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Quantum size effect and biased diffusion of gravitationally bound neutrons in a rough waveguide
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A comprehensive theory of gravitational quantum states of ultracold neutrons in a rough waveguide is
presented. The theory covers recent experiments in which the ultracold neutrons were beamed between a
mirror and a rough scatterer and absorber. The results are in very good agreement with experimental data. The
analysis is based on a recently developed theory of quantum transport in waveguides with rough absorbing and
scattering walls. The calculation is done using two methods: an exact transport equation and a simplified model
of biased scattering-driven diffusion of neutrons between quantum states. Both sets of results are in excellent
agreement with each other. The exit neutron count is sensitive to the amplitude and the correlation radius
(lateral size) of surface inhomogeneities and to the overall time of flight (Iength of the waveguide). The results
indicate that it is possible to choose the waveguide parameters in such a way so to observe the quantum size
effect in neutron count—the quantum steps that correspond to individual quantum states—even in a weak
roughness regime. Away from the obvious limiting cases, the results are not very sensitive to the ratio of the
particle energy to the absorption threshold. The main unresolved issue, which is related to a complexity of
required calculations for a “real” experimental cell, is the lack of accurate information on the occupation
numbers of neutrons entering the waveguide. Our analysis indicates that the initial occupancies of all gravita-

tional states are expected to be the same except for the smallest values of the waveguide width.
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I. INTRODUCTION

One of the recent discoveries in neutron physics was the
experimental observation of the quantization of motion of
ultracold neutrons in a gravitational field [1]. By itself, the
quantization of particle motion in a linear potential is well
known and has already been observed for other particles (for
example, for spin-polarized atomic hydrogen in a magnetic
field with a linear gradient [2]). However, Earth’s gravita-
tional field is so weak and the energies of the corresponding
discrete quantum states for neutrons are so low (on the scale
of 1 peV) that the observation of such states is indeed a
major experimental breakthrough. Besides, these low-energy,
gravitationally quantized neutrons could become an invalu-
able tool for measuring the fundamental forces in the um
range [3-5].

Experimental resolution of gravitational states was
achieved by collimating a horizontal beam of gravitationally
quantized particles by two mirrors: a rough one on the top
and an ideal one on the bottom. The neutron reflection was
locally specular as long as the vertical component of the
velocity did not exceed a certain threshold value; the neu-
trons with vertical velocities above this threshold were ab-
sorbed. The neutrons entering the slit had a large horizontal
component of velocity and a much smaller vertical compo-
nent. The scattering of neutrons by the rough upper mirror
caused a rotation of this initially horizontal velocity. The
rotation of the velocity led, in turn, to an increase in its
vertical component and, eventually, to absorption of the scat-
tered neutrons. Only the neutrons in the lowest gravitational
states, which could not reach the upper (rough) mirror, were
not absorbed and were counted by an exit neutron counter.

This neutron problem is different in two aspects from
typical quantum transport problems with scattering by ran-
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dom surfaces (see, e.g., the short review in Ref. [6] and
references therein). First, here the wall collision leads not
only to particle scattering and randomization of momenta,
but also to particle absorption. Second, the cell is relatively
short and we should solve a transport problem with initial
conditions rather than evaluating a stationary particle flux at
t—o0 as in standard transport problems. This second pecu-
liarity makes this problem somewhat similar to the problem
of particle propagation through a finite layer of a random
medium with above-barrier scattering [7]. The latter prob-
lems were studied mostly for one-dimensional (1D) systems;
we do not know any publications dealing explicitly with
quantized quasi-2D systems with a large number of discrete
quantum states. This makes the results below not only useful
for neutron experiments, but also interesting from a theoret-
ical standpoint.

Recently we analyzed the propagation of quantized neu-
trons in a rough waveguide [8] with the aim of describing the
experiment [1]. We calculated the absorption rates for direct
roughness-driven transitions from quantized gravitational
states into a continuum (direct absorption). The results were
not very encouraging: the weak roughness of the waveguide
surface was not sufficient for resolving even a couple of
gravitational states. Resolving these states would require ei-
ther an increase in the length of experimental cell by more
than an order of magnitude or making the surfaces with
strong roughness. The former option is inconceivable experi-
mentally, and the latter one would result in a large shift and
broadening of quantized levels which, in turn, could make
the results useless for precise calibration in future applica-
tions.

Although the main equations of Ref. [8] are quite general,
the computational results have restricted parametric applica-
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bility and do not, by any means, preclude the possibility of
experimental resolution of individual gravitational states
even within the existing experimental technique. The calcu-
lations took into account only the direct scattering-driven
transitions from discrete quantum states into a continuum
above the absorption threshold. We knowingly disregarded
all indirect absorption processes via gradual upward diffu-
sion of particles among the discrete states. The disregard of
indirect processes always underestimates the absorption rate.
The balance between direct and indirect absorption processes
is determined by the scale (correlation radius R) of rough-
ness. The coarser the roughness, the stronger is the suppres-
sion of direct absorption processes. As a result, the applica-
bility of the theory [8] is restricted only to a low-scale
roughness (R=<0.05 wm) for which direct transitions are
dominant.

In addition, according to experiments [1], the absorption
rate was not very sensitive to the absorption threshold. This
could indicate that in these experiments the absorption via
the intermediate states was more effective than the direct
transitions from the lower states into continuous spectrum.
Indeed, when indirect processes are dominant and the life-
time of the higher states drops rapidly with an increase in the
quantum number, the exact value of the absorption threshold
loses importance: the threshold-independent transition from
a lower state into an intermediate one requires much more
time than the final stages of absorption which depend on the
threshold position.

At first glance, the use of coarser surfaces with larger
inhomogeneities should make the interstate transitions and,
therefore, the depletion of neutrons more difficult. This is not
necessarily true: the increase of the correlation radius (lateral
size) of the surface inhomogeneities R allows one to increase
simultaneously the amplitude (height) of roughness € while
still remaining in the weak roughness domain € <R,/ until
R becomes comparable to /y; a further increase in R cannot
be accompanied by an increase in €. (In this particular case,
[y is the size of the lowest gravitationally bound state; see
below.) We believe that this could allow an observation of
the quantum size effect for neutrons in the gravitational
field—the stepwise dependence of the neutron count on the
spacing between the walls—using the weak roughness which
does not distort the energy levels themselves. The results
below include both direct and indirect absorption processes
and cover the whole range of values of R from the low-scale
roughness of [8] to coarse surfaces R =1, and provide a good
description of experimental data.

