van der Waals clusters in the ultraquantum limit: A Monte Carlo study
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Bosonic van der Waals clusters of sizes three, four, and five are studied by diffusion quantum
Monte-Carlo techniques. In particular we study the unbinding transition, the ultraquantum limit
where the ground state ceases to exist as a bound state. We discuss the quality of trial wave
functions used in the calculations, the critical behavior in the vicinity of the unbinding transition,
and simple improvements of the diffusion Monte Carlo algorithm. 1896 American Institute of
Physics[S0021-960896)01834-X]

I. INTRODUCTION unstable, a problem that can be solved straightforwardly, as
discussed in Sec. Il. We found that graphical methods were
In a previous papef,a form of variational trial wave helpful to identify configuration space regions that dominate
function was developed and applied to atomic, few-body Systhe variance of the local energy. Some of the details are
tems consisting of five or less atoms of Ar and Ne interactingyjscyssed also in Sec. 1. However, this part of our presenta-
via a Lennard-Jones potential. In addition, we tested the triglgp, is incomplete in the sense that our techniques rely in part
functions for a hypothetical, light atom resembling Ne butgy color graphics, which are not included in this paper. For
with only half its mass. We did not study atoms sucfide  aqditional details we refer to Ref. 3. Section IIl contains
with larger de Boer parameters, i.e., systems in which th@ymerical results: quantitative evaluation of the improve-
zero point energy plays a more important role relative to thgnents obtained by the modified diffusion Monte Carlo algo-
potential energy. Studying such systems is the main purpos@nhm, estimates of ground state energies, and numerical cor-
of the present article. In fact, we study clusters in the ul-gporation of the critical behavior of the unbinding

traquantum unbinding limit, in which the zero-point energy transition, as predicted belofef. Egs.(16)].
destroys the bound ground state. Simple arguments applied

to this unbinding transition predict the way in which the

energy vanishes as the de Boer parameter approaches its

critical value, and the nature of the divergence of the geo“- METHODS

metric size qf the cIuster;. _Our numerical results are in v .onsider a cluster oN bosonic Lennard-Jones

agreement with these predlctlor!s. . atoms. The Lennard-Jones pair potential
As the .de Boer parameter increases, the quality of th% f)=4e[(r/o) 2= (r/o) "¢ in reduced units takes the

wave functions decreases and, whereas in Ref. 1 there w.

. bevond variational Monte Cafl v inorm v(r)=r"*?—2r"5 and the only independent param-
no need 10 go beyond variational vionte L.arlo, We Tely Mgt i the Schidinger equation is the reduced inverse mass

this article on diffusion Monte Carlo to improve the varia- -1 a quantity proportional to the square of the de Boer

fuor;)al e(sjnmates. hSmtc? the diffusion Mofn:ﬁ Carlo glgorltthm arameter,h/oc\me, which measures the importance of
is based on a short-time expansion of the imaginary-time, . " L5 L e

fr:/ qu|t|0n_§)hper§1tor e)(i H ? yvhtehre.f_é '.‘Z_thg I—:amlltor:!an, A cluster configuration is given by the Cartesian coordi-
ir? atghorl Tn |ste§aﬁ orr1 ydmn et flim'l —r)1d.thn pr?ﬁ lcte’r nates of the atoms, which form aN3dimensional vector
since the computations are done at finite € compute R=(rq,...fy), Wherer; is a three-dimensional vector speci-

time required to obtain a given statistical accuracy increases . : . :
e : e . ing the coordinates of atoin The total potential energy of
as7 ., it pays to design the diffusion Monte Carlo algorithm ﬁ/ 9 P 9y

o h I i ‘ For thi the cluster is denoted by (R).
0 "ﬁ.e; sma |m$-;shep_ error. (;)rd_ff's _purpl\(;se,t Wg uTe a we briefly review the diffusion Monte Carlo algorithm,
simpinied version of the improved difusion vionte “.arlo implemented, as usual, with importance sampling for which

algorltpm ;ntrodufczd fb{ tUmrklj?a_et t?llthwe _uts_e ﬂ:e tza(lj_f an optimized trial function/(R) is introduced. The varia-
wave functions of Ret. 1 10 obtain both vanational and dit- ;| energy of this state is written & . For a given trial

