�

A quantum description of the experiment differs from the
classical one above in several important aspects. The motion
of neutrons in the gravitational field between the plates is
quantized. The lower the energy, the smaller the �vertical�
size of the state. The particles in the lowest gravitational
states do not reach the scatterer �or, more precisely, reach it
with an exponentially low probability�, do not scatter, and,
therefore, do not get absorbed. With decreasing distance be-
tween the plates, the lower and lower states will reach the
scatterer and get absorbed. As a result, the neutron count in
the case of spatial quantization of neutrons, should, in ideal
circumstances, be a stepwise function of the clearance be-
tween the plates. The positions of the steps should then pro-
vide the calibration for ultralow-energy measurements. In ex-
periment, unfortunately, such a clear-cut stepwise picture
does not emerge: though the curves, without doubt, demon-
strate the quantization of the gravitational states, the higher
gravitational states have, so far, eluded identification.
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One of the main purposes of this paper is to develop a
general theory that would cover the experiment, explain the
difficulties associated with identification of the higher states,
and suggest ways to optimize the experimental regime. Many
aspects of the problem have been discussed very recently in
Ref. �5� which analyzed potential mechanisms of neutron
losses in experiment �1�, including the surface roughness as
the principal mechanism of nonspecularity of reflection
which is ultimately responsible for the neutron depletion.
This paper demonstrated that the losses of neutrons from the
lowest gravitational states are determined by the neutron tun-
neling through the gravitational barrier between the classical
turning point and the position of the scatterer or absorber.

However, the theory �5� did not provide an explicit quan-
titative link between the rate of neutron loss and the param-
eters of the roughness of the neutron waveguide. Since the
nonspecularity of reflection by the rough surfaces is an ob-
vious principal source of the neutron depletion in experiment
�1�, any accurate quantitative description of the phenomenon
should express the neutron count directly via the parameters
of the random surface roughness. Our results below not only
provide such an explicit link, but also suggest what kind of
roughness is the most advantageous for experiment.

In order to extract quantitative information from the ex-
periment and, eventually, to study the short-range forces, one
needs an accurate theoretical description of quantum diffu-
sion of neutrons along rough walls. Recently we developed a
theory of quantum transport in quasi-two-dimensional
�quasi-2D� systems with random rough boundaries �see Refs.
�6,7� and references therein�. In this paper we apply this
formalism to quantized neutrons in the gravitational field.
The practical purpose is twofold: to develop an accurate
quantitative theory of neutron transport in the presence of
random surfaces, which can be used for a quantitative analy-
sis of experimental data, and to determine the parameters of
surface roughness for the scatterer surface that would help to
optimize future experiments. As for the purely theoretical
benefits, we are able to extend our general theory to include
strong, high-aperture roughness and to develop a theoretical
description for systems with absorbing, “leaky” walls.

Roughness of the walls affects the quantized, in this case,
gravitational, states of particles inside the quantum wells by
shifting and broadening the energy levels. The stronger the
roughness, the larger are this shifting and broadening. In this
paper we effectively calculate the line broadening which is
determined by the roughness-driven transition between the
states. Our perturbative approach works as long as the result-
ing uncertainty in the level positions is smaller than the dis-
tance between the levels. The same condition is necessary for
the quantitative interpretation of experiments: though strong
roughness can make the effect of the gravitational quantiza-
tion of states more pronounced, the uncertainty in the level
positions can render the results unusable for the calibration
of the short-range forces.

The strength of roughness is characterized by the ratio of
its amplitude � to the size of the well L and by the aperture
of roughness � /R, which is determined by the ratio of the
amplitude of roughness � to its typical lateral scale R �the
correlation radius of surface inhomogeneities�. Usually, both
the line shifts and broadening are small as long as

� /L , � /R�1 �see, for example, Ref. �6� and references
therein�.

In this particular case there could be two exceptions. First,
the highest energy levels, which are close to the absorption
threshold, could become relatively broad even for a moderate
roughness. This is not very important for the results below
since in this paper we deal mostly with direct roughness-
driven transitions from the gravitational states into the con-
tinuous spectrum above the threshold and can disregard the
transitions via the intermediate states. Second, and more im-
portant, the effect of surface roughness on the lowest gravi-
tational states is anomalously small because for such states
the particle wave functions on the rough walls are exponen-
tially small in the distance between the classical turning
point and the wall. Therefore, as long as we can disregard the
absorption processes that involve the intermediate and higher
levels, the linewidths of the lowest gravitational states re-
main small and the calculation of the absorption rate can
even be extended to stronger, high-aperture roughness. We
plan to address neutron absorption that involves the transi-
tions via the intermediate states later.

When interpreting the experimental results, the main un-
certainty is introduced by the lack of accurate data on param-
eters of surface roughness, especially on the type of correla-
tions and the correlation length of surface inhomogeneities.
Simple measurements of the average amplitude and the lat-
eral size of roughness are insufficient when one needs to
know the shape of the correlation function of surface inho-
mogeneities which can be extracted, almost exclusively,
from diffraction measurements �8�. Another major source of
uncertainty is relatively poor information on the energy or
velocity distribution of neutrons in the beam. While the dis-
persion in the horizontal component of velocity can be mea-
sured very accurately, the precise measurements of the ver-
tical dispersion are much more problematic. Therefore, one
of the goals of this paper is to identify the range of param-
eters in which this lack of precise input data affects the re-
sults as little as possible. Surprisingly, this is possible.

The paper has the following structure. In the next section
we describe the neutron wave functions and eigenstates, in-
troduce proper dimensionless variables, and present a set of
transport equations for quantized neutrons near random
rough wall�s�. In Sec. III we present the roughness-driven
scattering probabilities in the case of weak roughness. In
Sec. IV we explore the ways to generalize our theory to
stronger roughness with some success in the case of high-
aperture low-amplitude roughness. The final results for ab-
sorption times for neutrons on the leaky walls and for the
neutron count for direct and inverse geometries are given in
Sec. V. Sec. VI contains conclusions and discussion of how
to improve our theory and optimize the experiment.

II. MAIN EQUATIONS

A. Potential well, notations, and dimensionless variables

In the bulk of the paper we will disregard the ultrashort-
range potential for neutrons near solid surfaces and consider
surfaces of solid plates as potential barriers for neutrons of
the height Uc �the absorption barrier�. We will discuss
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the short-range forces near the walls toward the end of the
paper. If one forgets for a moment about the roughness
of the scatterer or absorber �the upper plate�, the potential
energy for neutrons in the vertical direction, U�z�, is
U�z�0�=Uc+mgz �mirror at the bottom�, U�z�=mgz at
0�z�H �the gravitational field between the plates; the
scatterer/absorber is at the distance H from the bottom
mirror�, and U�z�=mgz+Uc�UH+mg�z−H� �the absorption
barrier� at z�H. Schematically, this potential is presented in
Fig. 1 by the dashed lines. An alternative geometry is dis-
cussed in Sec. V E.

Numerically, Uc�1.34�10−26 J �the kinetic barrier for
absorption is 4 m/s�. The characteristic gravitational ener-
gies inside the well, on the other hand, are by five orders of
magnitude lower, mgH�1.6�10−31 J �for H�10 �m�. This
means that the plot in Fig. 1 is out of scale. Since we are
interested almost exclusively in the gravitational states near
the bottom of the well, we can, without any noticeable loss
of accuracy, ignore the gravitational field near the top of the
well and replace the exact potential �the dashed lines� by the
one given in Fig. 1 by solid lines.

The energy spectrum of neutrons in this potential well
consists of discrete energy states �n below Uc and continuum
above. �Note that the short-lived discrete states near the
threshold could be also treated as continuum. When the well
walls are not ideal but rough, all the energy levels, especially
the higher ones, broaden. With an increase in roughness am-
plitude, lower and lower levels will acquire a noticeable
width. This is, in some sense, equivalent to the lowering of
the absorption threshold with increasing roughness.� We will
call the discrete states close to the bottom of the well the
“gravitational states” and higher states in the main part of the
well the “square-well states.” Though this terminological
shortcut is not well defined, it is convenient for discussing
the physics and the results because of a very large ratio
Uc /mgH�105; in computations, unless stated otherwise, all

the states will, of course, be treated accurately.
It is convenient to measure the distances z and the ener-

gies �n in units of l0 and e0, �n=�n /e0, and s=z / l0, where
l0=�2/3�2m2g�−1/3�5.871 �m and e0=mgl0�0.602 peV
�9.6366�10−32 J are the size and the gravitational energy
of a neutron in the lowest quantum state in the infinite gravi-
tational trap. In these units, the overall kinetic energy of
particles in the beam E and the barrier height Uc are
1.4�105�e=E /e0� 8.7�105, uc=Uc /e0�1.4�105. A
very important parameter is the ratio 	=uc /e. In experiment,

0.15 
 	 � uc/e � 1. �1�

The value of this parameter shows to what extent the kinetic
energy of a neutron exceeds the barrier and determines how
easy is it for a neutron to get absorbed by a plate when the
direction of velocity is rotated as a result of scattering by the
rough scatterer or absorber. As we will see, the results are
very sensitive to the exact value of 	 even within the limited
range �1� because both values of uc and e are very large.