The paper has the following structure. In the next section,
we introduce the main equations and relevant notations. In
Sec. III we develop a biased diffusion model for calculation
of neutron depletion via the intermediate states. The results
for this model are discussed in Sec. IV. Though the semiana-
lytical results of the biased diffusion model are very trans-
parent and the computation times are very fast, these results
should be supplemented by solving the full transport equa-
tion, especially for the most important combinations of pa-
rameters. This is done in Sec. V in which we also discuss the
accuracy of the biased diffusion model. Section VI deals
with a comparison with experimental data including a de-
tailed discussion of various factors which affect the accuracy.
In Sec. VII we summarize the conclusions.

PHYSICAL REVIEW A 75, 063613 (2007)

II. MAIN EQUATIONS AND NOTATIONS

In this section we introduce the notations and dimension-
less variables, which are common to the field, and give the
main equations. In a typical experiment, a beam of ultracold
neutrons with energy E propagates between rough and ideal
mirrors with absorption threshold U,.. The main experimental
result is the number of neutrons exiting the collimator as a
function of the spacing between the walls H, particle energy
E, absorption threshold U,, and the mirror roughness.

The distances z and the energies of the quantum levels ¢,
are often measured in units of [, and e, s=z/ly, and A,
=€,/ ey, where l[j=h**(2m>g)~13~5.871 um and ey,=mgl,
~0.602 peV ~9.6366 X 10732 J are the size and the gravita-
tional energy of a neutron in the lowest quantum state in the
infinite gravitational trap. In these units, the typical overall
kinetic energy of particles in the beam E and the absorption
threshold U, are very large, 1.4X 10°<e=E/e,<8.7X10°
and u,=U,/ey~1.4X10°. In experiment, the ratio y=u,./e
changed between

0.16=<y=ule<1. (1)

This parameter shows how easy is it for a neutron to get
absorbed by a wall when the direction of velocity is rotated
as a result of scattering by the rough scatterer and absorber.
The dimensionless distance between the walls is h=H/l,.

It is also convenient to introduce the dimensionless ve-
locities (momenta) in the beam direction along the wall
(x direction) B, v;=Bue vo=\2gly=fi/mly~1.073
X 1072 m/ﬁ, and Bj=\e"e—)\jEpjlo [for lower levels, )\j<<e
and B;= Vell —%)\j/ _e)]. The range of kinetic energies in ex-
periment is 370 < e <930.

For the time units, one can choose

_
1 R h
— =70 11487 571, 2)
T 4m [

which provides the scale for the oscillation frequency of neu-
trons in the gravitational well. In experiment [1], the typical
time of flight of neutrons through the cell is t=L,/Vy~2
X 1072k s (parameter « is close, but not always equal to, 1
because of variations in the beam energy u,./x and in the cell
length). Then

t/Ty = 23k. (3)

For the correlation function of surface roughness we
choose the most commonly used Gaussian form

L(x) = €% exp(— x*/2R?),

{p;—p;) = \2mCR expl— (B;— B)>2],  (4)

with the correlation radius r=R/l, and the amplitude 7
={/l,. The generalization to non-Gaussian roughness is
straightforward [9]. The roughness is weak when both its
amplitude and its aperture are small,
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n<r,h. (5)

It is convenient to characterize the aperture of roughness by
the ratio of the amplitude to the correlation radius (lateral
size) of inhomogeneities:

v=4{IR=qlr. (6)

Equation (4) in these units assumes the form

{p;—pi) = \27B2r expl- (B B)*r2]. (7)

The parameters y and « will almost always enter the results
in the combination y2K and, therefore, can be treated as a
single parameter:

o= Yk. (8)

The numerical results below are presented for =1 unless it
is explicitly stated otherwise.

II1. ABSORPTION PROCESS AND BIASED DIFFUSION

Our previous results [8], which disregard the roughness-
driven interstate diffusion and take into account only the di-
rect transitions into continuous spectrum (direct absorption),
are accurate for the low-scale roughness. Elsewhere, these
results provide a lower bound for the absorption rate. In this
section we will give analytical expressions for an upper
bound for the absorption rate. This simple calculation is
based on the fact that the transition rates between the states j
and j', 1/7;=(1/79)w;;, rapidly increase with both quan-
tum numbers ] and j'. Slnce the rates of direct absorption
processes 1/7 (1 / TO)W also rapidly increase with an in-
crease in j, the lifetimes of the higher states are by orders of
magnitude shorter than for the lower states. Therefore, the
diffusion of particle between the energy levels has a strong
upward bias and one can often disregard the downward tran-
sitions. Then the biggest hurdle for absorption of a particle
from the level j is just the first jump—getting to one of the
higher levels j' > j—with the absorption time for the state j’
being very short on the scale of the j— j’ jump. When this is
true, a good estimate of the depletion rate of the state j is

}=% E———<w<°>+2w )

T syt T J'>i

To illustrate this point, let us look at the transition prob-
abilities between the states, W;;s [8]:

1
—— =0} Lp - p UL (DY, (H), (10)
Ji
where {(p—p’) is the correlation function of surface rough-
ness, U, is the absorption threshold, and lﬂj(H) are the values
of the wave functions on the rough wall. To better appreciate
the dependence on the scattering probabilities on the state
indices j and the correlation radius of surface roughness R,
which is responsible for the upward bias, let us rewrite Eq.
(10) in the simplest case of an almost infinite square poten-
tial well and Gaussian inhomogeneities:
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FIG. 1. (Color online) The rates of transition from the first level,
wy;, and from the 64th level, wgy;, Eq. (11), onto all other levels j
for r=1.16, »=0.116, x=0.16, and h=5. Plotted are 1O4><wlj and
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where h=H/I, is the dimensionless spacing between the
walls. This equation clearly illustrates that the probability of
transitions to the higher states increases quadratically with
the quantum numbers of the initial and final states j and j’
and that the dominance of direct transitions into very high
energy states j’' >>j is restricted only by the correlation ex-
ponent which limits the momentum transfer in a transition to
oB=p;- Bjr—|\re Nj—\e=N\; /| <1/r.@ef0re, in the cases
of small correlation radii 1/r=+e—\e—u, direct transitions
over the absorption threshold dominate the neutron depletion
and we should return to the results of [8].