fusion Monte Carlo estimates for the ground state energy an\%ave function y~(R), one introduces a distribution

other expectation values. f(R)=¢5s(R)HR1). Since (R t) satisfies the Schdinger

.Thedlifyogt Ofl\;hlst ar'gclel IS az f?rlllows. cljrjf.Set_c. Il we equation in imaginary timef(R,t) can be showh® to be a
review diffusion Monte Carlo and the modifications we (o vion of the equation

made to the algorithm given in Ref. 2 to make it applicable
to Lennard-Jones bosons. Trial functions are optimized by 1 5 1

minimizing the variance of the local energy. In the immedi- ~ 5~ V-f(R.O)+— V- [V(R)If(R,O] = S(R)T(R,1)
ate vicinity of the unbinding transition this method becomes

If(R,1) W
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where the velocityv, usually called the quantum force, is tion. In the current bosonic case, the ground state has no

given by nodes and the only singularities are due to interatomic colli-
sions. For example, the exact Green function of the second
V(R)=(v1,. . 00)= Vir(R) _ (91,00 ¢r(R) ’ term, i.e., the drift term in Eq1) is JR”"—R(7)], whereR(t)
Yr(R) Yr(R)

is the position at timé obtained by exact integration of the
2) velocity V subject to the initial condition thaR(t)=R at
and the coefficient of the source term is defined as t=0. This exact expression reduces to the approximation
S(R)=E.— #(R 3 dR"—R—-V(R)7] if V is assumed constant during the time
(R)=Er—24(R), 3 in Eq. (5), but this assumption fails when two atoms collide,
which in turn is defined in terms of the local energy as can be seen as follows.
BTG V24(R) One of the boundary conditions one would like to im

ZRy=——=— — L L 9(R). (4) pose on the trial wave function is that the local energy re-

Y1(R) 2m  Jr(R) main finite when the distance between two atoms vanishes,

Note that the energy was shifted so tSatefined in Eq(3) but l_Jnfortunater, we have not _been able to meet this goal. In
vanishes if the trial state is an exact eigenstate. particular, suppose that the distanceoetween two atoms

The simplest implementation of the diffusion Monte vanishes vyhile all ot_her distances re.main finite and nonzero.
Carlo algorithm is based on a short-time approximation of8Y choosmg a trial wave function that behaves as
G(R',R,n=(Rlexp(—z7)|R’). This takes the form of a exp(—+/m/5r®), one can satilsfy the condition that for-0 .
product of the Green functions of each of the three operator§1€ local energy does not diverge as strongly as the potential
on the left-hand side of Edl): energy’ i.e., asr *2 but only asr®. In this case, Eq(2)

s implies that the velocity diverges as®/m. This divergence
a(R',R,Tm)%(ZWT)_sN/ZJ dR"e" (R 2TR ) S[R"—R implies that for sufficiently smalt thg appro_ximatic_)rR(T)
~R+V(R)7 becomes a poor one, since it is obtained from
the assumption that the velocity is constant during the time
To improve the approximation following Ref. 2, we integrate

The Monte Carlo incarnation of the above expression conthe speed as given by the differential equatiear ~%/m for
sists of a deterministic drift of an initial configuratiéhto a  the two-particle problem and express the resulting average
new configurationR” followed by a random diffusion to a speed in terms of the initial speed. Applied to the drift of
final configurationR’. Finally, there is a reweighting based atomi this yields

on the initial and final configurations. According to H§),

_V(R) T]e*(1/2)[K(R')+kf(R)]7m. (5)

both drift and diffusion modify the coordinates of each atom 7 1\ 112

in the configuration simultaneously. Alternatively, one can -1+ \/1+7 E) v°r

break up the operators on the left-hand side of @g.into vy = {1112 V. (6)
single particle operators. Correspondingly, one can write a S L

short-time Green function as a product of factors associated m '

with drift and diffusion of individual atoms, e.g., in the order . . o _
defined by the numbering of the atoris1,...N. In our f Vi7. the one-particle drift for atom, is replaced byw,;7,
computations we used this alternative approximation, whildh€ original expression is reproduced for small velocities,
we kept the same exponential growth-decay factor as in Ed/_vhlle for large velocities the magnitude of the drift is re-

