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Clusters of sizes ranging from two to five are studied by variational quantum Monte Carlo 
techniques. The clusters consist of Ar, Ne, and hypothetical lighter (“$Ne”) atoms. A general form 
of trial function is developed for which the variational bias is considerably smaller than the 
statistical error of currently available diffusion Monte Carlo estimates. The trial functions are 
designed by a careful analysis of long- and short-range behavior as a function of inter-atomic 
distance; at intermediate distances, on the order of the average nearest neighbor distance, the trial 
functions are constructed to have considerable variational freedom. A systematic study of the 
relative importance of n-body contributions to the quality of the optimized trial wave function is 
made with 2 Gn 65. Algebraic invariants are employed to deal efficiently with the many-body 
interactions. 

I. INTRODUCTION to our variational estimates, have no systematic errors. 

The experimental and theoretical study of clusters of a 
variety of sizes and constituents has been pursued vigorously 
during the last years. Our interest in this field is predomi- 
nantly motivated by the expectation that it will be possible to 
perform a detailed comparison of experiments and theoreti- 
cal predictions obtained by computational physics methods. 

In a series of papers various authors have investigated 
ground and excited state properties of clusters in a wide 
range of sizes. 1-5 For these studies trial wave functions were 
used with explicit two- and three-body contributions. In this 
paper we develop trial wave functions for the ground state of 
small, bosonic, noble gas clusters. We focus primarily on 
atoms for which quantum mechanical effects just start to 
play a role, such as Ar and Ne. Our current goal is to propose 
and test the quality and numerical tractability of variational 
forms for the ground state wave functions involving higher- 
order many-body contributions. The form of these trial func- 
tions is derived from that proposed by Umrigar et aL6 for 
electronic systems, modified to be suitable for systems con- 
sisting of identical bosons. Our goal for future work is to use 
similar trial functions for excited states, where quantum ef- 
fects are expected to be more pronounced. However, before 
dealing with this considerably more complex problem, we 
have chosen to decrease the mass of the atoms as a more 
practical way of enhancing the quantum mechanical nature 
of our systems, and therefore, in addition to Ar and Ne, we 
also studied ‘Cl ,-Ne” clusters, which consist of hypothetical 
atoms with the same inter-atomic potential as Ne, but only 
half its mass. In this way, for the time being at least, we also 
avoid the problem that He clusters are expected to have ei- 
ther extremely weakly bound states or no bound states at all 
for the systems as small as we study. 

We use the proposed trial wave functions to obtain varia- 
tional Monte Carlo estimates of the ground state energy. The 
quality of the optimized trial wave functions is such that we 
obtain variational estimates of the ground state energy that in 
most cases have smaller errors than the diffusion Monte 
Carlo estimates of Ref. 4, even though the latter, in contrast 

The layout of this paper is as follows. The formulation of 
the problem is in Sec. II. Section III contains a discussion of 
the trial functions. The basic variational form of the trial 
wave function is derived within the two-body approximation 
in Sec. III B. Long-distance and short-distance asymptotic 
properties are discussed in Sets. III B 1 and III B 2. The 
intermediate-distance range requires most of the variational 
freedom of the trial function. This is provided by the power 
series expansion discussed in Sec. III B 3. Trial functions of 
high quality require many-body contributions. Section III C 
deals with those, and also with the basis of fundamental 
polynomial invariants employed as an efficient numerical 
tool to implement trial functions with Bose symmetry as re- 
quired for the noble gas clusters we consider. The numerical 
results, presented in Sec. IV, illustrate the effects of trunca- 
tion of the intermediate-range power series and of higher- 
order many-body contributions. Finally, technical details are 
contained in Appendices A and B. Appendix A describes the 
Monte Carlo algorithm, trial function optimization, numeri- 
cal differentiation, and gives optimized parameters of the 
Nes wave function as an explicit numerical example. The 
invariants mentioned above are tabulated in Appendix B. 

II. FORMULATION OF THE PROBLEM 

The purpose of this paper is to develop and study trial 
wave functions for ground states of clusters consisting of a 
small number of identical bosons interacting via a pair po- 
tential. The position of the atom !: is given by ri and the 
distance between atoms i and j is denoted by rij= Irj- ril. 
As the starting point of our discussion we assume the follow- 
ing dimensionless Hamiltonian for a cluster of’N atoms: 

Hz- (0 

where (i, j) runs over all different pairs of atoms; V is the 
dimensionless Lennard-Jones potential 
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1 2 
w=I,, -;-9. (21 

Equations (I) and (2) have been made dimensionless by ex- 
pressing distances and energies in units of the diameter G 
and the well depth e of the Lennard-Jones potential, and if p 
is the atomic mass, m- r= LY= ti’lpc?e is proportional to the 
square of the de Boer parameter.7 

Denote by R=(rl ,..., rN) a 3N-dimensional vector in 
configuration space and let pT(R,p) be the trial wave func- 
tion in the coordinate representation, where p= (p , ,p2,. . .) 
are adjustable parameters. We will omit the arguments of 
qIr,, where it does not lead to confusion. Following Umrigar 
et al.,’ we optimize the parameters p of the trial wave func- 
tion by minimizing the variance of the local energy 

2 

E"- ,&EEQ, -"-G (8) 

Z(R,p) = TT 2- H*T. (3) 

If ‘l!r is the exact ground state of the Hamiltonian, the local 
energy Z equals the corresponding eigenvalue of pr, inde- 
pendent of R. The existence of this zero-variance principle 
for the ideal case of a true ground state motivates minimiza- 
tion of the variance of the local energy. Of course, the vari- 
ance vanishes for any eigenstate of the Hamiltonian, but by 
choosing a strictly positive trial function we can guarantee 
that in fact we are approximating the ground state rather than 
an excited state. 