It is also convenient to introduce the dimensionless
velocities �momenta� in the beam direction along the well
�x direction�� j, v j =� jv0, v0=�2gl0�1.073�10−2 m/s,

� j =�e−� j � pjl0��e�1− 1
2� j /e�=�e−� j �for lower levels,

� j�e and � j 	�e�1− 1
2� j /e��. The range of kinetic energies

in experiment is 373��e�932.
The roughness of the surface of the scatterer or absorber

�the upper plate� is characterized by the correlation function
of surface inhomogeneities which is determined by the aver-
age lateral size �correlation radius�R and the average ampli-
tude �height� � of the inhomogeneities �for precise defini-
tions see Sec. III�. In dimensionless variables, r=R / l0,
�= � / l0. It is reasonable to expect that �
0.1 �so far, in
experiments �1� 0.03
�
0.1; roughness with higher ampli-
tude than 0.1 would be too strong for a quantitative theory�.
We will discuss how to introduce the surface roughness into
the equations later on.

B. Wave functions and energies of the bound states

At E�Uc �or �n�uc�Uc /e0� the wave function 
n�s�,
s=z / l0, inside the well, 0�s�h=H / l0, is


n�s� = An�Ai�s − �n� − SnBi�s − �n�� . �2�

Outside the well,


n�s� = 
Bnexp�− kn�s − h��, s � h ,

Cnexp�kns�, s � 0, kn = �uc − �n.
�3�

The values of parameters Sn and the energy eigenvalues �n
are determined by the continuity conditions at s=0 and
s=h:

Cn = An�Ai�− �n� − SnBi�− �n�� ,

Bn = An�Ai�h − �n� − SnBi�h − �n�� ,

Cnkn = An�Ai��− �n� − SnBi��− �n�� ,

Bnkn = − An�Ai��h − �n� − SnBi��h − �n�� , �4�

which are equivalent to two equations

FIG. 1. �Color online� Schematic drawing of the potential well
in vertical direction z. Dashed lines, the “real” potential; solid lines,
the potential used in the paper. Since mgH /Uc�10−5 and we are
particularly interested in the lowest energy levels, the corrections
are negligible �with an accurately scaled potential, the difference
between the dashed and solid levels cannot be seen�.
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1/kn = �Ai�− �n� − SnBi�− �n��/�Ai��− �n� − SnBi��− �n��

= − �Ai�h − �n� − SnBi�h − �n��/�Ai��h − �n�

− SnBi��h − �n�� . �5�

Computation of the neutron count would also require the
normalization coefficients An,

An
−2 = l0�

0

h

�Ai�s − �n� − SnBi�s − �n��2ds +
l0

2kn
��Ai�− �n�

− SnBi�− �n��2 + �Ai�h − �n� − SnBi�h − �n��2
 , �6�

and Bn ,Cn, Eq. �4�. Some information on discrete states can
also be found in Ref. �5�.

C. Approximate description of the bound states

For what follows, we will not always need the exact ei-
genvalues and the wave functions. First, let us note that the
threshold energy Uc is much higher �by about five orders of
magnitude� than the gravitational energy mgH in a typical
experiment, uc�h. One can also separate the states into two
groups: the lowest states for which the presence of the gravi-
tational field near the bottom of the well is important �the
gravitational states� and the higher states for which the fact
that the gravity determines the shape of the bottom of the
well is mostly irrelevant �the square-well states�.

For the gravitational states in an infinite well, uc→�, the
wave functions �2� should become equal to zero on the walls
s=0;h, and equations for the eigenvalues Eq. �5� should be
replaced by the following equation for the energy spectrum

�̄n�h� �here and below we identify physical parameters,
which are calculated for a well with infinite walls, by a bar
over the corresponding symbols�:

S̄n = Ai�− �̄n�/Bi�− �̄n�, Ai�h − �̄n� − S̄nBi�h − �̄n� = 0.

�7�

The normalizing coefficients An are now defined as �9�

Ān
2 =

1

l0
an,

an = ��
0

h

�Ai�s − �̄n� − S̄nBi�s − �̄n��2ds�−1

= ��Ai��− �̄n� − S̄nBi��− �̄n��2

− �Ai��h − �̄n� − S̄nBi��h − �̄n��2
−1. �8�

If for the lowest gravitational states the size of the state �n is
much smaller than the spacing between the walls, �n�h, the
equation for the energy spectrum is even simpler,

Ai�− �˜n� = 0, �9�

with the semiclassical eigenvalues

�˜n
sc = �3�

4
�2n −

1

2
��2/3

and the normalizing coefficients

A˜n
2 =

1

l0
ãn, ãn = ��

0

�

Ai�s − �˜n�2ds�−1

=
1

l0
Ai�−2�− �˜n� .

�10�

Since uc is very large but finite, uc�105, the eigenvalues

� differ from their values �̄ �Eq. �7�� at uc→�, �= �̄+��,

S= S̄+�S. The corresponding corrections can be calculated

by expanding Eqs. �5� in 1 /�uc− �̄:

−
1

�uc − �̄
= �� + �S

Bi�− �̄�

Ai��− �̄� − S̄Bi��− �̄�
,

1

�uc − �̄
= �� + �S

Bi�h − �̄�

Ai��h − �̄� − S̄Bi��h − �̄�
. �11�

Then the normalizing coefficients B ,C �B̄= C̄=0� become

B = 
�H� = − Ā�Ai��h − �̄� − S̄Bi��h − �̄��/�uc − �̄ ,

C = 
�0� = Ā�Ai��− �̄� − S̄Bi��− �̄��/�uc − �̄ . �12�

For the square-well states well above the bottom, but still
below Uc, one can neglect the gravitational field near the
bottom and use the standard equation for the eigenvalues �n,

tan���h� = −
�� + kS

k − ��S
, �13�

k � �uc − �, S � ��/�uc − �� . �14�

For these symmetric states the values of the wave functions
on the walls are


n
2�0� = 
n

2�H� = A2S2,

A−2 =
l0

k
S2 +

l0

4��
�2���h + S + ��hS�2

− 2S cos�2��h� − �1 − S2�sin�2��h�� . �15�

In the case of very deep levels � /uc, Eqs. �13�–�15� can be
simplified as

� = �̄�1 −
4

h�uc
�, S =� �̄

uc
, �16�


n
2�0� = 
n

2�H� =
2

l0h

�̄

uc
, �17�

where �̄ and Ā are the eigenvalues and the normalizing co-
efficient for the infinitely deep well,

�̄n = �2n2/h2, Ān
2 = 1/�2l0h� . �18�

Approximately, the total number of discrete levels is

N �
h

�
�uc � 120h . �19�
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D. Time evolution of the neutron population

Recently we developed a versatile formalism for descrip-
tion of 2D diffusion of quantized particles along random
rough walls �6�. The key is to include the information on the
wall roughness not into the boundary conditions, but into the
roughness-driven transition probabilities between the quan-
tum states in the transport equation. The application of this
formalism to the neutron problem at hand requires several
important modifications: we should include neutron absorp-
tion by the “leaky” walls and reconsider the time and space
properties of the transport equation.

The possibility of neutron absorption by the walls can be
taken into account by the calculation of the probability of
transitions into the continuous spectrum without the counter-
balancing terms in the transport equation. The second
anomaly of this problem is that we are calculating not a
stationary diffusion flow but the time dynamics of the neu-
tron count. As a result, we have to solve a time-dependent
problem with an initial condition in the form of initial distri-
bution of neutrons over the vertical velocities, i.e., over the
gravitational quantum states.

The main modification deals with the dimensionality of
the problem. In �6� we considered the scattering-driven 2D
diffusion in two equivalent directions parallel to the walls
while the third dimension �the finite motion perpendicular to
the plates� gave rise to a set of discrete quantum states. In
our neutron problem there is a preferred direction along the
plates �the beam direction x�; the neutron count is being done
only in this direction. Therefore, we should exclude the side-
ways motion and reformulate the transport problem as a 2D
problem with vertical motion �coordinate z� and the direction
of the beam �x direction with the corresponding momentum
p�. In other words, we have to modify the transport equation
of Refs. �6,7� �equations for the particle balance� for
quasi-2D particles �particles with continuous spectrum in the
x ,y directions and discrete quantized gravitational states in
the z direction� in order to eliminate the momentum in the y
direction, q.

According to �6�, the distribution functions nj�q , p� in
each quantized state j obey the following Boltzmann equa-
tions:

dnj

dt
=

2�

�
�
j�
� Wjj��q,p;q�,p���nj� − nj�

���� jqp − � j�q�p��
dq�dp�

�2��2 , �20�

where the 2D vector q in the plane of the mirror has y and x
components q= �q , p�. Since we disregard the change of mo-
mentum in the y direction,

Wjj��q,q�� = � ��q − q��Wjj��p,p�� ,

nj�q,p� = �
2�

Ly
��q�nj�p� , �21�

and the integration over dq� in Eq. �20� yields

dnj�p�
dt

= 2��
,j�
� Wjj��p,p���nj��p�� − nj�p��

���p�2/2m − p2/2m + � j� − � j�
dp�

2�
. �22�

We are dealing with particles with a fixed energy E, i.e., with
particles in gravitational quantum states � j with distinct

values of the lateral momentum pj =�2m�E−� j�,

nj�p� =
2��

Lx
��p − pj�Nj , �23�

where Nj is the number of particles in state j per unit length
of the beam. Finally, the equations for the particle balance
�22� reduce to

dNj

dt
= �

j�

Wjj��pj,pj���Nj�/v j� − Nj/v j� . �24�

To this equation we should add the terms responsible for the
neutron absorption �transitions into the continuous spec-
trum�:

�Nj/�t = �
�j��uc

Wjj��Nj�/v j� − Nj/v j� − Nj/v j�
���uc

W��jd��.