When, however, the correlation radius r is not small, the
direct absorption term with 1/ 7'5.0) in Eq. (9) becomes small
in comparison with the term with the sum of interlevel tran-
sitions, which, in turn, is cut off by the condition

( B] )2 2/2 (\e_

For not very high energy levels A\ ;< e~ 105, this condition is
equivalent to

i—Ve-X\ )“/2<1 (12)

|)\j, - )\j| = \e”g/r, (13)

or, in the case of a simple square well, the transitions be-
tween the levels are restricted to

li"? =72 = \Sehz/ﬂlr (14)

Since e is a large number, 1.4 X 10° <e <9 X 10°, the jumps
to a remote level j' > are not only possible but, because of
the presence of j' in the preexponential factor in Eq. (11), are
very likely.

What happens is illustrated in Fig. 1 which gives the rates
of transition from the first level, w, » and from the 64th level,
Weaj» Eq. (11), onto all other levels j (the 64th level is chosen
because it corresponds to the maximum of wy;) for r=1.16,
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7=0.116, x¥=0.16, and h=5. [The choice of parameters re-
flects the experimental situation; see below]. The orders of
magnitude of w; and wgy; are so vastly different that to have
them in the same figure we plotted 10* X w; ;j and wey;. What
these data show is that the probability of jump from the first
level towards the maximum, w, g, is approximately 104
times higher than, for example, for a jump between the first
and second levels, w;,. Even more important is that the
probability of jump from the 64th level onto, for example,
the 82nd, wey g, is also 10* higher than for the return from
the 64th level to the first level, wgy 1 =wy 4.

All this means that the upward bias in diffusion between
the levels is very strong indeed. If a particle starts from the
first level, after the first scattering act it will, with over-
whelming probability, end up in the state j; which is not far
away from the maximum of the curve w,; and is much higher
than the state j. After the second jump, the particle will be in
the state j, which is close to the maximum of the curve w;
and is much higher than the state j,, after the third jump—in
the state j; near the maximum of W) js and so on. Since the
maximum of the curve w; " JU) is always well to the right
from the maximum of w; IQ) each step with an overwhelm-
ing probability will correspond to an increase in j until the
time when the maxima of the curves w; et and w; o will be
close to each other. As a result, when we are 1nterested in the
rates of depletion of the lower levels j, for which the
maxima of the curves w; jare well to the right of the values j,
themselves, we can 1gn0re the return processes. The structure
of the exponential factors in Eq. (11) means that the maxima
on the curves w;;(j) rapidly shift to the right with decrease
in r. For example when r=0.04, the maximum of the curve
wy; shifts from j=64, as at r=1.16, to j=340.

A more accurate equation than Eq. (11) for the interstate
transition rates is

1
= —wy= ﬁz(p = p YUY (H) 7 (H),

L/]

W r—4 X 10_10 be r%eXp[_ (Bj_ﬁj')zrzlz]’ (15)
J

where the coefficients b; are given by the squares of the
wave functions on the walls,

b; =10l (H)/2. (16)

Since the transition rates between the lowest states are much
slower than the transitions into the higher states and the Val—
ues of B; for the lowest states are almost identical, 8;~
the depletion rates for the lowest states, 1/7;, differ from
each other only by the factors b; and

1

1

T

L=l<w<10>+2 Wli)’ (17)

where
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W(IO):z X lo_s’yzuzbl(h)FO(Xir)s X:uc/e5 Y= 77/”’

(18)
2wy =2 X 10°921b, (W) Fy(r,h), (19)
i>1
2r3 [o rlx-1 dz
F()(X’r) f I
0 Vz+ 1
~ (= 1x=1-22ur2
XeXp[ (VIx=~1/x 2)7u.r ]’ (20)
3+1/z
Fi(rh)=2 X 107 \XZb(h)
\’ c i>1

Xexp[— (\s’yll)(— V1/x = Nfu)u 2], (21)

Then Eq. (17) can be rewritten as

D =2 X 10752 P LFo(xr) + Fy(r.h)],

1

(22)

where the first term describes the direct transitions over the
absorption threshold and the second the strongly biased up-
ward diffusion.

In the simplest situation, when r is not very small and the
jumps from the lowest levels towards the top of the well are
restricted, one can use for the higher levels a deep square
well approximation,

=R,
¥;(0) = i (H) = 51 b; — 105 (23)
/ lohu, hu,’

and F,(r,h) becomes

7 \x Iy
Fl(r h) 22— hgu3/2 2]2 exp[_ (VI/X

c j>1

RN —

—\1/x = 7 luh®) ur*2]. (24)

Then the neutron count on the exit counter is equal to
N,= > N(0)exp(- L/v;7;)

= 2 NJ(O)eXp(— Lb]/bl V’;U()Tl)
= > N{(0)exp(~ 23kmpb /b, 7))

- -5

= >, N;(0)exp(~ 46 X 10

ulzF\b)). (25)

If all initial level occupancies are the same, N,(0)=N,, then

N, =Nof(r.h),

f(r,h) = 2 exp(=46 X 107u’zF b)). (26)

If, as it is indicated by experiments [1], the initial population
of the first level is about one-half of the occupancy of the
higher ones, the function f should be replaced by
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FIG. 2. (Color online) Neutron depletion f(h), Eq. (26), at r
=0.05, x=0.16, and o=1. The curves labeled I level, 2 levels, 3
levels, etc., give the value of f when the sum in Eq. (26) is restricted
to 1, 2, 3, 4, and 5 levels, respectively.