In principle, the parameters p are determined by minimi- 
zation of the variance 

X2(P) = 
J-‘l’$(H-%C))2~T dR 

Sl%I’ dR ’ (4) 

where 

J’P+H’PTdR 
-h(P)= ~~9q’dR f (5) 

the variational estimate of the ground state energy. In prac- 
tice, minimization of x2, as given in Eq. (4), is performed 
with the usual Monte Carlo scheme.6 (We refer the reader to 
Appendix A for details of the algorithm and its efficient 
implementation. j 

We define a quantitative measure Q of the quality of a 
trial wave function *r as 

Q= - logm& 9 

where the limit Q--+m corresponds to an exact solution of 
the time-independent Schriidinger equation. In terms of the 
quality Q. one can estimate the intrinsic error of the varia- 
tional energy &-,. The difference between an exact ground 
state energy E. and the variational estimate l?e is bounded 
by x: 

.&X=GE&). (7) 

(This inequality and the next one are reviewed in Ref. 8.) If 
one knows the energy Et of the lowest excited state of the 
same symmetry as the trial wave function, a lower bound can 
be obtained that is tighter for sufficiently small x2, viz., 

Use of Eqs. (7) and (8) E, implicitly makes the assumption 
that the trial wave function approximates the ground state, 
rather than an excited state, an assumption that is justified on 
physical grounds. 

The relative error in the energy expressed in terms of : 
this last inequality (8) can be measured by 

2 
Qr = -loglo(E, -;,),E,, ’ 
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I 
(9) 

In estimates of Q in Eq. (6) we replace Ec by the variational 
estimate ED; in the case of Q ’ , we also replace Et - Ea in 
Eq. (9) by the approximate gap obtained from the rather 
crude, harmonic approximation. 

A. Symmetries 

Ill. TRIAL WAVE FUNCTIONS 

A trial wave function for the ground state of a bosonic 
noble gas cluster should be invariant under translation, rota- 
tion, and particle permutation. We satisfy the first two of 
these requirements by choosing as our coordinates the inter- 
atomic distances rij , 16 i < jS N. This set of coordinates 
has 4 N(N- 1) elements rather than the required minimal 
number of max(3N-6,l) and since the former exceeds the 
1atte.r for N25, there will be dependences among the inter- 
particle distances in that case. However, these dependences 
will automatically be satisfied because the rij will only as- 
sume values derived from configurations given by the 3N 
variables R. The third condition, particle exchange symme- 
try, has to be imposed explicitly by considering only those 
functions that are invariant under permutation of the indices 
Of all rij . 

In addition to these symmetry restrictions, we impose 
the condition of positivity on the trial function. In principle, 
n-body correlations with all n G N, should be incorporated in 
the trial wave function, but these many-body effects are ex- 
pected to become progressively less important as n increases. 
Positivity and many-body correlations suggest that the trial 
function be written as 

rjhr r/J -i- . - ’ 

f.. c U’Nj(ri,iZ,...), w 
!rI ,... ,ifl) 

where the u(“) are real-valued, jr-body functions. 

B. no-body approximation 

The symmetries discussed above are not the only restric- 
tions on the form of the wave function given in Eq. (10). 
Further restrictions are derived from the asymptotic behavior 
of the local energy for some particular cases of the rij+O 
and rij’M limits. For the rij*0 limit we consider the spe- 
cial case where the pair distance rij of one arbitrary pair 
vanishes, while all other pair distances remain finite and non- 
zero. Collisions involving more than two particles impose 
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2. Short-distance behavior additional asymptotic conditions on the wave function, but 
these are presumably less important and will be ignored. 
Also in the rij+a limit we restrict ourselves to a special 
case: one particle goes off to infinity, while all others stay 
fixed. 

First we derive the expression for the local energy using 
the two-body approximation to the wave function, i.e., 

lOg*F & U(*)(rij). 
1, 

(11) 

The general expression for the local energy is 

As is well-known, good trial functions for electron sys- 
tems satisfy the “cusp” condition9 which guarantees that for 
two-body collisions the contribution to the local energy due 
to the divergent electron-electron (or electron-nucleus) Cou- 
lomb potential energy is canceled by a divergence of oppo- 
site sign in the kinetic energy. Analogously, as a first step in 
dealing with the divergence in B at short distances for the 
case of the Lennard-Jones potential, we suppose that one pair 
distance, say r12, is small compared to unity and all other 
pair distances. Then the dominant contributions to $ in Eq. 
(13) come from the divergences at r12= 0, and if one keeps 
only terms that contain r12, the singular part of 8’ can be 
approximated as a function of only the one argument 
r=r12: 

S=-f 5 [Vp lO@!T+(Vi log TT)*]fc7) V(r,). 
I=1 c, 

(12) 
For a trial wave function with only two-body correlations 
this equation reduces to 

--a (& 
I 

ZJ’(rij)+~~‘(IijI ] (i,j) [~ -~I~ ‘13) +C 

where u’ and us denote first- and second-order derivatives of 
.(*I; eij denotes the unit vector (rj-ri)lrij . 