�25�

Note that the separation of the energy spectrum into dis-
crete lines and continuum, which is exact for an ideal well in
Fig. 1, is unambiguous only for weak roughness. In general,
roughness leads to shifting and broadening of all the lines.
The transition probabilities and, therefore, the broadening are
expected to be higher for the higher levels �see the next
section�. With increasing amplitude of roughness, the higher
levels can become broad enough to be considered continual,
which, in turn, is equivalent to the lowering of the absorption
threshold. In the case of the high-amplitude roughness this
effect could even become dominant. However, in the case of
high-amplitude roughness the whole energetics of the sys-
tems changes so dramatically that it could be impossible to
use the experimental results in a meaningful quantitative
way.

The calculation of the neutron count can be done either
via the time dependence of the neutron number at fixed po-
sition during the time of flight t=L /vx or via the decrease of
the number of neutrons while they move along the absorber
of the length L= tvx. Within the former approach, if initially
there was Nj�0� neutrons per unit area in each discrete state,
the time evolution of the densities Nj is described by the
particle balance equations �25�.

The set of linear differential equations �25� describes the
exponential disappearance of neutron with a set of character-
istic relaxation times �. These relaxation times � are given,
according to Eq. �25�, by the following characteristic equa-
tion:
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0 = det��1

�
−

1

� j
�0��� j j� +

1

� j j�
� ,

1

� j
�0� =

1

v j
�

���uh

W��jd��,
1

� j j�
=

1

v j�
Wjj� −

1

v j
� j j� �

j��Z

Wjj�,

�26�

where it is convenient to introduce the dimensionless veloci-
ties � j, v j =� jv0, v0=�2gl0�1.0733�10−2 m/s.

Equation �26� yields N relaxation times �=� j and the
same number of eigenvectors N j which evolve as

N j = N j�0� exp�− t/� j� . �27�

The number of particles in each discrete �gravitational� state
Ni decreases as

Ni = �
j

Nij�0� exp�− t/� j� , �28�

where Nij is the ith component of the jth eigenvector. In
other words, we have to project the initial distribution of
neutrons over the gravitational states (N1�0� ,N1�0� , . . . ) on
the eigenvectors N j. Then the overall neutron count is

N�h� = �
i,j

Nij�0� exp�− Lx/V0� j�h�� , �29�

where the time is limited by the time of flight between the
plates t=Lx /V0�2�10−2 s. The dependence N�h� acquires a
distinct structure only if there is a pronounced hierarchy in
the set of relaxation times � j�h� and if there are pronounced
changes in the longest relaxation times � j�h� as a function of
the separation between the plates.

It is clear that we should take into account only the relax-
ation times that are comparable to or much bigger than the
time of flight t=Lx /V0. For much shorter relaxation times we
do not have to do any precise calculations and just disregard
the components of the initial distribution which are decaying
as the corresponding eigenvectors.

As we will see below, these longest relaxation times � j�h�,
which correspond to the particles in the lowest-energy states
far away from the absorption edge, experience rather steep
changes at certain values of the spacings between the plates
h1�h2�h3¯. However, this feature can be observed only
for specific types of the roughness of the scatterer surface
when the values h1 ,h2 ,h3 , . . . are sufficiently far away from
each other. One of the crucial elements here is the relation
between the times � j j� and � j

�0�. If � j j� is shorter than � j
�0�, then

the loss of neutrons occurs as a result of scattering-driven
gradual increase in gravitational energy �slow diffusion of
particles between the states j with a gradual increase in the
state index j� until the neutron gets into the absorber. If this
is the case, the disappearance times for neutrons from the
neighboring states are comparable and it is not easy to ex-
tract the information on the properties of quantized gravita-
tional states from the neutron count.

In the opposite case of very short times � j
�0�, the neutron

gets absorbed essentially as a result of a single scattering act.
In this case, one can disregard the interstate transitions and

� j 	� j
�0�. This regime is more advantageous for experiment

especially if there is a distinct hierarchy of times � j
�0�. The

transition between these regimes is determined by the lateral
size �correlation radius� of surface inhomogeneities and the
asymptotic behavior of the correlation function. All this in-
formation is contained in the transition probabilities
Wjj��pj , pj��. In what follows we will pay particular attention
to the experimental conditions necessary for the observation
of the proper regime.

Note that the transitions between the states are largely
suppressed, � j�j��� j j, when the lateral size of the surface
inhomogeneities on the scatterer R is much larger than the
size of quantized states �in this case, R� l0, or, in dimension-
less units, r�R / l0�1� �6�. Since the momentum change ��
as a result of scattering by inhomogeneities of the size r is of
the order of ���1/r and is very small for large r, it seems
that in this case the interstate transitions are allowed only
when the energy gaps between the states are small. If this
were correct, the population of the higher states would have
remained constant no matter how long one waited �the gaps
between the states increase with increasing state number j
approximately proportionally to j�. However, this is not com-
pletely true because even at r�R / l0�1 there are certain
values of the spacings between the plates hj at which the
transition channels j↔ j+1 open spontaneously �7� leading
to a drastic decrease in the relaxation times: the scattering-
driven momentum change ���1/r is sufficient for the tran-
sition between the states j and j� when

� j − � j+1 	
1

2
�� j+1 − � j�/�e 	 1/r �30�

or, in normal variables, when the spacing H satisfies the
equation

1

2
�� j+1�H� − � j�H��/�Ee0�H� 	 l0�H�/R . �31�

However, it is highly unlikely that this spontaneous opening
of mode-coupling channels affects the neutron count in the
existing experimental setups. The observation of this effect
requires drastically different experiments �10�. To avoid
dealing with this issue, we will assume that the size of inho-
mogeneities r is relatively small.

In order to find the dynamics of the neutron count, we
need information about the initial distribution of neutrons
over the vertical velocities �over discrete energy states
Nj�t=0��. This distribution reflects the neutron distribution
over the vertical velocities in front of the slit and is deter-
mined by the expansion of the classical wave functions in
front of the slit over the gravitational states. This can, in
principle, be done precisely, but only if one knows the exact
distribution of particles over the vertical velocities in the
initial beam. Unfortunately, at present the distribution of neu-
trons over the vertical velocities cannot be measured as ac-
curately as the horizontal distribution. However, even if this
distribution were available, the exact mathematical problem
would still have been too complicated because of the com-
plex structure of the experimental apparatus.
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The analysis of experiment, which has been performed in
Ref. �4�, indicates that the initial distribution is approxi-
mately uniform,

Nj�0� = N�0�/Z , �32�

where N�0� is the overall combined density of neutrons in all
gravitational states and Z is the total number of such discrete
states between the plates with � j �UC. Note that the uniform
distribution �32� is a nonequilibrium one and should evolve
in time as a result of scattering by surface inhomogeneities
even in the absence of the neutron absorption. The equilib-
rium distribution, which does not evolve as a result of non-
absorbing scattering irrespective of the form of collision op-
erator, is given by equation

Nj�0� = N�0�� j��Z�
i�Z

�i�, Nj�0�/� j = const. �33�

Luckily for us, the exit neutron count depends mostly
only on the initial population of the lowest states. The life-
time of the neutrons from the higher states is much shorter
and they get absorbed well before getting to the counter. The
velocities �i for the lowest states can be considered as con-
stants, �i��0, and, if there is no singularity in the velocity
distribution in the beam at zero angle, the distribution for the
lowest states is close to uniform, Eq. �32�, anyway. In this
case, the difference between the distributions �33� and �32� is
negligible as well.

The last remaining issue before solving the transport
equations �25� is to relate the transition probabilities Wjj� to
the surface roughness �to the correlation function of surface
inhomogeneities�.

III. SCATTERING PROBABILITIES: WEAK ROUGHNESS

Roughness of �one of� the walls leads to scattering of
neutrons, which, in turn, results in the transitions between
the states, broadening of the lines, etc. In some intermediate
energy range, when the lifetimes are already short but the
spacings between levels are not yet large, this broadening
can even effectively transform the discrete energy levels into
a continuum. However, when the matrix elements are still
relatively small, one can always separate the effects of scat-
tering on the energy spectrum from the transition probabili-
ties that affect the particle transport �6� and, in our case, the
neutron count.

We will start from the case of slight roughness for which
there are well established methods of calculation of the
surface-driven scattering probabilities �6� �see also �11,12�
and our earlier application to neutrons in a gravitational trap
�13��. Since the geometry of the problem is somewhat differ-
ent from our previous applications �6,13�, the calculation
should be modified though the general method remains the
same.

