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Bose-Einstein condensation of interacting gases in traps with and without optical lattice
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We compare effects of particle interaction on Bose-Einstein condensation in inhomogeneous traps with and
without optical lattice inside. Interaction pushes normal particles away from the condensate droplet, which is
located in the center of the trap, toward the periphery of the trap where the trapping potential is large. In the
end, the remaining normal particles are squeezed to a quasi-two-dimensional (2D) shell around the condensate
droplet, thus changing the effective dimensionality of the system. In the absence of the optical lattice, the index
in the temperature dependence of the condensate density at the later stages of the process is close to 2 with a
weak dependence on the number of trapped particles. In the presence of the lattice inside the trap, this simple
picture breaks down and the index acquires a strong dependence on the number of particles inside the trap,

gradually falling from a three-dimensional to a 2D value with an increase in the number of particles. This
change in index is explained by the lattice-driven spread of the condensate droplet and the localization of the

narrow-band particles by the trap potential.
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The spectacular experimental discovery of Bose-Einstein
condensation (BEC) made the study of alkali-metal gases in
traps the focal point in atomic, low-temperature, and
condensed-matter physics. For the first time, it became pos-
sible to observe some of the phenomena that have been dis-
cussed earlier only within theoretical models (see review in
[1]). The phenomena in ultracold alkali-metal gases are in-
credibly rich and combine features inherent to diverse
condensed-matter and low-temperature systems (Ref. [2] and
references therein) from “classical” superfluid or supercon-
ducting systems [2] to spin-polarized quantum gases [3] to
Mott transition in the optical lattice [4].

One of the unavoidable features is the inhomogeneity of
the trapping potential. The interplay between the repulsive
interaction and the trapping potential complicates BEC. It
was clear from the beginning [5,6] that the interaction and
the trap have opposite effects on condensation: while the trap
tends to concentrate the condensate in a narrow region of
space around the particle ground state in the trap, the repul-
sion is responsible for the widening of this condensate drop-
let. The analytical description of the combined effects tends
to be rather elusive, and our previous experience with con-
densation in homogeneous systems is not very helpful. The
problem becomes even more complex in the presence of the
optical lattice inside the trap which adds two different local-
ization processes—Mott transition and localization of
narrow-band particles by an inhomogeneous potential.

Below we investigate a situation in which it is possible to
get an accurate semianalytical picture of the condensation in
trapped interacting gases. The main goal of the paper is com-
parison of the condensate formations in traps with and with-
out an optical lattice inside. The main attention is paid to the
index in the temperature dependence of the condensate frac-
tion and to the size of the condensate droplet. It turns out that
this index is not universal even for a low-density gas. What
is more, the effective dimensionality of the problem depends
on the presence of the optical lattice and changes with con-
densation, making the later stages of BEC different from
initial.

We start from a more conventional and transparent prob-
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lem of BEC in trapped gases in the absence of the optical
lattice, and add the complications associated with the optical
lattice later on. A similar calculation without the optical lat-
tice was performed in Ref. [7] though at a noticeably lower
population of the trap. This difference strongly affects the
results. We assume that the density is still sufficiently low to
neglect the interaction before the onset of condensation even
in the center of the trap. In computations, this condition lim-
its the total number of particles in our trap, N, to N< 109,
This also means that the critical temperature 7. for the onset
of condensation is practically unaffected by the interaction.
The interaction is brought into play only after the start of
condensation, at 7<<T,, since the particles condensate in the
center of the trap, making the density in the center large.
Thus, the interaction, which is proportional to the particle
density, is large only in and around the condensate droplet.
The normal particles are pushed out by the dense condensate
toward the periphery of the trap where the interaction is neg-
ligible. However, the further particles move away from the
center, the higher is the gradient of the trapping potential,
which is responsible for the force pushing the normal par-
ticles back toward the trap center. Therefore, at the later
stages of BEC, the majority of remaining normal particles
are distributed in an almost two-dimensional (2D) shell
around the condensate droplet and the dimensionality of the
condensation problem changes from three dimensional (3D)
in the beginning of the condensation to quasi-2D later on.
We consider a 3D harmonic trap with a single-particle
ground state of frequency w and spatial size o (the axial
asymmetry of experimental traps is largely irrelevant in our
context). Without interaction, BEC starts at T,
=0.941%4wN"? [8] and the initial size of the condensate drop-
let is oy. Particle repulsion increases the size of the conden-
sate droplet with N.(T) particles to o(7). Then the potential
well for normal particles U(r) has a shell-type structure,