The current approximation to the wave function contains 
no explicit three-body correlations, yet the local energy con- 
tains three-body contributions as shown explicitly by rewrit- 
ing Eq. (13) in the following form 

~z82)+@3)s(~j @ij+(Fk, gijk2 
I, 1% 7 

where 

(14 

I 

2 
%ij=-a U”(rij)+$ u’Crij)+u’l(,0)]+( + -i) (15) 

is local energy of a pair, and where, writing u,b”u’(rab)eab, 
one has 

&an = a(uki ’ ht + Uik . Ukm + uitn ’ bk) t (16) 
which is the “connected” local energy of a triplet, i.e., the 
contribution to the local energy not accounted for by pair 
contributions. g3) in Eq. (14) can be rewritten in terms of 
two-particle interactions mediated by all other particles: 

@‘)=(YC 2 Uip.Upj. (17) 
(ij) p( #i,j) 

1. Long-distance behavior 

To derive the asymptotic properties at infinity we con- 
sider configurations in which one atom goes off to infinity 
while the others remain fixed. Equations (11) and (13) show 
that the conditions, first, that the local energy remain finite, 
and, second, that the atoms in the cluster be in a bound state, 
imply that II’(~) approaches a real, negative constant for 
r+m. 

8833 

1 2 
zs=-- au’(r)-2a u’(r)-au’*(r)+p -7, 

(1% 

where 5 plays the role of a “random field” associated with 
the positions of particles 3,...,N: 

5=-$ z2 tUr(ril)e21.eli+la’(r2i)e12.e2il, (19) 

a field that vanishes only for a diatomic cluster. 
We choose 

u’(r)=b-61r6+b-l/r+bo+b~r4+b~r5+O(r6) (20) 

with coefficients to be determined to cancel the short- 
distance divergences in the local energy. For the local energy 
this yields 

or)= 1 - ab?6 r 
12 

-2ab-c$%-2) _ 2ab-a(;o+E)+2 
I 6 

a(2b-6b4+b-1+b?,) 
r2 

2a(bo+b-6b,+b-,bo+b-1~) 
r 

-abo(bo+2~)-2ab4(3+b-l)r3+O(r4). (21) 

The following choice of the bi for a given value of the 
random field .$ eliminates the power law divergences: 

b-l=2, bo=-L -5. 
& 

b4=-3&, b5=3+&& 
(22) 

With the bi as given in Eqs. (22), the r-12, t--l, and rM2 
divergences in the local energy in Eq. (21) are eliminated 
simultaneously for all configurations of the N atoms. How- 
ever, since the expressions for b. and b5 depend on the ran- 
dom field 6, the best one can do with the remaining rv6 and 
r-’ divergences is to have their amplitudes vanish in an 
average sense. For the local energy this particular choice, 
i.e., replacing 5 by its average value, yields 
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2&l 4Lu77 ,qrj=-r6 -- 
r 

-[(1-~~)Z-a~2Jf30a3’2r”+0(r4), (23) 
with v=c- (&>. Many of the papers mentioned in the intro- 
duction contain trial functions with singularities as in Eq. 
(20) and employ these both for the Lennard-Jones and the 

I Aziz potentials. The main difference is that in the derivation 
I given above the coefficients assume fixed values, while the 

nature of the terms is determined to cancel divergences ex- 

i 
plicitly associated with the Lennard-Jones potential. In our 
approach other potentials would require different terms. 

3. Intermediate-distance behavior 

The behavior of the trial function at distances of most 
physical significance, distances of order unity, is conve- 
niently expressed in terms of a polynomial. In order to avoid 
the problem that high-order polynomial terms dominate the 
behavior of the pair correlation function u(‘) at infinity, we 
introduce a new ishifted) distance variable E which ap- 
proaches a constant for r--m: 

;crj = F‘>[ 1 - @rr)y. (24) 
Here IV and r. in principle are variational parameters. In 
practice, the quality of the wave function depends only 
weakly on their values. They are set to values of order unity 
and kept fixed during the optimization of the trial function, 
which allows us to greatly improve the efficiency of the op- 
timization algorithm, as explained in detail in Appendix A. 
The paramete.r M’ is chosen to reflect the length scale on 
which correlations exist in the cluster. It should be noted that 
for values of w% 1 the optimization based on a sample of 
states generated by Monte Carlo (cf. Appendix A) becomes 
unstable, since the trial function develops too much varia- 
tional freedom in regions of configuration space associated 
with cluster conformations of very low probability. The shift 
r,) is included for the purpose of numerical accuracy, so that 
high powers of i assume small values. 

In terms of this new variable F we can combine all re- 
quired behaviors discussed above, by choosing the following 
variational expression for u(” for the trial function: 

ut2)(r)= - --IL- y’+2 In r-l- 2 c,ip. 
5r5& jl2 p=l 

Cl3 

This form, with y and the ci as variational parameters, pro- 
vides the required variational freedom for the trial function at 
intermediate distances, while it also displays the asymptotic 
behavior derived above for small and large distances. Note 
that Eq. (25) corresponds to keeping the parameters bj with 
i30 as free parameters, rather than fixing their values by the 
expressions given in Eq. (22j. 