1
frlx) = 5 exp(— 46 X 107u’zF))

+ >, exp(— 46 X 107uzF b)).

i>1

IV. BIASED DIFFUSION: RESULTS

The depletion of individual levels as a function of inter-
wall spacing h occurs relatively fast, in a stepwise manner.
However, these steps overlap between each other and the
overall depletion is a smooth function of 4. This is illustrated
in Fig. 2. Here we plotted function f(4), Eq. (26), which
gives the normalized neutron count at r=0.05, y=0.16, and
o=1. The curves labeled 7 level, 2 levels, 3 levels, etc., give
the value of f when the sum in Eq. (26) is restricted to 1, 2,
3, etc., levels only. This figure clearly demonstrates that
though individual levels depopulate rather abruptly, in a step-
wise manner, the overall depletion f() remains smooth.

A surprising observation is that the overall neutron count
for coarser roughness—i.e., for larger 7 and r—acquires a
stepwise character (see Fig. 3), which is an obvious sign of
the quantum size effect in neutron count. In this figure we
plotted function f(h), Eq. (26), at x=0.16 and o=1 for inho-
mogeneities of several sizes 7=r. The stepwise nature of the
curve at larger values of » and r is unmistakable. This pre-
sents a stark contrast to the results of Ref. [8] according to
which the observation of the steps for direct absorption pro-
cesses, which dominate at very small r, can be observed only
for 0=400. This contrast is explained partially by the fact
that the larger values of r allow one to use roughness with
the higher amplitude # while still remaining in the low-
roughness domain 7<r,1. However, the overall effect is
related mostly to the contribution of the intermediate states
to the level depletion.

In order to illustrate the fact that the sharpness of the
quantum size effect in neutron count is related to the increase
in roughness amplitude 7 rather than to the lateral size of
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FIG. 3. (Color online) Neutron depletion f(h), Eq. (26), at x
=0.16 and o=1 for inhomogeneities of several sizes, r
=1.19,0.2,0.1,0.05,0.02 for »=r. The curves are labelled by the
values of r. The steps on the curves become more pronounced with
an increase in size of inhomogeneities.

inhomogeneities r, in Fig. 4 we present the data for the neu-
tron depletion at various, rather large values of r, r
=1,2,5,10,20 but, in contrast to Fig. 3 in which the ampli-
tude of inhomogeneities was the same as their lateral size, at
constant value of the amplitude, #=0.5. As one can see, the
sharpness of the steps remains more or less the same irre-
spective of the value of the correlation radius r.

Another major difference from the results of Ref. [8] is
the dependence of the neutron depletion on the ratio y of the
absorption threshold energy U, to the overall energy E. The
direct absorption processes are extremely sensitive to this
ratio which determines how large the scattering-driven rota-
tion of velocity should be in order for the particle to get
absorbed directly. In the case of biased diffusion, which is
described above, this ratio is largely irrelevant: here the main
part of the absorption process is spent on the first jump—i.e.,

5

Neutron count,

2 3 4 5 6 7 8 9 10
h

FIG. 4. (Color online) Neutron depletion f(h), Eq. (26), at x
=0.16 and for inhomogeneities of several sizes r, r=1,2,5,10,20
and the same amplitude of the inhomogeneities, 7=0.5. The higher
curves correspond to larger values of r. The sharpness of the steps
remains the same irrespective of r.
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FIG. 5. (Color online) Neutron depletion f(h), Eq. (26), at r
=0.04 and o=1 for several values of the threshold ratio x, x
=0.16,0.3,0.5,0.7. Higher curves correspond to larger values of .

on the transition from the initial state to some higher state,
rather than on the transition from this higher state to the
continuum. In this case, the weak dependence of the deple-
tion rate on y appears only because y affects the time of
flight ¢ and, to a lesser degree, a number of transitions nec-
essary for absorption. This weak dependence of the neutron
depletion on the threshold ratio y is consistent with the ex-
perimental data and is illustrated in Fig. 5 for inhomogene-
ities with 7=0.04. In this figure, higher curves correspond to
larger values of y though the curves are almost indistinguish-
able. This somewhat counterintuitive dependence on y
=U./E is explained by the dependence of the correlation
exponent in Eq. (21) on y.

The dependence of the neutron count on the parameter o
is more noticeable, partially because o, which is proportional
to the square of the ratio of the height and the lateral size of
inhomogeneities, can change in a much wider range than y.
The dependence of the neutron count on o is illustrated in
Fig. 6 for r=0.04. This relatively strong dependence of the
neutron count on o is very unfortunate since the experimen-
tal value of o is often unknown precisely. However, if one

Neutron count, f
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o

FIG. 6. (Color online) Neutron depletion f(h), Eq. (26), at r
=0.04 and x=0.16 for several values of o, 0=0.1,0.5,1,5,10. The
curves are labeled by the values of o.
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does not make special efforts to prepare inhomogeneities
with lateral and transverse sizes of vastly different scales, a
natural assumption is that o for a random rough surface is of
the order of 1.

V. EXACT DESCRIPTION OF NEUTRON DEPLETION
AND THE ACCURACY OF THE BIASED
DIFFUSION MODEL

When the correlation radius (lateral size) of surface inho-
mogeneities r increases, the correlation-driven exponential
factor

exp[— (B, - B;)*r*/2] (27)

in the transitional probabilities w;;, Eq. (15), limits the tran-
sitions to the nearby states and the peaks in w;;/(j"), such as
the ones in Fig. 1, shift more and more to the left. The closer
is the maximum of the curve w;;/(j’) to the starting point j,
the smaller is the upward bias in the interstate diffusion. This
means that the upward bias in the scattering-driven interstate
diffusion decreases with growing coarseness of the mirror
corrugation r. As a result, the biased diffusion model from
the previous sections may lose its accuracy at larger r. There-
fore, at large values of the correlation radius of inhomogene-
ities r we have to solve the transport equation exactly. This
will also provide us with a good estimate of the accuracy of
the bias diffusion model.

An estimate of the correlation-driven limitation on the
length of a likely jump j—j' is given by Eq. (15),

Jr~ i+ \/ghz/ﬂ'zr. (28)

Since the kinetic energy of the motion along the slit, e, is
much higher than the typical gravitational energies inside the
slit, jumps to high energy levels j'>>j are possible for r

< \/8eh?/ m~250h? at y=0.16. When r is smaller than this
very large number, the accuracy of the biased diffusion
model should be excellent.