1 > N.op 2
U(r,T):Eﬁw{r—z+N;ogexp<—i?)], (1)

9y

where N0=(\f'7—7/8)wma%)/ ha, and we assume that the con-
densate density is Gaussian with the variational parameter o.
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(In Ref. [7] the shape of the condensate wave function is
calculated self-consistently.) The number of normal particles,
N,(T)=N-N,T), is determined from the condition u=0.
The size of the condensate droplet, o(T), can be obtained
from minimization of the condensate energy, which includes
repulsion, in a way similar to that done in Ref. [5]. There are
several reasons that warrant exclusion of the interaction of
normal particles between themselves from Eq. (1). First, for
less than 10° particles in a trap, the interaction of the normal
particles is negligible even in the trap center before conden-
sation. Even for larger N, the number of the normal particles
on the later stages of the condensation is small. Finally, the
density of the normal particles is suppressed even more by
repulsion from the condensate droplet which spreads them
through a large shell around the droplet, 4mo20y, instead of
concentrating them near the center in the volume (47/ 3)0’8.
This gives N at least an extra order of magnitude for which
we can neglect the interaction of normal particles.

N, in Eq. (1) is the minimal number of particles in the
condensate that is sufficient to create a strong repulsive core
in the center of the trap. When N> N_> N, the normal par-
ticles are pushed away from the center by the repulsive core
[Eq. (1)] into a potential valley surrounding the condensate
droplet. For Rb in a trap with w=24 Hz, the values a;
=582 A and 0y=2.2X 10"° m, and the critical number N,
that changes the topology of the normal cloud is Ny=84.
The center of the trap becomes inaccessible for normal par-
ticles when T is much smaller than the repulsion from the
core. Using T. instead of 7 and N instead of N, one gets
0°Ny/ oy <N*? and the critical value of N, is around 10°. All
this means that our results are applicable for N in the range
10*-10°.

We are able to obtain a semianalytical description of the
situation (cf. Refs. [6,7]). At the later stages of the conden-
sation, potential (1) forms a distinct valley away from the
center of the trap as soon as N> N, and equations for N(7)

and o(7) reduce to
— O'g 4aX0'3

- [ o
V20 Vrod

NC=N—”§:‘1 {exp[ﬁ(m %)x} - 1}_1

20+ 1
-2
99

n,I=0 exp E\\ (l’l + %))\ + (lz+ [)Fll’l ZXJ -1

)

(2)

with B=hw/T and A=12 In(2y). The summation provides
the temperature dependencies N (T) and o(T).

We found that the condensate fraction at the later stages
of condensation can be given as

NJ/N=1-(TIT)* 3)

with a relatively high accuracy. The important feature of Eq.
(3) is that the temperature is normalized not by the critical
temperature 7. for the onset of condensation but by a differ-
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FIG. 1. Density dependence of the reduced critical temperature
T:/hwN"3 [Eq. (3)]. For a noninteracting gas in a 3D harmonic
trap, this ratio should be 0.91.

ent value 7,. Since the squeezing of the normal particles
toward the fringes of the trap accelerates with the number of
particles in the condensate N, the normal shell narrows with
increasing N, and, therefore, N. As a result, the effective
temperature 7, should be higher than 7. and increase with
increasing N. Dependence of 7., or more precisely
T:/hoN'3, on N is presented in Fig. 1. For comparison, the
critical temperature 7. for noninteracting particles in a 3D
harmonic trap is 7,=0.92wN"? [8]. The authors of [7], who
were working with a much smaller number of particles in the
trap, N<10%, did not observe any difference between T, and
T

The striking change in behavior of T.(N) in Fig. 1 occurs
at N for which 7.~ %ﬁ w(N, 03/ Nyo?). At higher densities the
repulsion from the condensate droplet keeps the normal par-
ticles near the bottom of the potential valley around the drop-
let. At lower densities, the normal particles spread out and
can even reach the center of the trap. An anomaly at the same
threshold density is also observed in a(N) (Fig. 2), though
the index « remains very close to the value of 2 and is
practically independent of N, «=2.02* 1%, in a wide range
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FIG. 2. Density dependence of the index a [Eq. (3)]. For a
noninteracting gas in a 3D harmonic trap, this index should be 3.
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of N from 10* to 10°. Such a weak dependence a(N) is
surprising for a nonlinear problem of this nature. The re-
sidual temperature dependence «(T) lies within the same er-
ror bars.