The rough scatterer corresponds to the barrier of the
height Uc with position z=H+��x ,y�, where ��x ,y� is the
random function which describes the surface roughness, in-
stead of its “ideal” position at z=H in Fig. 1. If we neglect
the small gravitational potential mgH in comparison with the

barrier Uc �the difference in scales is 105�, the roughness-
driven “perturbation” becomes

V�z,x,y� = Uc��z − H − �� − Uc��z − H�

� − ��x,y���z − H�Uc. �34�

The transition probabilities are given by the squares of the
matrix elements of this perturbation averaged over the sur-
face inhomogeneities,

Wjj��q,q�� =
1

�2 ��Vjpq,j�p�q��
2��. �35�

The matrix elements should be calculated using the wave
functions

� = 
�x,y�
 j�z�

where 
�x ,y� are the properly normalized plane waves and
the functions 
 j�z� are given by Eqs. �2�–�6�.

The matrix elements of the perturbation �34� are �cf. Ref.
�6��

Vjj� �� exp�ix�p − p��/� + iy�q − q��/����x�
 j�z�
 j��z�

��mgH − Uc���z − H�dx ds

= − ��p − p�,q − q��Uc
 j�H�
 j��H� . �36�

The scattering probabilities �35� are then

Wjj��p,q;p�,q�� =
1

�2 ��Vjpq,j�p�q��
2��

=
1

�2��p − p�,q − q��Uc
2
 j

2�H�
 j�
2 �H�

�37�

where ��p− p� ,q−q��—the so-called power spectrum of
inhomogeneities—is the Fourier image of the correlation
function of surface inhomogeneities ��x ,y�,

��x,y� � ���x1,y1���x1 + x,y1 + y��

� A−1� ��x1,y1���x1 + x,y1 + y�dx1dy1, �38�

and A is the averaging area. Finally, assuming the homoge-
neity of the surface in the y direction, i.e., the lack of the
dependence of ��x ,y� on y, we get

Wjj��p,q;p�,q�� = ��q − q��Wjj��p,p�� ,

Wjj��p,p�� =
1

�2��p − p��Uc
2
 j

2�H�
 j�
2 �H� . �39�

For computations, we will use the most common Gauss-
ian correlation function,

��x� = �2exp�− x2/2R2�, ��p� = �2��2R exp �− p2R2/2� ,

�40�

where the amplitude � and the correlation radius R charac-
terize the averaged height and lateral size of surface inhomo-
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geneities. Note that though in many cases the real rough
surface can be different from the Gaussian one �8,14�, there
are reasons to believe that the roughness in experiment �1� is
close to Gaussian. The results for the relaxation time can also
be sensitive to the type of the asymptotic decay of the power
spectrum of inhomogeneities at large p �7�. Below we will
choose such a regime for which the interpretation of experi-
mental data would be the least sensitive to this uncertainty in
parameters of the surface correlator.

In our dimensionless variables, the transition probability
�39�, �40� acquires the form

Wjj� =
�2�

�2 e0
2l0

3�2r exp�− �� j − � j��
2r2/2�uc

2
 j
2�h�
 j�

2 �h� ,

�41�

where �= � / l0 and r=R / l0. The condition of weak rough-
ness is

� � � /l0 � 1,r . �42�

In experiment, the potential barrier Uc is very high and
can be considered infinite in calculations of the roughness-
driven scattering probabilities for transitions between the
lower gravitational states. In this case, Eq. �36� should be
replaced by

Vjj� = −
�2

2m
��p − p�,q − q��
 j��H�
 j�

� �H� �43�

and Eq. �41� by

Wjj��pj − pj��

=
�2��2

4m2 l0
3�2r exp�− �� j − � j��

2r2/2�
 j�
2�H�
 j�

� 2�H�

=
1

�0
wjj�, �44�

where we introduce the following scale �0 for transition
times:

1

�0
=

�2�

4m2

�2

l0
3v0

�2 =
�2�

4m

�

l0
�2 �45�

The form �41� with Uc should be used only when calculating
the transitions that involve the upper energy levels and the
continuous spectrum above the threshold.

For the gravitational states �7�, the transitional probabili-
ties �44� become

Wjj��pj − pj�� =
1

�0
wjj� =

�2��2

4m2

�2r

l0
3 exp�− �� j − � j��

2r2/2�

� aj
2aj�

2 �Ai��h − �̄ j� − SBi��h − �̄ j��2

��Ai��h − �̄ j�� − SBi��h − �̄ j���
2 �46�

with Aj
2 given by Eq. �8�.

For the square-well states �18�, the scattering probabilities
acquire the “standard” form �6�

Wjj��pj − pj�� =
1

�0
wjj�

=
�2��4�2

16m2

�2r

l0
3 exp�− �� j − � j��

2r2/2�
j2j�2

h6 .

�47�

We also need the probability of transitions between the
gravitational state j and the square-well state j�:

Wjj��pj − pj�� =
1

�0
wjj�

=
�2��2�2

8m2

�2r

l0
3 exp �− �� j − � j��

2r2/2�
j�2

h3

�aj
2�Ai��h − � j� − SBi��h − � j��2. �48�

All of the transition probabilities above describe transi-
tions between the discrete states. In order to complete our
calculation of the matrix of the relaxation times �26�, we
have to get the expressions for the transitions from the bound
states into the continuous states 1 /� j

�0�. To avoid extended
calculations, we will first assume that instead of the continu-
ous spectrum we are actually dealing with particles in a large
box L�H with a set of very close levels kn=�n /L. Then for
the transition probability from discrete states j in our well
into the “continuous” spectrum inside the box L one should
use Eq. �41�,

1

� j
�0� =

1

�0� j
uc

2l0
2r
 j

2�h�
2

L
�

�n�e

exp�− ��e − � j − �e − �n�2r2/2�

�1 + cos2�h��n�/�1 − uc/�n��
,

�n = uc + ��nl0/L�2. �49�

Switching back from summation over kn=�n /L to integra-
tion over the continuous energy variable �, we get

1

� j
�0� =

uc
2l0r
 j

2�h�
��0� j

�
0

e−uc d�

�� − uc

�
exp�− ��e − � j − �e − uc − ��2r2/2�

1 + �1 + uc/��cos2�h�� + uc�
. �50�

In principle, the above equations for the transition prob-
abilities are sufficient for solving the transport equations
from the previous subsection and for calculating the absorp-
tion rates for neutrons in the channel.

IV. TOWARD STRONGER ROUGHNESS

It seems much more natural to design an experiment with
scatterers with strong roughness rather than with the slight
one: scattering by strong roughness ensures, almost auto-
matically, a significant turn of the neutron velocity which
results in direct absorption of a neutron by a plate. Therefore,
neutrons from all states, except for the lowest gravitational
ones, for which the wave function does not reach the scat-
terer, can be absorbed by the plates as a result of, essentially,
a single scattering act. Then the count of the exiting neutrons
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will give directly, almost without any ambiguity, the number
of particles in the lowest states that are not scattered. In this
case, the dependence of the neutron count on the width of the
gap between the plates should be the sharpest. If one is in-
terested solely in identification of quantum states, one should
definitely try to ensure that the surface roughness is strong.
However, if one is interested in extracting the quantitative
information from the experiment about the energetics of the
system, one should seriously consider using slight roughness
for which the particle dynamics can be described very accu-
rately as it is shown above.

In other words, if one is interested solely in observing the
quantization of neutrons, one should use a scatterer with
strong roughness; if the purpose is the use of quantized states
for ultralow-energy calibration, one should use only rough
systems which are subjects to a quantitative theory. There-
fore, it is important to discuss the restrictions imposed by the
conditions of slight roughness and the possibility of extend-
ing the limits of applicability of our theory in this particular
case to stronger roughness. There are two types of strong
roughness: high-amplitude and high-aperture roughness. As
we will see, our theory can be extended to the high-aperture
low-amplitude roughness, but not to the high-amplitude
roughness. In the last section we will argue that the high-
amplitude roughness should not be used in experiment either.

The surface roughness is considered to be strong if one of
the conditions of slight roughness,

� � � /l0 � 1,r , �51�

breaks down. In such cases, one cannot usually say much
except that one surface collision is sufficient for a complete
dephasing of a particle. In our problem such an outcome
could even have been looked at as beneficial since this would
immediately allow us to estimate the corresponding relax-
ation time approximately as

� j = H/vzj . �52�

However, such an assertion is not always correct since the
scattering probability W depends not only on the parameters
of the surface �the correlation function of surface roughness
�� but also on the probability of the particles to get close to
the wall which enters W via the particle wave functions
and/or their derivatives on the wall �see, e.g., Eqs. �41� and
�44� for W for weak roughness�. When such a probability is
low, one can �and should� sometimes deal with the strong
roughness as if it is weak.

The calculation of the scattering probability consists of
two steps: calculation of the matrix elements of the
roughness-driven perturbation Vjj� and the calculation of the
scattering probabilities W using these matrix elements. Since
the latter step is easier to analyze, we will start from it.