C. Many-body approximation 

The quality of a trial function obtained by exponentia- 
tion of the sum over pairs of uc2’(rij), as given in Eq. (2S), 
cannot be increased arbitrarily by increasing the. degree P of 
the polynomial in s. At some point, the efect of the presence 

of high-order two-body terms in the polynomial becomes 
smaller than the effect of the absence of three-body contri- 
butions. In principle, one has to allow for n-body interactions 
with n 6 N, and for this purpose we add polynomials in all 
variables F, (i<j>, defined in temls of the original inter- 
atomic distances as in Eq. (24). The general form of these 
rz-body polynomials for r2>2 is 

,ini = i C’ cP,z’h? 
p=o O~;P1Z,P[3~...,PN-I,N~P 

*..,#N- ,,N 

&‘IZ+P13+‘.‘+k’N-l.N=t’ 

x ~PUjP13 
12 13 

. . . p~-lg, (25) 

where the prime on the summation indicates that the expo- 
nents pjj should be chosen consistent with the condition that 
u(~) represent an n-body interaction; that is, the set of indices 
i for which a j exists such that pij # 0 contains precisely iz 
elements. Since we are dealing with Bosons, the wave func- 
tion should be symmetric under paaicle permutation, i.e., 
CP,2,P,3.....PN-I.N=CPlz,Pi3,..-.PE\I_,# 

if fy$zFT:“. . . el,z and 

^P;vPpl, +‘~-‘Ju can be obtained from each other by a par- r,2-t-13 - . * rN- l,N 
ticle permutation. 

Dealing explicitly with the particle permutation symme- 
try for general n-body interactions in the context of polyno- 
mials of the form of Eq. (26j is rather cumbersome from the 
point of view of programming, and also computationally ex- 
pensive. As an alternative, we constructed, for each cluster 
size N, a basis of M fundamental polynomial invariants 
IN1 ,...,INM. lo In terms of the basis formed by the Ihrk one 
can conveniently e.xpress all polynomials in the variables 
?**,P,3,... that are symmetric under all permutations of in- 
dices. Each fundamental invariant I,, can be chosen to be a 
homogeneous, permutationally symmetric polynomial of de- 
gree dk in the variables F,. Expressed in terms of these 
fundamental invariants, the logarithm of the trial function 
reads 

f c ~q~,....q,J~~ . - .‘$f. 411342 ,...,qy 
qLd,+qZd~+...+qM’i,M~P 

(27) 

As a simple example we discuss the case of a three particle 
cluster. For N=3 a possible classic choice for a basis of 
fundamental invariants is 

n n 
131=f-d-r23+i13, 

n? I,,= F&+ F&+ rTj, n ,. 
133=r12~23r13. 

(28) 

Fundamental invariants for the cases of three, four, and five 
particles are given in Appendix B. 

We end this section with a few comments regarding the 
efficiency of empIoying a basis of fundamental invariants. 
The number of terms of a polynomial in u variables of order 
P is given by the binomial coe.fticient (“;“). This implies 
that for a five atom cluster the full many-body polynomial of 
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2- 
l- 

0 I , I 
0.1 2 3 

:, 
6 6 7 ‘8 

FIG. 1. Quality Q, a measure of the accuracy of the optimized trial function 
as defined in Eq. (6), as a function of the power P of two- and three-body 
polynomials, labeled by n, for Ar> 

degree five in the ten variables i, (1 ~i<j~5) has 3003 
terms, if all possible many-body interactions and a constant 
are included. If one evaluates such a polynomial by recur- 
sively applying Homer’s rule to all variables this requires 
3003 multiplications, which we shall take as the measure of 
the computational effort. Of course, this approach would also 
require a scheme of equating polynomial coefficients to im- 
pose the restriction to polynomials of the required symmetry. 

Written as a polynomial in the fundamental invariants 
listed in Appendix B there are only 64 terms. Since the 
evaluation of the invariants given in Appendix B takes about 
700 multiplications, use of invariants speeds up the calcula- 
tion by a factor almost equal to four, a number that might be 
improved since we made no systematic attempt to optimize 
the numerical efficiency of the bases of fundamental invari- 
ants. 

Simple use of Homer’s rule applied recursively to the 
variable f12,i13,..., makes no use at all of the Boson sym- 
metry of the polynomial. As an alternative to employing a 
basis of fundamental invariants, the particle permutation 
symmetry can be exploited by constructing the terms in the 
polynomial diagrammatically. This has the advantage of pro- 
viding naturally a separation of the polynomial in contribu- 
tions separated into n-body terms sorted according to differ- 
ent values of n. For N= P = 5 example discussed above the 

, 6 1 I I 4 I I 
S-n-2-=- 

n=3-5- 
4-l&=4+3- . 

8 3- 

2- 
.,/_p Ij 

* 
I- 

O I I 
0 1 2 s 4 5 6 7 

P 

FIG. 2. Quality Q, a measure of the accuracy of the optimized trial function 
as defined in E@. (6), as a function of the power P of two-, three- and 
four-body polynomials, labeled by R, for Ar.+ 

l- 

0.5 - 

PO 
I 0 I I ,f 

1 2 3 4 5 6 7 
P 

FIG. 3,. Quality Q, a measure of the accuracy of the optimized trial function 
as defined in Eq. (6), as a function of the power P of two-, three-, four- and 
five-body polynomials, labeled by n, for Ar5. 

use of collecting and factorizing terms diagrammatically re- 
duces the effort by about a third compared to the brute force 
approach using Homer’s rule. 