1/7
(5), rather than including a reweighting factor for eachduced to(7rym)*". . o
single-atom update. The problem of the short-range singularity is most pro-

The imaginary-time evolution operator does not nounced for light part.icle.s. For heavy particles, on the other
uniquely define a short-time expansion. The correspondin§@nd; the wave function is strongly peaked close to the clas-
freedom can be exploited to extend the range aver which ~ Sical equilibrium positiorR,, and in this case the approxi-
the approximate short-time Green function agrees with thénation of constant velocity can be improved too. Suppose
exact expression to some given accur%lcty.other words, We assume a Gaussian approximation for the wave function
the time-step error of the diffusion Monte Carlo algorithm ,
can be reduced by adapting the algorithm so that it can deal #7(R)xe AR~Ro", (7)
more accurately with singular regions of configuration space.

In this way, one can make simple algorithmic changes essefvhereR, represents the classical configuration of minimum
tially without computational cost to improve the efficiency of €nergy. In this approximation, the velocity is always directed
the algorithm dramatically. Indeed, this was the guiding prin-fowardsR, and vanishes at that point. To compute approxi-
ciple in the design of the diffusion Monte Carlo algorithm mately the drift of atom for a trial function of this form, one
described in Ref. 2. can expres# in terms of the local kinetic energy of particle

When one is dealing with atoms or molecules in whichi and its velocity, given by Eq(2), as
the “elementary” particles are the electrons and nuclei, there )
are numerous sources of singular behavior: electron-electron , 1| , 7, lﬁT(R)}

6% R ®

and electron-nucleus collisions and nodes in the trial func- 6
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an expression containing only quantities that have to be conappropriate ratio of the current probability density and the
puted anyway. As in the case of the diverging velocity, oneone from which the sample was drawn originally. This can
can integrate the velocity exactly and express the result ilhe done efficiently as long as the two wave functions have

terms of an average velocity sufficient overlap. Once this condition is no longer satisfied,
1_ @ 2Ar one generates a new sample from the current distribution and
Vo= Vi . (9)  iterates until the process converges.
2AT The energy of clusters goes to zero when the de Boer

The diffusion Monte Carlo algorithm cannot be expectedParameter approaches a critical value, and at the same time
to be efficient unless values ofare chosen so that the order these clusters grow in geometric size. Under these circum-
of magnitude of a typical drift or diffusion step is compa- stances, Monte Carlo samples of fixed size tend to consist of
rable to the width of the region in which the wave function is configurations predominantly sampled from the tail of the
appreciable. In the classical, largelimit, Ar~m7~1. This Wave function. During the optimization of the wave function,
implies that in practice expressid8) for the mean drift ve- ~the local energy tends to become the same, physically incor-
locity will not differ dramatically form the one given by the rect constant for these configurations, gnd as a consequence
original expressior2). In fact, we found that the impact of the varance of the local energy as (_afst_lmated from a_sample
this modification of the algorithm on the reduction of the Of @ fixed size can be reduced artificially by choosing an
time-step error and increase of efficiency was insignificant. €nergy even closer to zero. Of course, the true variance of

We made no attempt to construct a sophisticated schenife trial wave function increases in this process, but for a
to interpolate between the two approximations as given irfample of fixed size this goes undetected. We found that the
Egs.(6) and(9). Instead, we simply used the average veloc-solution to this instability is quite simple: rather than mini-

ity v; in all our computations mizing x* one minimizesy/E.
- In the design of trial wave functions described in detail
Vi=min(vy; Vi), (100 in Ref. 1, we followed the same procedure as in Refs. 6 and
where value of the function min is the vector with the small- /- the trial functions satisfy boundary conditions associated
est magnitude. with (a) the collision of two atoms antb) having one atom

Finally, in order to guarantee that the diffusion Monte 90 Off to infinity. The most likely configurations, which in-
Carlo algorithm produces the exact Green function in thé{olve intermediate dlstr_;mces and require most of th.e varia-
ideal case that the trial function is the exact ground state wional freedom of the trial wave functions, are described by
include an accept-reject st&nce all atoms have drifted Many-body polynomials.