This second step is also less restrictive. Here one has to
express the scattering probability W via the matrix elements
Vjj�. The scattering probability is always given by the ex-

pression of the type �35�, but with the scattering T matrix T̂

instead of the potential distortion V̂. The link between these
two matrices is given by the operator equation

T̂ = V̂ + T̂ĜV̂ �53�

where Ĝ is the Green’s function. For quantized gravitational-
like states j , j� �the lower states with h−� j,j��1�, the
position of the wall is deep under the barrier where the
wave functions are attenuating exponentially, roughly as

exp �−�2/3��h−��3/2�. Then the matrix elements of V̂ are ex-

ponentially small and Eq. �53� leads to T̂� V̂ resulting in the
validation of Eq. �35� even when the distortion V, by itself, is
not small. This means that Eq. �35� can be used as long as we
are interested solely in the transitions to and from the gravi-
tational states for which the matrix elements are always
small even for not very small roughness. One should be
much more careful with the transitions between the higher
states.

The simplest way of evaluating the matrix elements Vjj�
seems to be a generalization of approach �11� �see also the
first Ref. �6�� for the roughness-driven perturbation

V�z,x,y� = Uc��z − H − �� − Uc��z − H� . �54�

Instead of using Eq. �34�, we now write V as an expansion,

V�z,x,y� = Uc�
1

�
�− 1�n

n!
��n−1��z − H��n�x,y� , �55�

with the matrix elements

Vjj��q − q�� = Uc�
1

�
�− 1�n

n!
�

0

H


 j�z���n−1��z − H�
 j��z�dz

�� �n�s�exp�i�q − q�� · s�ds . �56�

The first integral reduces to a set of higher derivatives of the
wave functions on the wall, 
 j

�m��H�

j�
�n−1−m��H�, or, in

dimensionless variables, to l0
−n+1
 j

�m��h�

j�
�n−1−m��h�. There-

fore, if the amplitude of the corrugation is �, the expansion
�56� becomes an expansion in � / l0. If the wave functions on
the walls are �exponentially� small, as it is for the lowest
gravitational states, the matrix elements Vjj� can remain
small even for not very small values of the corrugation am-
plitude �. However, in this case the all the constants in the
expressions for the scattering probabilities change: instead of
the wave functions on the walls one should write a proper
combinations of 
 j

�m��h� from Eq. �56� and, more impor-
tantly, the correlation function of the surface corrugation
should be replaced by the Fourier images of the higher mo-
ments of the correlation.

If, on the other hand, the amplitude of the corrugation is
small, �� l0, Eq. �56� leads to exactly the same expression
for the matrix elements as Eqs. �36� and, therefore, to the
scattering probabilities �35�, �41�, �44� even when the aper-
ture of the inhomogeneities is large. This means that, as long

as the matrices V̂ are small and are close to the T̂ matrix,

V̂� T̂, the high-aperture roughness could still be treated in
the same way as weak roughness while the high-amplitude
roughness cannot.

GRAVITATIONAL QUANTUM STATES OF NEUTRONS IN¼ PHYSICAL REVIEW A 73, 063616 �2006�

063616-9



The above analysis on the basis of a generalized approach
�11� is not completely accurate. A more accurate analysis can
be done using the mapping transformation method �see both
Refs. �6��, which involves the lateral derivatives of the sur-
face roughness in a more natural way than the method of
Ref. �11�. This method involves the first lateral derivatives
�x,y

�1�, which have the order of magnitude � /R and not � / l0,
explicitly. As a result, it looks as if the expressions for the
matrix elements Vjj� for the high-aperture roughness are dif-
ferent from Eq. �36�. However, the collision operator in the
transport equation involves not all the matrix elements of
Vjj��q ,q��, but, since the scattering probabilities are always
accompanied by the energy � functions ��E−E��, only those
that satisfy the energy conservation law. This means that Eq.
�35� can be rewritten for our purposes as

Wjj��q,q����� j +
q2

2m
− � j� −

q�2

2m
�

=
1

�2 ��Vjpq,j�p�q��
2����� j +

q2

2m
− � j� −

q�2

2m
� . �57�

It is relatively easy to see �6� that the terms with the deriva-
tives of � contribute only to the matrix elements with differ-
ent energies E and E� if the amplitude of roughness is small,
�� l0. Therefore, the expressions for the matrix elements at
E=E� keep their weak-roughness form even for the strong
roughness with high aperture, but with low amplitude.

Summarizing, the scattering probabilities remain the same
as long as the amplitude of roughness �= � / l0 is small, while
the aperture of roughness � /r= � /R can become large,

R � � � l0. �58�

This means that Eqs. �41� and �44� for the scattering prob-
abilities are valid not only for the weak roughness �42�, �51�,
but also for a much stronger high-aperture roughness �58�,
but only to the extent that one is interested in the transitions
to and from the gravitational states with exponentially small
wave functions on the rough wall. In this case one can often
disregard the correlation exponents exp�−�� j −� j��

2r2 /2� in
the expressions for W and make the rest of the calculations as
if the roughness were weak. Physically the disappearance of
these exponents means that the changes of momenta in scat-
tering are now unrestricted. However, the moment the tran-
sitions between the higher states come into play, these equa-
tions loose their accuracy.

On the other hand, the large amplitude of roughness al-
ways leads to a completely different picture than the weak
roughness. Note that if we are interested in identification of
the gravitational states when the distance between the walls
H is comparable to the level size l0, H� l0, the condition
�� l0 is a necessary condition for the existence of the gravi-
tational states. Therefore, we have to assume that this condi-
tion holds and that the only important type of strong rough-
ness is the one given by Eq. �58�. In the case of high-
amplitude roughness with �� l0, Eq. �35� still holds for the
gravitational states and the structure of Eqs. �41�, �44� re-
mains the same, though, instead of the correlation function of
surface inhomogeneities ��� j −� j��, the expressions for W

contain the summation over the higher-order correlators.
However, as it was explained above, we are not interested in
this situation. What is more, under these conditions the state
energies experience such large roughness-driven changes
that the classification of states on the basis of an ideal well
loses all meaning.

For practical purposes, the results of this section mean
that the our theory is still valid for a relatively strong rough-
ness �58�, but only in application to the lowest gravitational
states and not to the square-well states. Since in this paper
we were interested mostly in the direct transitions from the
gravitational states into continuum, these results still hold for
1���r and the results in Fig. 11 are still within the appli-
cability of the theory and the step-wise depletion of neutrons
can be observed.

V. RELAXATION TIMES

A. Direct absorption vs protracted diffusion between the states

There are two ways in which the neutrons can be ab-
sorbed by the plates �transit into the continuous spectrum� as
a result of scattering-driven interstate transitions. The first
way is a relatively protracted diffusion between the states
which results, eventually, in neutron getting into the con-
tinuum. The second way is by direct transitions from the
initial state into the continuum without involving any inter-
mediate states. For the latter method to dominate, the prob-
abilities of direct transitions into continuum should dominate
over transitions between individual discrete states. Obvi-
ously, this direct process has an undeniable theoretical appeal
since in this case we do not need to solve the set of
120h�120h transport equations �25� and only calculate the
transition times for direct transitions into continuum � j

�0�.
However, as we will see below, following this route has

important advantages for experiment as well. If the direct
transitions dominate, the results will be the least sensitive to
the correlation characteristics of the surface roughness �both
to the correlation parameters and to the shape of the correla-
tion function� and to the details of the initial distribution of
neutrons over the energy levels. Then the interpretation of
experimental data should be more reliable and unambiguous
than is the case of protracted interstate diffusion.

We will start by delineating conditions under which the
direct transitions into the continuum from all discrete states,
including the lowest, are possible and dominant. The next
step is the calculation of the corresponding transition rates
which will immediately lead us to the results for the neutron
count.

The most relevant time scale is the time of flight,

t = Lx/V0 � 2 � 10−2 s. �59�

Numerically, the scale of the relaxation times in �26� is
given, according to Eqs. �44�–�48�, by the coefficient �0 �45�
in the scattering probabilities W,

�0
−1 =

�2�

4m2

�2

l0
3v0

�2 � 1.15 � 103�2 s−1, �60�

where �= � / l0 is the dimensionless amplitude of the surface
corrugation, and t /�0�23�2 /�. Since l0� 5.871 �m and the
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spacing between the walls in experiment does not exceed
50 �m, the reasonable limits on the amplitude of inhomoge-
neities are 10−3
�= � / l0
0.1, and

2.3 � 10−5 
 t/�0 
 0.23 �61�

�in existing experiments, 0.03
�
0.1 and the lower limit
in the inequality �61� is about 0.02�.

The full relaxation times differ from �0
−1 by the dimen-

sionless factors w. To simplify the problem, we have to fol-
low the largest of these w. Note, that according to the above
expressions for W �see, e.g., Eq. �47�� the most probable
transitions are the transitions into the highest allowed �by the
correlation exponent� states. Therefore, the direct transitions
into the continuous spectrum, when allowed, have the short-
est transition times. What is more, the corresponding inverse
times � j

�0�−1 contain a summation over all the accessible
states in the continuum and could become noticeably shorter
than the transition times between the individual discrete
states.