In order to check the accuracy of the biased diffusion
model, we solved the full transport equation numerically at
several large values of r, such as those in Fig. 4, while keep-
ing the amplitude of inhomogeneities constant an relatively
small, 7#=0.5, and compared the data with the biased diffu-
sion results. Not surprisingly, there was no noticeable differ-
ence between the biased diffusion and exact computations.
There is no reason even to plot these data.

At higher values of r the computation times increase dra-
matically and, what is worse, the numerical solution of the
full transport equation starts to lose stability. The culprit is
the structure of the matrix of transition probabilities which
contains the exponents (27) with prefactors of the type j2j’2.
With increasing r, this matrix becomes more and more dis-
balanced with respect to the antidiagonal with the elements
below the antidiagonal being larger by many orders of mag-
nitude than the ones above it. Simple brute force enhance-
ments, such as doubling the precision or rearranging the ma-
trix, do not let us extend the computations reliably beyond
r=15. Fortunately, it looks unlikely that the experiments will
be performed using mirrors with very large values of r.
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Though this computational issue in solving the exact trans-
port equation can be overcome, we prefer, instead, to calcu-
late the iterative corrections to the biased diffusion results
from the previous section.

We look for a solution of the full transport equation in the
form

N(1) = Ni(Da(1), (29)

where N (t)=Ny exp(=t/ ;) are the time dependences of the
level occupancies from the biased diffusion calculations of
the previous section. Since the biased diffusion approxima-
tion takes into account only transitions away from the levels
and neglects the return processes, the exact equations for the
correction coefficients a;() have the form

~ d . 1 BWI
N,(t);i‘ = 7021- #Nj/(t)aj/(t), at=0)=1.
(30)

The first iteration to the solution is obtained by replacing
a;(t) on the right-hand side (RHS) of this equation by I,

Bwijr T rot
s l—expl——— ||,
Bjr 7=y T Ty

(31)

a(=1+213
: .

and the correction coefficients at the time when the neutrons
reach the exit counter are

T: BWI T N .,
aj(L/U)=]+5aj, MJ:JEA; I—Tj ,
oo By T N

(32)

where N ; are the occupancy numbers at the exit counter in
the biased diffusion approximation. The next iteration is ob-
tained by replacing a;(t) on the RHS of Eq. (30) by the
value given by Eq. (31), etc. Since N (1) are simple exponen-
tial functions, this iterative procedure is computationally
transparent.

For example, the first iteration for the correction coeffi-
cient for the population of the lowest state is

5a1=ﬂEML_T.L 1_& (33)
Toj=1 B Ti—T; N,

or, according to Eq. (17),

_ . /
5a1=<w(1°)+2w“) s By T/
i>1 ji>1 ,8_/ 1_7']'/7'1
23 I —1
X{l—exp(M”, (34)
T.
J

where we used the same numerical value for L/v1y=23 as in
the computations in the previous section. Since the main
contribution to the sum comes from the area of the peak in
Fig. 1 and not from the lowest levels, one cannot use here the
approximation b,/b; for the ratios 7;/7, inside the sum. On
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FIG. 7. (Color online) Correction coefficient éa,(h), Eq. (34),
for r=1,5,10,50,100,250 and #=0.5. The curves are marked in
accordance with the values of r.

the other hand, for all higher levels the occupancies

N i N 1< 1 and the corresponding exponents in Eq. (34) can
be disregarded. It is, therefore, obvious that this correction
never exceeds

s, < TS Bwi 7 (35)
Toj>1 B Ti—T;

and should be quite close to this value.

The correction coefficient da;(h), Eq. (34), is plotted in
Fig. 7 for six values of r, r=1,5,10,50,100,250. For r<1
the correction coefficients cannot even been seen on this
scale. The correction coefficients for the occupancies of
higher levels, da j>1(h), are somewhat higher. However, one
should keep in mind that these levels are depleted much
faster than the first level and the corresponding corrections

oa jﬁ ; to the overall neutron count are quite small even when
da; are noticeable.

Figure 7 confirms the conclusions of the beginning of this
section that the corrections to the biased diffusion results are
negligible for mirrors with inhomogeneities of small and
moderate lateral sizes r. Note that the parameters 7=0.5 and
very large r=250 describe mirrors with roughness of ampli-
tude 2.9 um and unrealistic lateral size 1.5 mm. In principle,
systems with very large values of r may also exhibit an
anomalous quantum size effect of the type [9] which is as-
sociated with the spontaneous opening of interstate transition
channels. This possibility and its implications will be dis-
cussed elsewhere.

Since the computation times for exact solution of the
transport equation are much longer than those for the biased
diffusion model, the only conclusion is that a proper compu-
tational procedure for analysis of experiment is a rapid scan
of a wide parameter range using the biased diffusion model
supplemented by the exact solution of the transport equation
in the most important points. When the correlation radius of
inhomogeneities is large, r>15, a better alternative to the
exact solution is the iterative computation of the correction
coefficients in accordance with the above scheme.
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VI. COMPARISON WITH EXPERIMENT

Before starting a detailed comparison with experimental
data, one should analyze the limitations of the theoretical
calculations and the effect of uncertainty of the input param-
eters, which come from experiment, on the results.

A. Roughness-driven broadening and shift of the gravitational
states

Up to now we assumed that the gravitational states are
well-defined energy levels. At first glance, surface roughness
should lead to a broadening and shifting of these levels.
Strictly speaking, this is not entirely true and the situation is
more complicated. Though we use the term ‘“gravitational
level” to describe the quantization of neutrons by the gravi-
tational field, one should keep in mind that in reality we are
dealing with 3D particles in a 1D quantizing field. This
means that the solution of the Schrodinger equation is not
just a set of discrete energy levels €;, but a set of 2D “gravi-
tational” energy bands €;+ p?/2m, and we are dealing, effec-
tively, with a continuous spectrum. In the case of a continu-
ous spectrum, any perturbation, including the roughness-
driven one, leads not to distinct energy shifts and line
broadening, but to a mixing of the states of the type that we
calculated in the previous sections.