and diffused, a new configuratioR’ has been generated. N the process of improving the quality of wave func-

This configuration is accepted with probability tions, it is essential to know what region of configuration
_ space contributes most to the variance of the local energy.

| yr(RDHIPG(R,R',7) For instance, it is useful to know if the quality of the wave

p=min (1) function is limited by poorly satisfied boundary conditions or

2~ ’ ! '
[9r(RIFG(R.R,7) whether the quality can be improved by adding more varia-

If the new configuratioR’ is rejected, the previous configu- tional parameters. Another possibility is that the wave func-
rationR is kept. We note that the accept-reject step requiresion has too much variational freedom relative to the sample
for its implementation the introduction of an effective time over which it is optimized. This might lead to unphysical
step 7. in some parts of the algorithm. For more details seepeaks in the wave function, which might only show up in the
the electronic structure algorithm in Ref. 2, which has to bevariance of the local energy obtained from production runs,
simplified in obvious ways to be applicable to the current,which sample a much larger number of configurations than
atomic system. the number present in the sample used for the optimization
For a given amount of computer time, the statistical ac-of the trial function.
curacy of the diffusion Monte Carlo computations can be  To help answer such questions, we made density plots of
increased by using optimized trial functions. We used thehe local error, the deviation of the local energy from its
trial wave functions described in Ref. 1. They were opti-average. As an illustration, we discuss the case of five-atom
mized by minimization ofy?, the variance of the local en- clusters. In fact, we used superimposed color density plots of
ergy, but we found that this optimization procedure was noboth the wave function and the local error, which contain
stable close to the unbinding transition. This instability canmore information than can be reproduced by the grey-scale
be understood as follows. plots reproduced in this paper. We refer the reader to Ref. 3
The variance of the local energy cannot be evaluatedor the color graphics.

exactly, or even numerically exactly, for an arbitrary trial Obviously, the fact that the ground state wave function
state, since this would require &3dimensional integration. depends on R—6 independent coordinate variables, seri-
Instead, one uses a Monte Carlo approach in which a fewusly limits any graphical approach. For the five-atom clus-
thousand states are sampled from the square of the trial waters we found the following planar cut through configuration
function defined by an initial guess for the parameters to bapace informative: four atoms were fixed at the vertices of a
optimized®” Then, one changes the parameters and estregular tetrahedron, while the fifth particle was located in a
mates the variance by reweighting configurations with theplane that contains two of these vertices and bisects the edge
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FIG. 2. Comparisson of the time-step errors of simple and improved algo-
rithms: estimate of the ground state eneEgyas a function of time step for
1/2-Ng;.

Ill. RESULTS

A. Groundstate energy and time-step error

FIG. 1. Density plot of the “local error” in the geometry described in the We present results for the time-step error, discussed in
text. The two dots in the lower right-hand corner are the two in-plane ver-Sec. Il and compare the version of the diffusion Monte Carlo
tices of the tetrahedron; the one in the upper left corner is the projection O%Igorithm summarized above with a simple version of the
the two out-of-plane vertices. The length of the tetrahedron edges is 1.3 an . . . Lo

m~1=0.16. The darker the region, the more it contributesoNote that algorithm in which(a) the velocity is treated as a constant for
the dark region in the lower right is a cut through the banana-shaped darfhe integration of the short-time drift Green functiofi)

region in the upper left. The regions of the largest local error are the twaegch move is unconditionally accepted rather than the result

symmetrically located regions where the wandering atom is close to thre _rai _
others. White lines are cuts through nodal surfaces of the local error an(éf an accept-reject step_, SO th@ﬁ _T' . .
have no physical significance. We compared the simple and improved diffusion Monte