There are two types of factors entering the dimensionless
probabilities w: the correlation exponents with the negative
indices −�� j −� j��

2r2 /2, which can only decrease w, and the
factors related to the values of the wave functions on the
walls. The correlation exponents, in general, encourage the
transitions with the smallest change in momentum, i.e., the
transitions between the nearby states, unless, of course, the
correlation length r is small �see below� and it does not mat-
ter. The coefficients originating from the wave functions on
the wall, on the other hand, favor the direct transitions into
�and from� the highest states �factors j�2 /h3 in Eqs. �47� and
�48��. The balance of these opposing factors determines
whether the attenuation of the gravitational states occurs via
the gradual diffusion between the states or via direct transi-
tions into the highest states.

The possibility of the transitions is determined by the mo-
mentum transfer in the exponent of the correlation function,

�� j − � j��
2r2/2 = ��e − � j − �e − � j��

2r2/2. �62�

This means that the direct transitions from the lowest states
into the continuous spectrum �and all transition between the
discrete states� are not suppressed if

��1/	 − �1/	 − 1�2ucr
2/2 
 1 �63�

�	�uc /e� or, using the numeric value for uc,

r 
 3.8 � 10−3F0�	�, R 
 2.2270

� 10−2F0�	� �m, F0�x� = �x/�1 − �1 − x� , �64�

where the function F0�	� is given in Fig. 2.
This condition is not overly restrictive. Unless the overall

velocity of the beam is close to the absorption threshold, i.e.,
unless 	=uc /e is close to 1, the condition �64� can easily be
satisfied. Essentially, condition �64� determines whether the
particles, which are initially in the lower discrete states, can
disappear as a result of direct transitions into continuous
spectrum �or into short-lived upper states�.

Since the transitions between the lower states are much
less likely than the transitions between the lower and higher
states and between the higher states, we can use expressions

�48� for all � j j�
−1 for the gravitational states and Eq. �47� for all

square-well states.

B. Transitions from the square-well states into continuous
spectrum (direct absorption)

We should start by estimating the times � j
�0� for transitions

into continuous spectrum �50�: if these times are short, at
least for some discrete states j, t /� j

�0��1, this will help in
evaluating the relaxation times for all other states as well.
First, since uc is large, one can replace cos2�h��+uc� in the
denominator of Eq. �50� by 1/2,

1

� j
�0� =

uc
2l0r
 j

2�h�
��0� j

�
0

e−uc d�

�� + uc

�
exp�− ��e − � j − �e − uc − ��2r2/2�

1 + �1 + uc/��/2
. �65�

Since � j �uc�e, the index in the exponent changes from
��e−� j −�e−uc�2r2 /2 to �e−� j�r2 /2� �e−uc�r2 /2�105r2. If
r is small, r
10−3 �R
5 nm�, as suggested in the previous
section, the index in the exponent is always small and the
correlation exponent can be disregarded,

1

� j
�0� =

uc
2l0r
 j

2�h�
��0� j

�
0

e−uc d�

�� + uc

2

3 + uc/�

=
uc

5/2l0r
 j
2�h�

��0� j
2�

0

1/	−1

dz
z

3z + 1

1
�1 + z

� 10
uc

5/2l0r
 j
2�h�

��0� j
F1�	� ,

F1�x� � 0.11�1.2/�x − 1.76 + 0.245 ln� 6

3 − 2.45�x
− 1�� .

�66�

The function F1�x�, is plotted in Fig. 3.
For the estimates, the function F1�	� is mostly irrelevant

except for e→uc �	→1�. According to Eq. �17�, for deep
square-well levels,

FIG. 2. Function F0�x�, Eq. �64�.
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1

� j
�0� �

4.6 � 1013r

� j�0

2�̄ j

huc
F1�	� . �67�

�For higher levels, one should use for 
 j
2�h� a more accurate

Eq. �15�.�
Taking into account Eqs. �59� and �60� for the time of

flight t and characteristic time �0, it is convenient to represent
the ratio of the time of flight to the absorption time as

t

� j
�0� � 104�2 �103r�

h�10−3� j�
�105� j/uc�F1�	� . �68�

Since even for the lowest square-well states � j /uc�10−5,
this means that neutrons from all the square-well states, even
for the lowest ones, disappear directly into the continuous
spectrum during the time of flight at any reasonable ampli-
tude of roughness and small lateral size of inhomogeneities
as long as the correlation radius of surface roughness r is
sufficiently small and the absorption threshold is not close to
the overall kinetic energy �the ratio 	=uc /e is not close to 1�.

At larger size of inhomogeneities, the restrictions on the
momentum transfer become more important and the integral
in Eq. �65� should be evaluated more carefully. For the lower
states � j�e, the absorption time is given by Eq. �66� in
which the integral F1�	� should be replaced by the function
F�	 ,�ucr�:

1

� j
�0� = 10

uc
5/2l0r
 j

2�h�
��0� j

F�	,�ucr� ,

F�x,y� = 0.2�
0

1/x−1

dz
z

3z + 1

1
�1 + z

�exp�− ��1/x − �1/x − 1 − z�2y2/2� . �69�

The plots of the function F�	 ,�ucr� at two values of r, r
=0.01, 0.001 are given in the Fig. 4. The same function
F�	 ,�ucr� is plotted as a function of r in Fig. 5 at 	=0.15,
0.3, 0.5. As can be seen in the plots, choosing proper values
for the correlation radius of inhomogeneities r and the ratio
of the threshold energy to the overall kinetic energy is cru-
cially important for having effective absorption.

The function F�	 ,�ucr� decreases rapidly with increasing
	 and even more rapidly with increasing r. Since �uc�370
and the integrand depends exponentially on �ucr, the depen-
dence of F�	 ,�ucr� on r is very steep: when r�0.03 the
momentum transfer restrictions are so severe that the direct
transitions from the lower levels to the continuous spectrum
are suppressed by orders of magnitude unless 	 is very small
�in existing experiment, 	�0.15�. For example, when
r=0.01 the function F�	 ,�ucr� reaches 10−2 only at 	
	0.26.

With the same numbers as in Eq. �68�, the ratio of the
time of flight to the time of direct transitions into the con-
tinuous spectrum is

t

� j
�0� � 104�2 �103r�

h�10−3� j�
�105� j/uc�F�	,�ucr� . �70�

C. Direct transitions from the gravitational states into
the continuous spectrum

Probabilities of direct transitions from the gravitational
states into continuous spectrum are given by the same Eq.

FIG. 3. Function F1�x�, Eq. �66�.
FIG. 4. �Color online� Function F�	 ,�ucr�, Eq. �69�, at two

values of r, r=0.01, 0.001.

FIG. 5. �Color online� Function F�	 ,�ucr�, Eq. �69�, at three
values of 	, 	=0.15, 0.3, 0.5.

A. E. MEYEROVICH AND V. V. NESVIZHEVSKY PHYSICAL REVIEW A 73, 063616 �2006�

063616-12



�65�, but with different values of 
 j�h�, Eq. �12� instead of
Eq. �15�. Since the integral remains the same, the only sub-
stantial change is the replacement of 
�h� in the right-hand
side of Eq. �69� by Bj �12�,

t

� j
�0� � 104�2 �103r�

10−3� j
bjF�	,�ucr� ,

bj � 105l0Bj
2/2 = 105aj�Ai��h − �̄ j� − S̄jBi��h − �̄ j��2/2uc

	 0.3aj�Ai��h − �̄ j� − S̄jBi��h − �̄ j��2 �71�

where aj is given by Eq. �8�,

aj = ��Ai��− �̄ j� − SBi��− �̄ j��2

− �Ai��h − �̄ j� − S̄Bi��h − �̄ j��2
−1.

This means that the neutrons in the gravitational states
disappear in the time of flight unless the coefficient

aj�Ai��h− �̄ j�− S̄jBi��h− �̄ j��2 and/or the function F�	 ,�ucr�
are very small. This is so when the distance between the

walls h significantly exceeds �̄ j and the wave function on the
wall and, therefore, bj are exponentially small. To evaluate
this effect we need to calculate numerically the eigenvalues

�̄ j�h�, Eq. �7�, and the coefficients bj, Eq. �71�.
The dependence of the nine lowest �gravitational� energy

levels on the spacing is presented in Fig. 6. The crosses on
the curves mark the points where the “size” of the level
becomes equal to the distance between the walls �in our no-
tations �=h� and the wave functions start “touching” the
walls or, in other words, the levels move from the gravita-
tional to the square well domain.

The coefficients bj�h�, Eq. �71�, are presented in Figs. 7
and 8 in two different scales. As we can see, the curves are
extremely steep. This means that when scanning the distance
between the walls h one encounters the critical values hj at

which t /� j
�0� changes from very small to very large values.

According to numerical data, bj�h� changes between 10−4

and 10−2 when 5.87�h�4.13 for b1, 6.64�h�5.76 for b2,
8.62�h�7.12 for b3, 10�h�8.34 for b4, etc. The change
of b for all these levels from 10−4to 10−3 requires change in
h by only 0.2. Since such change in h is equivalent to the
change in the distance between the walls by about 1.1 �m
and the neutron count depends exponentially on the coeffi-
cients b, the neutron count should, under proper circum-
stances, become in experiment a truly stepwise function of
the clearance between the walls. However, since the func-
tions b�h� for higher levels overhang over each other, it is
rather unlikely if within this observation technique one can
resolve more than three or four gravitational levels.