The notion of an individual energy band makes sense only
if the roughness-driven mixing of the bands is not too large.
This means that the effective broadening

O€; ~ ﬁ/Tj

should be much smaller than the separation between the
bands,

0€; < €j41 — €.

Since the line broadening for the square well levels is pro-
portional to j*> and the distance between the nearby levels
increases only proportionally to j, the first bands to overlap
are the upper ones with

W
A
or, what is the same,
f ar?
e Zjﬁ, (36)
J

with 7; given by Eqs. (17)-(22),

D 22 X 105D a2 [Folor) + Fi(nh)]. (37)
7

Then the critical value of j, above which the bands overlap
with each other, is

1/j.~9.5 X 107u,y[Fox,r) + Fi(r,h)//h.  (38)

Numerical evaluation shows that the value of j. is almost
always linear in 4,
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FIG. 8. Plot of function 10~%(r), Eq. (39).

je=a(rhly, (39)

with very large a, a(r=0.04)=4.9X10°% a(r=02)=42
X 10°, and a(r=0.04)=2.9Xx10* A plot of the function
107%(r) is given in Fig. 8. Since the overall number of levels
is of the order of 10*4?, the broadening of the highest levels
is important only when the ratio of the amplitude of rough-
ness to its lateral size, y={€ /R, is large (and even then only
at relatively large values of the spacing & and coarse inho-
mogeneities with r= 1). The broadening of the lower levels
is negligible except for the walls with very strong roughness.
Therefore, the influence of the level broadening on the neu-
tron depletion can be largely ignored.

There is still a question whether the values of €;, which
determine the quantized energy bands €+ p*/2m, are well
defined. The exact values of €; are of paramount importance
if one is serious about using gravitationally quantized neu-
trons for measuring the fundamental forces in the um range
[3-5]. One of the main sources of uncertainty in ¢; is driven
by a purely practical consideration. With increasing rough-
ness, it is getting more difficult to determine experimentally
the exact average position of the mirror and, therefore, the
exact spacing /. In many typical experiments the uncertainty
in i is somewhere in between 0.1 and 0.2. Since the values
of the energy levels depend strongly on the spacing between
the walls, this uncertainty in 4 leads to an uncertainty in the
energy values. For example, Fig. 9 presents the uncertainty
bands for the lowest nine (dimensionless) energy levels \;
=€,/ ) that correspond to uncertainty 0.1 in the value of the
wall spacing h.

As one can see from the figure, the uncertainty in the level
positions is quite high and is comparable to the distance
between the levels, especially at low spacings & <<5 that cor-
respond to the main experimental range. If the uncertainty in
h reaches 0.2, the uncertainty bands for different levels start
overlapping with each other. This does not imply that the
individual levels intersect with each other: all the levels shift
in a systematic way in the same direction. What it means is
that the identification of the energy states can become unre-
liable while their energies become highly uncertain. The ex-
perimental uncertainty in /& degrades the quality of the data
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FIG. 9. (Color online) Uncertainty bands for the lowest nine
gravitational states between the walls \;=¢;/¢ that correspond to
uncertainty +0.1 in the value of the wall spacing A.

and requires using an offset when interpreting the experi-
mental data as is done below.

B. Initial distributions

One of the most important issues is the initial distribution
of neutrons over the gravitational states, N J-(t=0,h). In ex-
periment, the measured quantity is the dependence of the
neutron flux after it passes the rough slit on the slit width A.
This flux is equal to

N(t,h) = 2, Nj(t = LIV,}h) ~ 2, N;(0,h)exp(~ L/VT)).
(40)

Unfortunately, neither the absolute values of the individual
initial occupancies N j(O,h) nor even their relative values are
known experimentally with good accuracy. Although such
measurements are, in principle, possible, they are too com-
plicated and time consuming and have not been done yet. A
reliable calculation, which would be based on the known
data on neutron distributions in front of the collimators and
would include all diffraction effects for a realistic cell, is
also, in principle, possible, but seems even less likely.

A natural assumption is that, since the distribution of the
particles over the vertical velocities in the feeder beam be-
fore it enters the slit is nearly flat, the initial occupancies of
the lowest states are the same, N,(0,h)=n and

N=n 2 exp(~ LIVT). (41)

Even though the value of n is not known exactly, we can use
it as a fitting parameter by fitting one of the points of the
experimental curve N(h) to the theoretical curve. The best
candidate here is the point at the highest value of / since the
neutron count and, therefore, the accuracy of measurements
increase with increasing clearance between the walls 4. This
procedure was used when comparing our results to experi-
mental data.

Such a fitting procedure relies on two assumptions. The
first one is, of course, that the initial occupancies of all states
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are the same, N;(0)=n(h). The second implicit assumption is
that the relative distribution of the neutrons over the states
does not change with change in &, n(h)=n. A brief theoretical
analysis [4] seems to confirm the first assumption. However,
even if the first assumption N j(O) =n holds for all values of #,
this does not automatically mean that the value of n does not
depend on h.

In addition, there are some experimental indications that
the occupancy of the lowest gravitational state is lower than
that for the higher states [1], but the spatial resolution of the
corresponding measurements is too low to make any definite
conclusions.

We analyzed this issue assuming that the distribution of
neutrons in the feeder beam, before it enters the slit, over the
“vertical” kinetic energies is flat or Gaussian. Since we are
interested only in the lowest states with energies in the peV
range, these two situations are identical for all practical pur-
poses.

One of the main sources of uncertainty for the initial dis-
tribution of particles over the lowest gravitational states is
the distribution of particles over the vertical velocities in the
feeder beam after the beam passes the collimators. (The dis-
tribution in front of collimators was measured and turned out
to be uniform. Using these data, the distribution behind the
collimators can, in principle, be calculated; however, an ac-
curate calculation, including all diffraction effects, is too
complicated). There are two natural assumptions: either the
distribution of particles in the feeder beam over the vertical
momenta ¢ is a constant, nq(qH0)=const, or the distribution
over the corresponding Kinetic energies is constant, n /(e
—0)=const. The former case seems to be closer to experi-
mental data though the latter one corresponds to the equilib-
rium distribution. Since de=gdq/m, these two distributions
are drastically different at low momenta, n,=n.g/m.