These considerations apply to the case of one single 
evaluation of the trial wave function, but in practice this is 
not always the operation of interest. For example, during the 
optimization phase one only has to compute the change in a 
trial function that results from the change in the variational 
parameters (see Appendix A). For a variational or diffusion 
Monte Carlo calculation what may matter is the change of 
the wave function in response to a change of the coordinates 
of just one atom. In such cases the increase in speed associ- 
ated with the use of invariants may be even greater. 

In its simplest implementation use of invariants mixes up 
all many-body interactions and destroys the separation into 
n-body interactions for different values of n and the hierar- 
chy as implied in Eq. (10). There is a solution to this prob- 
lem, but we have not yet explored it in detail nor is it rel- 
evant within the limited scope of this paper. 

IV. NUMERICAL RESULTS 

Our first numerical results address how much accuracy is 
gained in the quality of the trial wave function as n-body 
terms with progressively larger values of n are included. Fig- 
ures l-3 display results for argon clusters of sizes three, 

1_ I 3.6 , ,. I I I , I 1 I 

Q 

3 

I 

. 

2.5 n=2* 
r&=3+- 

2 n=4+ 

1.5 

0.6 - 

0 t I I ) 
0 1 2 3 4 5 6 7 * 

P 

FIG. 4. Quality Q,.a measure of the accuracy of the optimized trial function 
as defined in Eq. (6), as a function of power P of two-, three- and four-body 
polynomials, labeled by n, for Ne4. 
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2.5 I ! I I I , 

2-n=2+- 

Q 

0.5 - 

0 I I I I t , 
0 1 2 3 4 5 6 7 

P 
I 

I 

i 
FIG. 5. Quality Q, a measure of the accuracy of the optimized trial function 
as detined in Ey. (6.1, as a function of power P of two-, three-, four- and 
tive-body polynomials, labeled by II, for Nes. 

four, and five. Q r our most conservative estimate of the qual- display plots of the quality Q vs the power P for each type 
ity of the wave functions as defined in Eq. (6), is plotted and size of cluster for optimized wave functions including 
versus the power P of the polynomials defined in Eqs. (25) the full many-body polynomials. An interesting feature of 
and (26), for different values of A. The bottom curve, starting these plots is that the Q vs P curves for three- and four-atom 
at P = 1, is for the case in which only two-body interactions (N=3,4) clusters almost coincide but that they are distinct 
are present in = 2). As shown, the quality levels off at a fixed from the curves for N= 2 and N= 5. The N = 2 clusters are 
value of Q with increasing P, an indication that in that re- unique in that the short-distance divergences in the local en- 
gime the absence of three-body terms in the logarithm of the ergy have been fully removed [note that ~“0 in Eq. (23j 
trial wave function is the dominant source of the variance of only for N=2], while also the large-distance asymptotic 
the local energy. In the next curve segment three-body terms properties of the trial function is superior in this case. Apart 
are added (n = 3). Here P is redefined to denote the order of from this, the effect probably is geometric in nature: clusters 
three-body polynomial, which starts at P=2; in the second of sizes NG4 are fully symmetric in the classical configura- 
curve segment the order of the polynomial that describes tion of minimum energy and can be characterized by a single 
two-body effects is kept constant at the highest P-value used inter-atomic distance. For N= 5 the cluster is frustrated: the 
in the previous segment of the curve. This process is re- classical ground state is a trigonal bipyrdmid (the faces of 
peated for n-body terms with increasing n. until finally the which are six congruent, isosceles triangles) and has three 
complete N-body polynomial for the N-atom cluster is in- different inter-atomic distances. To test the above arguments 
cluded in the trial function. At this point, the quality starts to we computed the quality of five particle clusters in four di- 
go up roughly linearly with the order of the polynomial. mensions, where the classical configuration of minimum en- 
Note, however, that the orde.r P of the four-body polynomi- ergy is fully symmetric and there is no longer any frustration. 
als is not sufficiently high in any of the figures for the quality Indeed, we found that the curve for the quality as a function 
to have leveled off, as ultimately it must. Analogous plots for of the polynomial power quantitatively agrees with the 
Ne3 and Nes are shown in Figs. 4 and 5, and for f -Ne,, curves for three and four particle clusters in three dimen- 
$Ne,, and f -Nes are shown in Figs, 6-8. Figures 9-11 sions. 

5 
4.5 

3.5 
Q ;;i :izi/ ; 

0.5 - 
0 1. I I I 

0 1 2 3 b 5 6 'i 8 

FIG. 6. Quality Q, a measure of the accuracy of the optimized trial function FIG. 8. Quality Q, a measure of the accuracy of the optimized tria1 function 
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FIG. 9. Quality Q, a measure of the accuracy of the optimized trial function 
as defined in Eq. (6), as a function of power P of the complete polynomial 
for argon clusters of sizes two through five. 