FIG. 6. �Color online� Nine lowest energy levels �i as a function
of the spacing between the walls h. The stars mark the positions
where the size of the energy of the level becomes equal to mgH �in
dimensionless variables, �i=h� and the level shifts to the square-
well domain.

FIG. 7. �Color online� The coefficients bj�h�, Eq. �71�, which
determine the square of the wave function on the surface of the
scatterer, Bj

2.

FIG. 8. �Color online� The same as in Fig. 7 but on a smaller
scale. The stars on the curves mark the same points as in Fig. 6.
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D. Neutron count

As long as the main route for the neutron absorption is the
direct transition into continuous spectrum, the neutron count
at the exit is

N�t� = � Nj�0�exp�− t/� j
�0�� . �72�

The count, of course, depends on the initial number of neu-
trons in each state, Nj�0�. When the only long-lived states are
the few lowest ones with the energies much lower than the
overall kinetic energy of particles in the beam and than the
scale of the energy dispersion, it is reasonable to assume that
the initial populations of these states are the same, Nj�0�
=N0, and

n�h� = N�t�/N0 = � exp�− t/� j
�0�� , �73�

while for each level

nj�h� = Nj�t�/Nj�0� = exp�− t/� j
�0�� �74�

with t /� j
�0� is given by Eq. �71�. In reality, t=L /vx is fixed

and n should be considered not a function of the time of
flight t, but as a function of the clearance between the walls
h.

Below we plot the functions n�h� and nj�h� for the overall
neutron count and individual level depletions. According to
the definition �74�, the neutron count from the individual
level nj�h� always changes from 1 at large h to 0 at small h.
The numerical value of the overall neutron count n�h� also
provides the information about a number of nondepleted lev-
els: for n�h��1, more than one level is still occupied; for
n�h��2, more than two levels are still occupied; for
n�h��2 more than three levels are still occupied; etc.

Since the functions bj�h� grow by orders of magnitude
when h changes from 6 to 1, the ratios t /� j

�0� also change by
orders of magnitude and the neutron count n�h� should de-
crease very steeply. In principle, if the absorption times � j

�0�

for different levels are vastly different, the curve n�h�
�Eq. �73�� should become a stepwise function with each step
representing the decay of an individual state nj�b�, Eq. �74�.
Unfortunately, this is not what happens.

First, we will plot the function n�h� which describes the
steepest achievable depletion of the neutron population,
while still remaining within the applicability of the weak
roughness theory. In other words, we will plot n�h� which
corresponds to the largest combination of coefficients in Eq.
�70�. Since the weak roughness theory is valid for roughness
with the amplitude � smaller than the correlation radius of
inhomogeneities r, the largest t /� j

�0� with given r is achieved
at �=r. The function F�	 ,�ucr�, on the other hand increases
with decreasing 	 though in experiment this parameter does
not go below 0.15. The plot of the function 107r3F�	 ,�ucr�,
which enters the ratio t /� j

�0�, Eq. �70�, as a coefficient, is
presented in Fig. 9 for three values of 	. Clearly, the optimal
conditions for experiment are 	=0.15, �=r=0.015 when
107�2rF�	 ,�ucr��0.23.

The neutron count �73� with these values of 	 ,� ,r is pre-
sented in Fig. 10 as a function of the interwall clearance. The

same figure also gives the individual depletions of the nine
lowest quantum levels �74�.

This figure clearly shows that though the depletion is suf-
ficiently steep for an unambiguous demonstration of the
quantization of the gravitational states �the total count is
steep and goes to zero at h�0�. However, the “overhang” of
the coefficients bj�h� �Figs. 7 and 8� is too large for identi-
fication of the individual levels: though the individual deple-
tion rates are clearly distinguishable, the overall neutron
count is still a featureless function of h. This overhang can
be compensated only by an increase in other coefficients in
Eq. �70�. This result means that the use of a scatterer with
slight roughness is insufficient, even under the most favor-
able circumstances, for an observation of a stepwise change
in neutron count and, therefore, for an identification of
higher states, unless parameter 	 becomes noticeably
smaller.

On the other hand, the use of large roughness such as, for
example, an increase in the amplitude of wall roughness to

FIG. 9. �Color online� Function 107r3F�	 ,�ucr� for Eq. �71� at
three values of 	, 	=0.15, 0.3, 0.5.

FIG. 10. �Color online� The neutron count N /N�0�, Eq. �73�,
and individual depletions of the nine lowest energy levels, Eq. �74�,
as a function of the spacing between the walls h at 	=0.15, �=r
=0.01.
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the value �=30r, would modify the neutron count in Fig. 10
to the one depicted in Fig. 11 with very clear steps that
separate the depletions of the individual levels. Though the
parameters themselves r=0.015, �=0.45 are reasonable from
the point of view of experiment, the large ratio � /r=30 is
out of range of the slight roughness theory. However, the
theory can be extended, as is explained in Sec. IV, to a low-
amplitude high-aperture roughness and can cover the situa-
tion plotted in Fig. 11.

Though the existing experiment does not produce as un-
ambiguous picture as in Fig. 11, the similarities indicate that
in experiments the roughness was not small. Additional in-
formation on the evolution of neutron count as a function of
� /r can be found in Fig. 14.

E. Alternative geometries

Similar experiments have been performed in alternative
geometries with, for example, a mirror on the top and the
rough scatterer on the bottom. The theoretical description of
the change in neutron population with time remains the same
as above with the only difference that all transition probabili-
ties are now proportional to �
�0��2 instead of �
�H��2. For
upper states this does not make any difference since the wave
functions are symmetric and �
�0��2= �
�H��2. This is not so
for the gravitational states �12� for which the wave functions
on the top and on the bottom plates can differ by orders of
magnitude.

The ratio of the time of flight t to the relaxation times � j
�0�

for the gravitational states in this alternative geometry is
given, instead of Eq. �12�, by the following expression:

t

� j
�0� � 104�2 �103r�

10−3� j
cjF�	,�ucr� ,

cj = bj� Ai��− �̄� − S̄Bi��− �̄�

Ai��h − �̄ j� − S̄jBi��h − �̄ j�
�2

. �75�

As expected, the coefficients cj are larger than the coeffi-
cients bj, especially when the spacing between the walls is

large. The difference between these coefficients disappear
when the spacing decreases and the states become more sym-
metric as it is clearly seen in Figs. 12 and 13.

When the coefficients cj and bj are comparable, the cor-
responding depletion rates for both geometries are also of the
same order of magnitude. Under the same conditions as in
Fig. 9, though the depletion rates for the first level in direct
and inverse geometries are different because of a noticeable
difference in c1 and b1, the depletion rates that include nine
levels do not differ much between themselves �Fig. 14; the
pair of curves marked d−1 and i−1�.

However, with an increase in coefficient �75�, the differ-
ence in depletion rates between “direct” and “inverse” geom-
etries, which is due to the differences between cj and bj,

FIG. 11. �Color online� The neutron count N /N�0�, Eq. �73�, and
individual depletions of the lowest energy levels, Eq. �74�, as a
function of the spacing between the walls h at 	=0.15, r=0.015,
�=30r. All higher levels are already depleted.

FIG. 12. �Color online� Pairs of coefficients bj�h� �lower curves�
and cj�h� �upper curves�, Eqs. �71�, �75�, which describe the square
of the wave function on the surfaces s=h and s=0 for the lowest
nine states. Merging of these coefficients at small spacing between
the walls h correspond to the transformation of the gravitational
states into the symmetric square-well states.

FIG. 13. �Color online� The same coefficients bj�h� and cj�h�,
Eqs. �71�, �75�, for the lowest four levels as in Fig. 12, but on a
smaller scale. Merging of these coefficients at small spacing be-
tween the walls h indicates the transformation of the gravitational
states into the symmetric square-well states.
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becomes more and more pronounced. Figure 14 contains
several more pairs of curves for direct and inverse geom-
etries which correspond to the amplitude of roughness equal
to � /r=2, 3, 4, 5, 6, 8 �the curves are marked accordingly�.
For even larger roughness, such as in Fig. 11, the depletion
rate for the inverse geometry is so fast �the scale is 10−14�
that the curves for direct and inverse geometries cannot be
plotted in the same figure; even for �=8r the numbers for
inverse geometry are already too small. Note that when the
spacing between the walls becomes small and the energy
levels go sufficiently high up into the square-well domain,
the pairs of curves that describe the depletion rates in direct
and inverse geometries merge between themselves.

Figure 14 illustrates the evolution of neutron count with
increasing aperture of roughness � /r. According to this fig-
ure, the increase of the ratio � /r from 1 to 8 is still insuffi-
cient to produce a stepwise plot of the neutron depletion with
well-pronounced steps as in Fig. 11. However, at �=8r there
are already some signs of the appearance of the first step on
the depletion curve.

VI. PERSPECTIVES AND CONCLUSIONS

A. What should we expect from strong-roughness experiments?

On the face of it, the case for shifting experiments toward
strong roughness is clear: the curves should become sharper
and the chances of identifying the individual gravitational
states higher. However, as usual, there are pitfalls.