The initial occupancy of the quantum level j between the
plates can be estimated as

2
, (42)

Ni=2n, f W, (X) (x - y)dx

where W, (x) and ¢;(x~y) are the wave functions in the
feeder beam and inside the slit with the parameter y charac-
terizing the displacement of the bottom of the slit with re-
spect to the bottom of the feeder beam, and n,, is the distri-
bution over states m in the feeder beam. We evaluated the
occupancy as a function of the quantum number j without
and with the gravitational field. In the former case, we
looked at a wide rectangular feeder beam of width L entering
a narrow slit of width &< L; in the latter case, the width of
the feeder beam was determined by the gravitational energy
cutoff. The findings in both cases are similar. In general, the
initial occupancies of all states are the same and do not de-
pend on the well width & except for the smallest values of A
at which the occupancies experience a sharp drop. The origin
of this drop is rather obvious. The energy states inside the
well are rapidly going up with decreasing 4 (as 1/h? in the
absence of the gravitational field) and the distance between
the nodes of the wave function drops proportionally to h.
Therefore, at smaller /2 one needs higher and higher terms in
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the summation (42) over the states of the feeder beam in
order to get the “full” occupancy of the state j. Since there is
an inevitable high-energy cutoff in the feeder beam, there is
a certain critical value of & below which there is simply not
enough terms in the sum (42) in order to maintain the full
occupancy of the well states j; the higher is this cutoff, the
lower is the critical value of 4. For all realistic values of the
energy cutoff in the feeder beam, the drop in initial occu-
pancy starts at A= 1. It is also obvious that this critical width
h should increase with increasing level number j.

In the presence of the gravitational field, one can choose
the semiclassical gravitational functions for the states ¥, in
the feeder beam with energies w,,,

_AilGc-p,) |37 1) w
\Pm(x)— Ai,(_l/(/m)’ ILLI’I’I_|: 4 (27’)’1—2 :| s (43)

and for ¢;(x—y) the wave functions from Ref. [8]. Assuming
that the neutrons in the feeder beam are uniformly distributed
over the energies u in the vertical direction n(u) in some
interval A, n(w)=N/A, the distribution over the quantum
numbers is

TN
A,

(44)

ny,

and Eq. (42) reduces to

N v;

M= Ma g

Nj:

my+b 2

1 . (s

.
|

Vi =\ 2 T

mg—a N Mm

J \If;(x)t//j(x —y)dx
where M0=[3777(2m0—%)]2/3 is the gravitational energy at the
bottom of the slit. On the other hand, if the distribution over
the vertical velocities in the feeder beam is uniform, then the
occupancies of the gravitational states in the slit are slightly
different,

__ N@2

]_/_—/_ N
Vi = g Mo

my+b

1
Vj=,U~02 -

mp—a m

2
(46)

f W, (x) (x — y)dx

It turns out that both occupancies v;, Egs. (45) and (46),
are similar to each other and are equal to 1 except for the
smallest values of 2=1. For example, Fig. 10 presents the
initial occupancies (45) v;(h) for the lowest nine gravita-
tional levels when my=1007, a=300, and b=5000. The criti-
cal values of &, at which the occupancies start going down,
are not sensitive to the parameter a, but are sensitive to my,
and b: with an increase in b or a decrease in m, the critical
values of & decrease.

The computational results for v; in the case of a uniform
distribution over velocities, Eq. (46), are practically the
same. If the distribution of particles in the feeder beam is not
flat but Gaussian, the drop in the occupancies v; starts at

J
higher values of widths /. The steeper is the Gaussian distri-
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FIG. 10. (Color online) Initial occupancies of the gravitational
states between the plates v;(h), Eq. (45), for the lowest nine levels
when my=1007, a=300, and »=5000. The critical values of A, at
which the occupancies start to drop, decrease with decrease in my
and increase with the energy cutoff in the feeder beam b.

bution in the feeder beam, the more spread out are the curves
vi(h).

Unfortunately, most of the feeder beam parameters in Eqgs.
(45) and (46) are unknown though it is reasonably safe to
assume that in most of the experimental domain the gravita-
tional levels experience considerable roughness-driven
depletion at higher values of & than those for which the ini-
tial occupancies v;(h) start to drop. Therefore, our only con-
clusion from the above analysis is that the initial occupancies
of all levels are the same and do not depend on the spacing
between the plates /2, v;=1 and N;(0)=n=const. The numeri-
cal value of n is, nevertheless, unknown. Also, we are not
able to confirm or explain the observation [1] that the initial
occupancy of the ground state seems to be lower than that for
the higher states.

The experimental data yield the absolute value for the
neutron count:

N=2Ni().

Our results express the final populations of the gravitational
states, N,(1), via their initial populations N;(0)=n. Since the
initial population of each state n is unknown, the only way to
compare the experimental and theoretical results is to choose
the value of n by fitting one of the experimental points to the
curve f(h), Eq. (26), or a similar curve from Sec. IV. The
best choice for such a fitting point is the point with the high-
est neutron count (the largest &) where the experiment has
the highest accuracy.

C. Comparison with experiment

Figure 11 compares the best published experimental data
(the third Ref. [1]) with our calculations. According to ex-
perimental observations, the correlation radius (lateral size)
of the surface inhomogeneities was r=1.19 (R=7 um) and
the amplitude (height) of inhomogeneities was 10 times
smaller, #=0.119 (€=0.7 um) (i.e., 0=0.01). The fit was
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FIG. 11. (Color online) Comparison of neutron depletion calcu-
lations f(h), Eq. (26) (solid line) with experimental data (crosses) of
the third reference in Ref. [1]. Calculations use the experimental
estimates r=1.19 (R=7 um) and 7=0.119 ({=0.7 um).

done using the information on initial occupancies from the
previous subsection, v;=1. The fit also includes the offset of
1.6 um (Sh=0.27) in the width of the slit [1].