Note that for very accurate optimized trial functions, the 
computed variance of the local energy no longer decreases as 
more terms are added to the complete polynomial. A clear 
example of this is ArZ, in Fig. 9. We attribute this to noisy 
behavior of the local kinetic energy caused by round-off er- 
rors in the numerical differentiation, which produce an effect 
of the order of magnitude observed. The data plotted in Figs. 
1-8 were obtained from the relatively small samples that 
were also used to perform the parameter optimization. Only 
small differences were detected in those cases where ive 
checked the variances obtained from these small samples 
against those obtained from extensive Monte Carlo runs. The 
data shown in Figs. 9- 11 were obtained from long runs (see 
below for details). 

Our most accurate numerical estimates for the energies 
of various small clusters are summarized in Table I. The 
results were obtained by standard variational Monte Carlo 
methods (see Appendix A) and appear under the heading 
E,, in Table I. The estimated averages were obtained from 
runs of about lo7 Monte Carlo steps per atom. The energy 
auto-correlation time of the sampling algorithm was of the 
order of ten steps in these units. For comparison we in- 
cluded, under the headmg Edmc, the diffusion Monte Carlo 
results of Ref. 4, and the estimates of the harmonic approxi- 
mation, under E,,. Also included in Table I are two esti- 
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FIG. 10. Quality Q, a measure of the accuracy of the optimized trial func- 
tion as defined in J?q. (6). as a function of power P of the complete poly- 
nomial for neon clusters of sizes two through five. 
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mates of the systematic Rayleigh-Ritz variational errors in 
the results, and an estimate of the statistical, Monte Carlo 
errors. For the systematic errors we employ the inequalities 
given in Eqs. (7) and (8), As mentioned above, an estimate of 
the energy gap in the spectrum is required for the error esti- 
mate based on the second inequality, which provides a bound 
proportional to the variance x2 of the local energy rather 
than its standard deviation x. As an order of magnitude es- 
@a& of the gap, we employed the harmonic apprbximation, 
and for completeness the required eigenvalues of the Hessian 
matrix of the potential energy at the classical mini- 
mum are listed in Table II. We also mention in passing 
that the classical class energies are E, =-l,-3,-6, 
-9.103 852 415 707 556 for N=2,...,5; all inter-atomic 
distances are equal to unity except for N=5, where the 
trigonal bipyramid has height 0.813 335 784 076 977 
and as base an equilateral triangle with sides of length 
1.001453 524 076 903. The quantity Q” listed in the last of 
column Table I is a measure of the statistical error relative to 
the energy and is defined as in Eq. (6) with x replaced by the 
standard error of the Monte Carlo sample. The numerical 
values of the dimensionless inverse masses of the atoms we 
considered are listed in Table III. 

We note that, with the exception of the larger clusters, 
the variational bias as measured by Q ’ is smaller than the 
statistical error measured by Q”, so that only for the larger 
clusters more accurate results can be obtained by diffusion 
Monte Carlo for a comparable amount of computational ef- 
fort. 

V. DISCUSSION 

We have presented a study of trial wave functions for 
small clusters. The trial functions were designed to satisfy 
the correct asymptotic behavior at small and large distances 
within the pair-correlation approximation. We demonstrated 
the computational tractability of wave functions that explic- 
itly contain many-body contributions with the maximum 
number of interacting bodies for given cluster sizes and we 
obtained a quantitative measure of the importance of these 
contributions. As a measure of the quality we used Q as 
defined in Eq. (6). The estimate obtained from Q’ in Eq. (9) 
is typically twice as high, but it relies on the gap computed 
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J3G. 11. Quality Q, a measure of the accuracy of the optimized trial func- 
tion as defined in Eq. (6), as a function of power P of the complete poly- 
nomial for &neon clusters of sizes two through five. 
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TABLE I. Variational Monte Carlo estimates of the ground state energies E,, of clusters containing up to five 
atoms compared with diffusion Monte Carlo estimates Edlnu taken from Ref. 4 and the harmonic approximation 
Ehar . Standard errors in the last digit are given in parentheses. Estimates of the relative errors, as discussed in 
the text, are given by the quality estimators Q and (2’ for the systematic variational errors and by Q” for the 
statistical errors. Also listed are estimates of the energy gap AEhW between the ground state and the first excited 
state of the same symmetry. No statistical ertor is quoted for Q’: the dominant error in this case is the unknown 
error in A&. ln the column under the heading P, subsequent digits define the orders of the n-body polyno- 
mials used in wave functions. 

N P E “mc E dmc E liar A.%, Q Q’ Q” 
At 2 8 -08489234312(l) -0,8485(Z) -0.842 0.3166 6.93(X) 13.4 9.93(8) 

3 88 -2.553335364(l) -2.555(I) -2.532 0.3877 6.36(S) Il.9 9.36(S) 
4 555 -5.1182368(2) -5.113(l) -5.08 0.3166 4.37(7) 7.53 7.38(7) 
5 5555 -7.78598(l) -7.791(l) -7.73 0.2629 2.85(3) 4.23 5.84(3) 

Ne 2 8 -0.566783279(l) -0.5667(3) -0.49 1.0105 5.73(5) 11.7 8.75(S) 
3 88 - 1.7195589(33 -1.721(l) - 15 1.2376 3.78(6) 7.40 6.78(6) 
4 555 -3.4641748) -3.461(l) -3.1 1.0105 X61(6) 4.67 5.61(6) 
5 555s - 529948i8) - 5.2990) -4.7 0.8391 1.80(4) 2.79 