For comparison, the same index in Ref. [7] was much
higher, around 2.3, which reflects the fact that at much lower
occupancy of the trap, as in [7], the dimensionality of the
problem is still far away from a 2D one. Another major dif-
ference with Ref. [7] is that we do not see any residual nor-
mal fraction, especially in the center of the trap—our con-
densate density is too high to allow any normal component
in the center.

Our results confirm the evolution of the effective dimen-
sionality from 3D, for which @=3, to an almost perfect 2D
value and the effective narrowing of the trap during conden-
sation.

Using the above results as a reference point, let us turn to
BEC in a trap with an optical lattice with a period a, inside.
The situation with an optical lattice (Ref. [9] and references
therein) inside the trap is much more complex. Here one
deals with the Hubbard Hamiltonian, modified by the trap
potential, and can encounter two localization effects: the lo-
calization of narrow-band particles by an inhomogeneous po-
tential and the Mott transition [10] which requires full occu-
pancy of the lattice sites. The latter can occur with lowering
of the temperature when particles gravitate toward the bot-
tom (center) of the trap. With sufficiently strong on-site re-
pulsion, the localization is practically inevitable for the con-
densate in the center of the trap though, of course, the Mott
transition is sensitive to the trap profile [10,11]. However, in
contrast to the ground-state particles, it is possible to disre-
gard the Mott transition for the normal cloud, surrounding
the condensate, due to the increased size of the condensate
droplet in comparison to the system without the lattice (see
below).

Condensation can be easily understood qualitatively for
low initial density of particles na8< 1 and strong on-site re-
pulsion when the condensation starts at the same temperature
T. as in the absence of the interaction. The condensate forms
in the center of the trap and rapidly expands in size because
of the strong on-site repulsion which tends to keep the den-
sity nca(3)~ 1. Though the strength of the individual particle-
particle repulsion does not depend on the presence of the
optical lattice, all the particles in this lattice are located in or
around lattice wells and are closer to each other than when
they are spread continuously throughout the trap without the
lattice inside. As a result, the effect of repulsion in the trap
with the lattice is stronger and the size of the condensate
droplet, o-~a0Ni/ 3, should be larger than o, ~ (2—5)0y, for
traps without the optical lattice (Fig. 3). We will not dwell on
potential “freezing” of the condensate resulting from the
Mott transition and will concentrate on the condensation of
the normal gas outside the condensate droplet.

The main changes in our approach are associated with the
band nature of the energy spectrum for particles in the opti-
cal lattice and a more complicated form of the wave func-
tions. For the sake of comparison, in numerical computations
we use a similar set of parameters: the trap potential and the
particle scattering remain the same. For the particle effective
mass we use in most of our computations the value [4,10]
m*=16m.
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FIG. 3. (Color online) Size of the condensate droplet o (T=0)
relative to the size of the trap oy, o/ oy, with (curve 1) and without
(curve 2) the optical lattice as a function of the number of particles
in the trap. The scattering lengths and effective masses are identical
in both cases. Parameters of the lattice and the trap are given in the
text.

The single-particle spectrum in the optical lattice e(p) has
a band structure with a bandwidth A. The effect of the trap-
ping potential Ulr(r)=%ﬁa)(r/ao)2 on the particles with nar-
row bands results in localization of particles with energy E
=e(p)+Uy(r) in 2D shells 7y, <r=r,. of the thickness
(1)~ (A/hw)ab/r with Fpina given by equations E
= £ A/2+4 Uy(Fminmax)- An exception is the center of the trap,
where the gradient of the potential is small. Since such lo-
calization suppresses the accessibility range of narrow-band
particles, the density in each point contains the contributions
from the particles in a finite range of energies that are local-
ized close to this point. For example, since only the particles
with very low energies, E<<A, can reach the center of the
trap, the density in the center is suppressed in comparison
with the trap without the optical lattice inside.