The agreement between theoretical and experimental re-
sults is amazingly good especially if one takes into account a
not very high accuracy (10%—-20%) of the experimental es-
timates of roughness. This quality of the fit is especially
striking because of a high sensitivity of the theoretical curves
to the amplitude and correlation radius of the surface inho-
mogeneities 7 and r. If the ratio »/r were equal to 1, and not
0.1 as in experiment, the same quality of fit could have been
achieved only at r=0.04.

VII. CONCLUSIONS

We developed a comprehensive theory of transport of
gravitationally quantized neutrons in a rough absorbing
waveguide. The results are in a very good agreement with
experimental data, much better than in our previous attempt
[8] to describe the Grenoble experiment and with much
fewer free parameters than Ref. [10]. Our only remaining
free parameter—the state occupancy for entering neutrons—
can also be eliminated in future experiments.

In contrast to our earlier calculations [8], which took into
account only direct scattering-driven absorption processes,
the calculation includes all possible indirect depletion pro-
cesses occurring via intermediate states. The computations
were done by both solving the full transport equation encom-
passing all transitions and using a much more transparent
and time-efficient-biased diffusion model. The agreement be-
tween both approaches, which is generally very good in the
whole parameter range, becomes perfect for rough mirrors
with small and moderate radii of surface roughness. This
means that any future analysis of the quantum size effect for
gravitationally quantized neutrons can be done by a rapid
scanning of the interesting parameter range using the semi-
analytical biased diffusion model with a consecutive exact
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solution of the full transport equation in the most important
points.

Our biased diffusion model assumes that the scattering-
driven diffusion of neutrons through the set of quantized en-
ergy levels has a strong upward bias with neutrons rarely, if
ever, going to the lower-energy states. This allows us to
avoid diagonalizing the full matrix of transition probabilities
involving hundreds of discrete quantized states and to get a
transparent analytical expression for the neutron depletion
rate.

We also studied in detail several factors that affect analy-
sis of experimental data and are important for potential ap-
plications of quantum size effects in neutrons for measuring
fundamental forces in the sub-um range [5]. The most im-
portant factors are the experimental uncertainty in the wave-
guide width, which increases with an increase in the ampli-
tude of roughness, and the lack of reliable experimental
information on the initial population of the quantum states.
The former factor results in an uncertainty in the energy
calibration while the latter one necessitates the use of the
only fitting parameter in comparing theoretical and experi-
mental results. Although the initial populations can, in prin-
ciple, be calculated from the measured neutron distribution
in front of the collimators, such a calculation is extremely
complicated and is hardly realistic. The measurement of the
neutron distribution in front of the mirrors (slit), but after the
beam passes through all the collimators seems as a better
option than the calculation involving all possible diffraction
effects. Another desirable measurement would be a more ac-
curate study of the mirror inhomogeneities using some of the
standard experimental techniques in dealing with random
rough surfaces [11].

We demonstrated that there exists a clearly identifiable
parameter range in which one can observe the quantum size
effect—namely, the distinct quantum steps in the exit neu-
tron count—even for waveguides with weak roughness, €
=<R,ly. The sharpness of the quantum size effect increases
with an increase in the amplitude of the surface inhomoge-
neities € and is not very sensitive to their lateral size R. The
limitations on the experimental observation of the very sharp
steps are caused mostly by the loss of energy resolution with
increasing amplitude of inhomogeneities.

Our results identify the most advantageous parameter
range for the observation of the quantum size effect for the
gravitationally quantized neutrons in a rough waveguide,
without degrading the quality of the energy calibration. Just a
threefold increase of the amplitude in roughness for an ex-
isting waveguide with r=1.19, which can easily be done ex-
perimentally, seems to be sufficient for an unmistakable reso-
lution of the quantum steps.

ACKNOWLEDGMENT

One of the authors (A.M.) is grateful to the ILL group for
the hospitality during his stay in Grenoble and for stimulat-
ing discussions. One author (V.M.) is grateful to the French
Agence Nationale de la Recherche (ANR) for support of
GRANIT project at ILL.

063613-11



ADHIKARI et al.

[1] V. V. Nesvizhevsky et al., Nature (London) 415, 297 (2002);
V. V. Nesvizhevsky et al., Phys. Rev. D 67, 102002 (2003); V.
V. Nesvizhevsky et al., Eur. Phys. J. C 40, 479 (2005) (for an
additional bibliography see also http://lpscwww.in2p3.fr/UCN/
NiveauxQ-G/publications/index.html).

[2]J. H. Freed, Ann. Phys. (Paris) 10, 901 (1985).

[3] H. Murayama, G. G. Raffelt, C. Hagmann, K. van Bibber, and
L. J. Rosenberg, in Review of Particle Properties, K. Hagiwara
(Particle Data Group) [Phys. Rev. D 66, 010001 (2002)].

[4] V. V. Nesvizhevsky and K. V. Protasov, Class. Quantum Grav.
21, 4557 (2004).

[5] Possible use of gravitational quantization of neutrons for
measuring the fundamental forces was the main topic of the
workshop http://Ipsc.in2p3.fr/congres/granit06/index.php(ILL,
Grenoble, 2006).

PHYSICAL REVIEW A 75, 063613 (2007)

[6] A. E. Meyerovich and A. Stepaniants, Phys. Rev. B 60, 9129
(1999).

[7] 1. M. Lifshitz, S. M. Gredeskul, and L. A. Pastur, Introduction
to the Theory of Disordered Systems (Wiley, New York, 1988).

[8] A. E. Meyerovich and V. V. Nesvizhevsky, Phys. Rev. A 73,
063616 (2006).

[9] A. E. Meyerovich and 1. V. Ponomarev, Phys. Rev. B 65,
155413 (2002); Y. Cheng and A. E. Meyerovich, ibid. 73,
085404 (2006).

[10] A. Yu. Voronin, H. Abele, S. Baeszler, V. V. Nesvizhevsky, A.
K. Petukhov, K. V. Protasov, and A. Westphal, Phys. Rev. D
73, 044029 (2006).

[11] J. A. Ogilvy, Theory of Wave Scattering from Random Surfaces

(Adam Hilger, Bristol, 1991).

063613-12