Carlo algorithms for clusters of Ar, Ne, and hypothetical
“1/2-Ne” atoms with sizes in the rang&l=3, 4, and 5.
Figure 2 is a plot of the estimate of the ground state energy
E, versus the timestepfor “1/2-Ne” clusters. As expected,
connecting the two remaining atoms. In Fig. 1, the two dotshe time-step errors are largest for the lightest atoms. The
in the lower right corner represent the two in-plane pointssame applies to the reduction of the error achieved by the
while the one in the upper left represents both of the twamproved algorithm. For Ar we found no significant
points at either end of the edge perpendicular to the projedmprovement—only an approximate reversal of the sign of
tion plane. the time-step error occurred. Figure 2 shows results for a
Figure 1 strongly suggest which regions of configurationfive-atom cluster; the behavior for the smaller systems is
space contribute most tg for caseN=5. For the interpre- analogous.
tation of the density plots the following convention should be  Table | displays estimates of the ground state energy
used: zero intensitgwhite) corresponds to a minimum, while obtained by variational Monte Cafl@and the improved dif-
full intensity (black) corresponds to a maximum of the plot- fusion Monte Carlo algorithm. Here, and for all other results
ted function. Figure 1 represents the density plot of thereported in this article, the time-step error was removed by
weighted “local error,” defined af#—E+)y| [cf. Eq.(4)],  extrapolating tor=0 by fitting the data to a second-order
as a function of the position of the fifth, wandering atom.Polynomial inz. In addition to the ground state energy, the
Note that the quantity?® to be minimized in the optimization table contains information pertaining to the magnitude of the
of the trial functions is the configurational integral of the Pias of the variational estimate due to the fact thatis an
square of this quantity, apart from a normalization constant/PPer bound of the true ground state energy. The tightness of
The conclusion we draw from the density plots is thatthis bound is determined by the quality of the trial wave
the trial function fails particularly in regions where more function. More in detail, the variance of the local energy is

than two atoms collide and we see that of these the locdi€fined by
error is largest whenever four atoms are close. Unfortunately,

so far we have not been able to find trial functions without 2:<¢T|('—%_ Eo)?| i) 12
this problem, i.e., trial functions without the 2 divergence X (1| 7 ’

of the local energy which occurs when more than two atoms
collide, and without the ~° divergence of two particles in and the following inequality holdgsee Ref. 1 for details and
the even distant presence of a third. references
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TABLE I. Diffusion Monte Carlo estimates of the ground state ener&gg$or noble gases Ar and Ne, and
hypothetical “1/2-Ne,” compared with variational Monte Carlo estimates taken from Ref. 1. Standard errors in
the last digits are given in parentheséSee Ref. 1 for the numerical values for the reduced massasd

further details.

N Er Eo Q' R
Ar 3 —2.5533353641) —2.5533353752) 11.9
Ne —1.719558¢B) —1.7195586(5) 7.40
1/2-Ne —1.30844%2) —1.308444(1) 5.95 15
Ar 4 -5.118236®) —5.1182376(4) 7.53
Ne —3.4641748) —3.464229(13) 4.67 1.4
1/2-Ne —2.643563) —2.64383(4) 3.74 1.8
Ar 5 —7.785981) —7.7862(5) 4.23 21
Ne —5.299488) —5.3037(3) 2.79 2.0
1/2-Ne —4.06691) —4.0755(5) 2.55 2.0
i values of the de Boer parameter. In particular, we discuss
O<Er— E°<—E1—EO' (13 results in the vicinity of the unbinding transition, where the

cluster ceases to possess a bound state.

whereE; is the energy of the first, totally symmetric excited The ground state of théHe dimer is believed to be a
S.tate. To .eStimate the number of correct dlglts in the Va.ria(weakb/) bound state. Since the ground state energy presum-
tional estimate of the ground state we use the followingaply decreases with cluster size and other systems have

quantity: smaller de Boer parameters, we can safely assume that the
X2 unbinding transition for boson clusters is inaccessible experi-
Q'=—logyg == (14 mentally. However, the transition does occur at finite cluster
(E1—Ep)|Eq]

size for®He, and it makes sense to use the boson case as a

It is also of interest to know how tight a bound the right-handsimpler test case for the trial functions.
side of inequality(13) provides. This is measured by the A second issue of theoretical interest is the behavior of

following ratio:

X2

R=

(E1—Ep)(Er—Eg)°

The results are shown in Table I. Quite remarkably, the The following critical behavior is expected for the
bound given in Eq(13) is very tight.[Numerical values for ground state energl, and the average geometric size

energy and geometric size of a cluster as a function of the de
Boer parameter in the vicinity of the unbinding transition.