The particle wave function consists of three regions: rapid
oscillations within its classically accessible shell and two
attenuating tails beyond the classical turning points. The
wave function W=V, (E) for a particle with the energy E
decays relatively slowly beyond the turning point r,, as the
Airy function Ai,

(, [E—A/Z—l(l+1)ﬁ2/2m*d2])
¥ =B exp|im
Aa
(- E-Il+Dh*2m*d?
X Ail 7— A Ylm(07¢)7
a

and similarly near r,;,. Here B(E) is the normalization coef-
ficient, m”* is the effective mass near the band minimum, A
= Wry.y/ o2, the dimensionless coordinate 7=r/a has a local
length scale a=(#%/2m*A), Y,,(6, ) are the usual angular
harmonics, and d is the position of the minimum of potential
(1). The spatial distribution of particles should be calculated
taking into account all three regions since for relatively shal-
low traps the contribution from the tails of the wave function
can be large. As a result, the density distribution of particles
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FIG. 4. Index a [Eq. (3)] as a function of the number of the
trapped particles in the presence of the optical lattice. Parameters of
the lattice used in the computation are given in the text.

inside the trap becomes a much more complicated function
of temperature than in the case without the optical lattice.

As above, we start from the situation when the particle
density above condensation is low and the (Hubbard) repul-
sion in the normal phase is negligible. The condition of low
density allows us also to disregard the Mott transition in the
normal phase [12]. Since the particles in the optical lattice
are located mostly on the lattice sites of the size a, rather
than spread more or less uniformly, the repulsion is more
effective than without the lattice. This means that the size of
the condensate droplet, o(T), should be larger than in the
absence of the lattice. This is illustrated in Fig. 3, which
presents the ratio o(7=0)/ gy, for identical traps with (curve
1) and without (curve 2) the optical lattice. The scattering
amplitude a,, which is responsible for repulsion, is the same
in both cases.

This seemingly innocuous lattice-driven change in the
size of the condensate droplet leads to major changes in the
condensation process. Even such a relatively small increase
in o can eliminate a repulsive bump [Eq. (1)] in the center of
the trap. Indeed, this bump disappears when o
> o-(s)(NL./ Ny). At these values of o the potential (almost) re-
stores its original parabolic structure in the central area de-
spite the presence of the condensate. Since the value of N,
and therefore N,, in our calculations never exceeds 10° and
Ny= 100, the potential remains parabolic for o/ g,>10. As a
result, presence of the optical lattice strongly affects the in-
dex a [Eq. (3)], which experiences a much more noticeable
change than the condensate droplet size o (Fig. 4).

This density dependence a(N) is dramatically different
from the one in Fig. 2 for the trap without the optical lattice
inside.

In Fig. 4, « starts from a 3D value at small density of
particles, which is understandable since there is no repulsive
core in the center. With increasing number of particles the
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FIG. 5. Density dependence of the reduced critical temperature
T:/hwN"3 [Eq. (3)] in the presence of the optical lattice. The be-
havior of T, is drastically different from a similar trap without the
optical lattice (Fig. 2).

size of the condensate droplet grows, leaving fewer normal
particles in the central area and gradually reducing « to its
quasi-2D value. What is not clear is why does « continue to
decline with a further increase in N. However, since our ap-
proach loses accuracy beyond N~ 10°, we do not present
these data in the figure. Note, that if one also plots in Fig. 4
the curve a(N) for a system without the optical lattice from
Fig. 2, all its residual dependence on N becomes invisible in
the scale of Fig. 4. This difference in dependences of the
index « on the number of trapped particles between Figs. 4
and 2 is due mostly to the major qualitative changes in the
wave functions imposed by the lattice symmetry. Computa-
tions with a smaller effective mass did not lead to any major
changes in behavior of a(N).

In general, the decrease in «(N) is accompanied by an
increase in 7,(N), which in the presence of the optical lattice
grows much faster than N'? dependence inherent to a free
gas in a trap (Fig. 5; cf. Fig. 1).

In summary, we calculated the index for a temperature
dependence of the condensate fraction for interacting gas in-
side harmonic trap. The results for traps without the optical
lattice inside are quite clear: the repulsion from the conden-
sate droplet pushes normal particles away from the center of
the trap and concentrates them in a relatively thin shell
around this droplet. Then the condensation becomes almost
quasi-2D with the index a=2. The presence of the optical
lattice inside the trap changes the situation in a major way.
The index « acquires a strong dependence on the number of
particles inside the trap and gradually falls from a 3D to a 2D
value with an increase in the number of particles. This
change in the index, which is caused by the presence of the
optical lattice, is explained by the wider spread of the con-
densate droplet and the localization of the narrow-band par-
ticles by the trap potential.
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