$Ne 
4.80!4) 

2 8 -0.427526736(3 1) - - 0.3 1.4290 4.1(l) 8.77 7,lilj 
3 88 - 1.308443(2) - -0.9 1.7502 2.92i6) 5.95 5.94(6) 
4 555 - 2.64356(3) - -1.8 1.4290 2.W) 3.74 S.o2(5j 
5 5555 -4.0669(l) - -2.9 1.1867 1.55(6) 2.55 4.56(6) 

obtained by the harmonic approximation. It is interesting to 
note in this context that in analogous computations for few- 
electron systems the bound x21hE on the difference in en- 
ergy between the variational and the ground state energies is 
often more than an order magnitude greater than the true 
difference.’ t 

To deal with the many-body interactions we used bases 
of fundamental polynomial invariants, but we did not yet 
perform a systematic study of how to generate the computa- 
tionally most efficient set of fundamental invariants. This 
holds in particular for larger systems where it is important to 
truncate the hierarchy of n-body contributions in a way that 
does not compromise the basic simplicity of the approach. 
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TABLE Il. Harmonic approximation: eigenvdues A, of the Hessian matrix 
evaluated at the classical minimum energy conli8uration. The energy levels 
are given by E,t.n2,,.,=Eo “~f+Zi(ni+1/2)~~ with n,=O,l,2,... . 
The numbers in parentheses are multiplicities of the eigenvalues; the aster- 
isks denote the lowest excited level that corresponds to a state with the same 
symmetry as the ground state, which defines the eigenvalue used to compute 
the gap AE,, in Table 1. 

N=? N=3 N=4 N=5 

144 (*) 108 caj 72 (2) 43.8795887067966 i2) 
216 (*) 144 (3) 99.3019911513688 i*) 

28X (*) 138.10427476493 11 (2) 
148.SO71864137867 (2) 
249.5948409655342 (1) 
307.3635684436352 (Ij 

APPENDIX A: TRIAL FUNCTION OPTIMIZATION 

To generate a sequence of configurations we used a stan- 
dard Metropolis algorithm: starting from a given configura- 
tion the next one is constructed as follows. Fist, a new con- 
figuration is proposed by moving an atom i (selected at 
random) from ryld to ry=rF1dS d where d is a random vector 
sampled uniformly from a cube of with linear dimension 
do centered at the origin, chosen to give au acceptance of 
about 50%. .The proposed configuration is accepted as the 
next configuration with probability 

lWW12 
I’4’~R”‘d)}Z ’ I CAlI 

otherwise the old configuration is kept as the next one. 
This algorithm was used to gene.rate the samples re- 

quired for the optimization of the trial function, as discussed 
below, and also to compute the variational Monte Carlo es- 
timates listed in Table I. We note that this particular version 
of the Metropolis algorithm is rather primitive and we expect 
that a version of the algorithm proposed by Umrigar” would 
be considerably more efficient. Since the emphasis of the 
current work is on the optimization of the wave function, the 
efficiency of the Monte Carlo sampling algorithm was of no 
great concern. 

For the optimization of the trial wave function we mini- 
mize the variance of a fixed sample of s configurations (with 
s on the. order of 100 configurations per parame.ter) Rj 
sampled from ITr( R,poj I’, where p0 is an initial estimate of 
the parameters6. The variance is given by 

TABLE III. Inverse dimensionless atomic mass a=m- ’ . 

Ar 0.0046962 
Ne 0.007092 

$-NC3 0.014184 
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TABLE IV. Coefficients C;,, of the polynomial in the invariants I,,, , I,,,, 
and 1s.s for a Ne3 cluster. The trial wave function is of the form of Eq. (27) 
with N=3, a= 0.007 092 000, ro= 1.1, w= 1.120 918, and 
y=O.907 544 1.58. 

Cijk (i,j,k) 

2.244 332 (2,0,0) 
-1.512 491 (3,0,0) 
-0.980 342 (4,0,0) 
-0.981 160 60,O) 
- 1.730 223 60.0) 
-3.759 748 (7,O.O) 
- 1.729 545 @,W 
-2742 988 (O,l,O) 

2191407 (LLO) 
1.950 623 m,o) 
0.412 871 (3,1,0) 
2.180 581 (4,LO) 

14.877 507 (5,LO) 
2.827 592 @SO) 

- 1.361489 W,O) 
1.316 542 W,O) 
3.565 016 @,2,0) 

-23.619 189 CV,O) 
1.027 512 (4,2,0) 

-5.148 204 (0,3,0) 
14.682 555 (1,3,0) 
3.380 246 C&W) 

-9.469 800 (0,4,0) 
32.051 098 Kml) 
19.134 118 W,l) 
12.411076 w4 1) 
49.151573 (3.W) 
11.797 876 (4,0,1) 
41.574 293 (5&l) 
25.096 391 @,l,l) 

-45.475 383 (LW 
-27.791 103 c&1,1) 

11.415 828 (3,Ll) 
58.250 660 W,l) 

- 106.076 304 WS) 
-318.164 801 Kw,2) 

404.995 936 (1.02) 
-246.486 099 (2,0,2) . ( 
-520.003 145 (0,1,2) 

X2(P) = 
Xf[ flp~Ri>-@P)l*Wi 

xfWi @a 

where re-weighting factors are defined as 

643) 

and 

xie;lpv&) Wi 
Ip)= B”w * 

i i 

,. . . 