(150  This transition plays the role of a critical point and, in fact,
has many features in common with a wetting transition.

E; used in Egs(13)—(15) are taken from the Ref. IL. (as defined beloyof the cluster
B. Unbinding transition Eo~(Am)?,
A severe test for the accuracy of a cluster trial function (H~(Am)~1 (16
is its performance in the strong quantum limit, i.e., for large ’
00 T T3 8 T T [
e |
-0.2 3 — 7L . _
H .
_JET 2Ne " m. Or . ’
P o6 1 lel N=3— - © 5L . i
Ar N=4----
-0.8 —l N=5§— 4 L i
-1.0 ' . L ' 3 L1 1 {
0 0.1 02, 03 0.4 ool 5 4 . 3 2
vm N

FIG. 3. Curves fitted to diffusion Monte Carlo estimates of the ground stateFIG. 4. Critical massn, vs cluster sizeN plotted on a IN scale forN=2,
energy for clusters of sizd§=3, 4, and 5. 3,4, and 5.
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o FIG. 7. Double-logarithmic plot of the approximate values of the average
FIG. 5. Double-logarithmic plot oE, for N=3, 4, and 5 versusm—m; . geometric size of a clustér) defined as the gyration radius versus-m
for N=3, 4, and 5.

for m| m;, whereAm=m-—m; with m, the critical value of

the dimensionless mass obtained from the fits shown in Figvhere Eq is the classical ground state energy. In other

3. Figure 4 is a plot on a W scale of the estimates of tme, ~ Words, on the basis of Eq&l6) and(17) the cluster energy is

as a function of the number of particlssfor N=2, 3, 4, and  expected to be linear in the de Boer parameter in both the

5. The behavior as a function ofN/is surprisingly linear, classical and extreme quantum limits. Indeed, Fig. 3 displays

but we obviously do not have enough data points for a cregthis remarkably dull behavior for the square root of the nor-

ible extrapolation to the infinite system. malized energy as a function of the de Boer parameter over
The critical behavior given in Eq(16) can be made the whole range. To display the critical behavior of the en-

plausible as follows. For the simple case of a dimer one caffgy in more detail, Fig. 5 shows a double logarithmic plot of

show this directly, and the mathematical mechanism thaE Vs m—m..

yields Egs.(16) is the following. Two scattering states wave ~ Numerical values for average distance and the gyration

functions forming a complex conjugate pair merge at zerdadius were obtained using the approximation

momentum to produce two states with “complex momen- (ND~2(t) g 0=y (18)

tum”: a physically acceptable bound state and a state with

unacceptable behavior at infinity. This mechanism is probwhere the first term on the right denotes the mixed expecta-

ably not limited to the dimer, and, therefore, it is quite plau-tion value obtained by diffusion Monte Carlo, while the sec-

sible that Eqs(16) apply in general to clusters of any finite ond term is the variational expectation value of the cluster

size. radius in the trial state.
On the other hand, in th@—o limit (vanishing de Boer Figures 6 and 7 are plots of the approximate values of
parameter, the harmonic approximation predicts the average geometric size of clusters, as measured by the
average interparticle distance and the gyration radius vs
(Eo— E¢)|mosxm 2 17 m-—m,. The behavior displayed in the graphs is consistent

with the scaling law given in Eq16). It should be noted that
there are apparent irregularities in the data points. These can
be traced to irregularities in the quality of the wave func-
tions, which are a result of incomplete optimization. As far

10 = - T T ) as the energy is concerned, the quality of the trial wave func-
I N =3 e tions only affects the statistical accuracy of the estimates, but
5 N L N =4 ro— | as can be seen from E(i.8), imperfections of the optimized
L % N =5 trial wave functions result in true errors of expectation values
(r) = Pxe) Slope -1 ---- | of quantities that do not commute with the Hamiltonian, such
i @;% i as the geometric size of the clusters.
*,
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