The strong roughness can come in two flavors: large-
amplitude roughness, comparable to the spacing between the
walls or to the size of the gravitational levels, and roughness
with small lateral size of inhomogeneities in comparison
with their amplitude �high-aperture roughness�. The use of
the former is rather dangerous. The main problem is that the
distance between the walls becomes an ill-defined variable
and, because all energy parameters are very sensitive to this
spacing, the energies extracted from such experiments are

unreliable. Therefore, though the sharpness of the curves im-
proves, the curves, by themselves, can be used for nothing
more than qualitative identification of the individual states.
The only exception might be the so-called adiabatic rough-
ness �15� in which the profile of the walls changes so slowly
that the wave functions can adjust to the local shape of the
walls. Still, even in this case the uncertainty in energies is
large making the quantitative results useless.

The low-amplitude high-aperture roughness, on the other
hand, can both improve the resolution for the lowest states
and allow one to extract useful data on the interaction be-
tween neutrons and solid surfaces. This can be achieved only
when the dominant depletion regime is the direct scattering-
driven absorption of neutrons. The moment the intermediate
square-well states become involved, the accuracy of data ex-
tracted from experiments with high-aperture walls is lost.

B. Angular resolution

Another way of increasing the sensitivity of experiment to
individual levels is to decrease the parameter 	=Uc /E which
describes the ratio of the absorption threshold to the overall
kinetic energy of particles: obviously, the smaller is this ra-
tio, the higher are the chances of a particle to get absorbed
after scattering. Mathematically this effect is described by a
steep function F�	 ,�ucr�, Eq. �69�, in Fig. 4.

The experimental control over the value of 	 could be
limited. However, there might be an easier alternative to low-
ering 	. In experiment, and, as a result, in the theory above,
very little attention has been paid to the third spatial direc-
tion, y. What we were looking at was the scattering-driven
change of direction of particles from the beam direction x to
the vertical direction z which could provide the particle with
sufficient kinetic energy mvz

2 /2 to overcome the absorption
threshold Uc. Obviously, as a result of scattering the particle
acquires not only the vertical velocity vz, but also the com-
ponent of velocity vy in the third spatial direction. Though
this component of velocity does not affect the chances of the
particle to be absorbed by one of the horizontal walls, the
particle can, nevertheless, escape the exit counter if the ve-
locity vy and, therefore, the deviation from the initial trajec-
tory, are large enough. On the other hand, the exit neutron
counter cannot distinguish whether the neutrons have es-
caped as a result of absorption or because of angular disper-
sion of the beam in the y direction. Therefore, instead of
decreasing the parameter 	, one can achieve the same effect
simply by decreasing the size of the counter in the y direc-
tion. Of course, the price of using the low-angle counter will
be an overall drop in the number of detected neutrons. There-
fore, following this route might require an increase in beam
intensity.

From a theoretical standpoint, the use of the angular reso-
lution requires taking into account the scattering in y direc-
tion instead of averaging in Eq. �21�. Since we have the full
2D expressions for the scattering probabilities W, this will
lead just to computational complications rather than to con-
ceptual difficulties. For a wide-aperture counter this exten-
sion would hardly change the nature of the results. However,
for narrower counters, as it is explained above, this might

FIG. 14. �Color online� The depletion rates for direct �d; the
scatterer is on the top� and inverse �i; the scatterer is on the bottom�
geometries for 	=0.15, r=0.015. The curves are marked by the
ratio � /r=1, 2, 3, 4, 5, 6, 8 and by the geometry d or i.
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turn out to be important. Essentially, we have to introduce a
new angular counting threshold and find the proper replace-
ment for the function F�	 ,�ucr�. The structure of the calcu-
lations will remain the same especially if we limit ourselves,
at least in the beginning, to the calculation of direct high-
angle scattering processes rather than looking at protracted
diffusion of particles over the angles.

C. Contribution from the intermediate states

In this paper we investigated only the situation when the
direct scattering into the continuum dominates the neutron
depletion. In principle, one should take into account pro-
cesses that include the indirect absorption processes that in-
volve the intermediate-energy states.

When the direct absorption processes are efficient,
namely, when r is sufficiently small, adding diffusion over
intermediate states should not speed up the absorption. In-
volving the intermediate states can be beneficial only for
some combinations of parameters when the direct processes
are suppressed because of a relatively large value of r. The
absorption via the intermediate states can sometimes com-
pensate for the presence of the correlation exponents with
ucr

2 that slow down the direct absorption processes. On one
hand, the probability of scattering-driven transition �i→� j is
proportional to the square of the wave function on the wall
which decreases rapidly with lowering of the state energy � j
and, therefore, favors transitions with as large energy in-
crease as possible. On the other hand, the correlation expo-
nent exp�−��e−�i−�e−� j�2r2 /2� favors transitions into
nearby states. The competition of these opposing trends de-
termines at what values of r the intermediate states are im-
portant for absorption.

The depletion rates for higher square-well states are al-
ways very high. Therefore, at a relatively large value of r
there could even be a range of parameters in which the
depletion of the gravitational levels via the intermediate state
could become much more efficient than the direct transitions
over the threshold that the value of the threshold could be-
come irrelevant and the neutron count could lose its depen-
dence on 	.

In this paper we were focused on the search for “optimal”
roughness that ensures the steepest neutron depletion when
the wave functions start “touching” the walls; under these
conditions, the multistage processes via intermediate states
does not seem to be necessary. However, the quantitative
description of experiment cannot be complete without a
more careful look at the role of intermediate states. We plan
to address this issue later in a separate presentation.

D. Short-range forces near the surface

A fundamental issue is whether it is possible to extract the
parameters of the �ultra�short-range forces acting on neutrons
near the solid surfaces �and whether such forces exist at all�.
Our approach to particle diffusion along rough walls, in
which the surface roughness is treated in the same way as
bulk perturbations, is well suited to answer the question. The
short-range forces near the surface can be considered as an-

other �-type perturbation in addition to the roughness-driven
perturbation �34�. The matrix elements of this additional per-
turbation are determined by the same equations as the ones
that we used for the calculation of the surface-driven transi-
tion probabilities. The regular part of these matrix elements
determines the shift of the eigenstates � and the values of the
wave functions on the walls, bi, ci, which are necessary for
the calculation of the neutron depletion rates. After such
modification the calculation can, in principle, proceed along
exactly the same lines as is done above. Whether or not this
program will be implemented in the future will be deter-
mined by experimental success in observation of a well-
pronounced stepwise dependence of the neutron count on the
spacing between the walls. If this high resolution is not
achieved, the inclusion of the corrections from the short-
range forces will be meaningless.

E. CONCLUSIONS

In summary, we studied the possibility of detection of the
quantized gravitational states of neutrons. We applied our
theory of quantum transport along rough surfaces to a neu-
tron beam between flat and rough walls and calculated the
roughness-driven transition probabilities between the quan-
tum states. This allowed us to found the depletion rates due
to direct absorption processes as a function of the spacing
between the walls and parameters of the wall roughness.
From the theoretical standpoint, the main achievement is the
extension of our theory to systems with strong, high-aperture
roughness and the application of the theory to systems with
absorbing, leaky walls.

From the point of view of experimental applications, the
focus was on finding the optimal roughness parameters that
ensure reliable resolution of several gravitational states. The
main stumbling block is the overhang of the wave functions
from different states which, in most situations, prevents reso-
lution of the nearby states. Apart from the roughness param-
eters, the neutron count is also very sensitive to the ratio of
the particle kinetic energy to the absorption threshold. The
most suitable experimental conditions are those in which the
characteristic times � j

�0� for the direct transitions into the con-
tinuous spectrum �absorption� are short in comparison to the
time of flight except for the lowest gravitational states for
which the probability to find the particle near the scatterer or
absorber are exponentially small.

According to our results, the preferable conditions for the
observation of the well pronounced gravitational states are
the following.

�1� Weak roughness is sufficient for establishing the
fact of quantization, but is not sufficient for resolving the
individual quantum states. The sharpest experimental results
within the weak roughness regime are expected when the
amplitude and the correlation radius of weak roughness are
��R�0.08 �m.

�2� The resolution of quantum states requires the use
of stronger roughness. The use of low-amplitude high-
aperture roughness l0 ,H� � �R is preferable to high ampli-
tude roughness �� l0 or ��H. In the latter case, though the
levels can be resolved, it is virtually impossible to extract
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useful quantitative information from the experimental data.
�3� According to our results, resolving two or three

lowest states would require ��20R when using low-
amplitude high-aperture roughness.

�4� In the case of high-aperture roughness with ��r
one can even neglect the correlation exponents and make the
rest of the calculations as if the roughness is weak. Physi-
cally the disappearance of these exponents means that the
changes of momenta in scattering are now unrestricted and
the results are now not very sensitive to the correlation ra-
dius.

�5� The threshold velocity for the absorption should
be noticeably lower than the overall beam velocity,
	=Uc /E�1. This condition, if necessary could be replaced
by the condition that the width of the detector in the
y-direction, Ly �or the width of the plates�, is considerably

smaller than the distance to the detector �length of the
plates�, L. In this case, the absorption energy Uc is replaced
by the threshold for the disappearance of the neutrons in the
y direction, Ey ��Ly /L�2E.

We also formulated several suggestions for future theoret-
ical and experimental work which could help in reliable
identification of the gravitational states and use of the ac-
quired information for the study of the short-range forces
near solid surfaces.
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