644) 

The optimization can be regarded as a least-squares param- 
eter fit, for which the Levenberg-Marquardt algorithm can 
be used. If the initial estimate p. of the variational param- 
eters is poor, in the sense that the variance of the weights 
\Vi becomes large, the procedure is restarted, and a new set 

TABLE V. Fundamental invariants for 4 particle clusters. 

14.1 ~12+~13+~14+%3+%4+~34 

I,,2 

14.3 

~14~23+y4+-w34 
2 2 2 x~,+x,,+x,,+x,+x,+x,, 

14.4 X12X1~14+X12%%4+X1~~34+Xl@~34 

r4.5 ~2xl~~+xl~ldc~+xlrrldc,,+x~~x34 

I4.6 x;2+x;3+.x:4+x:+x;‘$+x:4 

14.7 x~4x~+x~3x~+x$x~4 

I,,, 
4 4 4 x,2+x,3+x,4+x~+x4,+x~4 

I4,9 x~,+x~,+x;,+x;,+x~+x:, 

of configurations is sampled using the distribution defined by 
the wave function with the current, improved parameter es- 
timates. 

With the exception of the parameters w and r. used in 
the definition of the inter-atomic distance variables F,, de- 
fined in Eq. (24), all parameters appear linearly in the loga- 
rithm of the wave function. The latter can therefore be writ- 
ten in the form 

logTT(p,R)=A.f(R), (A$ 
where A is a parameter vector and f is a conjugate vector of 
functions. These functions can be chosen to depend only on 
the configuration variables R, but not the variational param- 
eters (except w and ro). For a given sample of configura- 
tions, this way of writing the wave function allows one to 
perform the computationally expensive evaluation of the f 
for each configuration in the sample no more than once for 
each parameter optimization. We note that variation of w and 
r. would preclude this separation of configuration variabIes 
and parameters, but it was found that changes in w in the 
range from one to two could be compensated by changes in 
the parameters appearing in A ranging from 10% to 20% 
without significant increase: in the minimjzed variance of the 
local energy. Similarly, changes of r. roughly from 1 to 1.2 
have insignificant effects. 

Finally, as a simple example included for those readers 
who would want to reproduce some of our results we tabu- 
late in Table IV the optimized parameters for the Ne3 cluster. 
The trial function presented utilizes the complete two- and 
three-body polynomial expanded to -order eight. 

To calculate the kinetic energy .we used EQ. (12). Since 
some of the numbers presented reflect the finite accuracy of 
the numerical derivatives we present some further detail 
here. For ntimerical evaluation of the skcond-o$er deriva- 
tives appearing in the kinetic energy we used three-point 
central difference scheme with finite difference E;! given by 

.52=max(lxI,0.1)10-d’4, W) 
where d = 15 is our machine floating point precisionI and x 
is the point at which the derivative is compute{. For the 
gradient we used a two-point scheme with 

:-. 
E, = 1.9 max(lxl,O.l) 10md”. b47) 

This allows us to get relative numerical accuracy for the 
second-order derivatives of about 10d7. Of course, the factor 
1.9 can be safely omitted, it is included to help the reader to 
reproduce our numerical result as close as possible. Also, we 

J. Chem. Phys., Vol. 101, No. IO, 15 November 1994 Downloaded 09 Aug 2007 to 131.128.120.114. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



8840 A. Mushinski and M. P. Nightingale: Small noble gas clusters 

TABLE VI. Fundamental invariants for 5 particle clusters. The second column gives the number of terms in the 
invariant to its right. 
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note that our scheme uses five points to approximate both 
derivatives. A five-point difference scheme might be used 
and yield more accurate results. We did not investigate this 
approach nor the analytic computation of derivatives. 
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FIG. 12. Graphical representation of fundamental invariants for clusters of 
sizes N=3, N=4, and N==5. 

APPENDIX B: INVARIANTS 

In Tables V and VI we list the fundamental invariants for 
clusters of four and live particles. Figure 12 is a graphical 
representation of the connectivity of the invariants. To con- 
struct a single monomial term of an invariant from a given 
diagram one labels the vertices from 1,2,. . . ,N. Each pair of 
vertices i and j connected by I edges represents a factor 
pt. To get the full invariant, sum over all permutations of 
site labels with the restriction that different permutations 
yielding the same monomial are counted only once. The sys- 
tem for N= 3 is known to be complete. We have not at- 
tempted to prove that the systems given here form complete 
bases for N = 4 and N= 5, but we have checked that the sets 
are complete up to and including polynomials order eight 
and five respectively. Also it is likely that systems can be 
constructed that are computationally superior and even have 
fewer fundamental invariants. 

It should be noted the set for N=4 has syzygies (poly- 
nomials in the invariants that vanish identically). For ex- 
ample, there are homogeneous polynomials of order eight 
that can be expressed in a one-parameter infinity of different 
ways as polynomials in the invariants. In practice this means 
for the trial functions that the coefficients of the polynomials 
in the invariants are not completely independent. Since the 
number of of redundant parameters is small, this causes no 
problem during the parameter optimization and we did not 
explore the syzygies systematically. 
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