Accuracy of electronic wave functions in quantum Monte Carlo: The effect
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Compact and accurate wave functions can be constructed by quantum Monte Carlo methods.
Typically, these wave functions consist of a sum of a small number of Slater determinants
multiplied by a Jastrow factor. In this paper we study the importance of including high-order,
nucleus-three-electron correlations in the Jastrow factor. An efficient algorithm based on the theory
of invariants is used to compute the high-body correlations. We observe significant improvements
in the variational Monte Carlo energy and in the fluctuations of the local energies but not in the
fixed-node diffusion Monte Carlo energies. Improvements for the ground states of physical,
fermionic atoms are found to be smaller than those for the ground states of fictitious, bosonic atoms,
indicating that errors in the nodal surfaces of the fermionic wave functions are a limiting factor.
© 1997 American Institute of Physid$0021-960607)00932-X

I. INTRODUCTION tum Monte Carlo, it is essential to employ accurate trial
Optimized trial wave functions that closely approximate Vave functions, in particular in the case of operators that do

eigenstates of Hamiltonians are essential ingredients of acclot commute with the Hamiltonian.
rate electronic structure calculations employing quantum The wave functions used in electronic structure calcula-
Monte Carlo methods. The quality of these trial wave func-tions employing quantum Monte Carlo usually consist of a
tions is relevant both for expectation values of physical in-pProduct of a Jastrow factor and one or a sum of Slater deter-
terest and for the variance of the Monte Carlo estimatorsminants. The simplest, and possibly most commonly used
which is a measure of the efficiency of the computation. wave function of this sort consists of a single determinant
When one uses a variational Monte Carlo method, as thenultiplied by a simple Jastrow factor that is a product over
trial wave function approaches an exact eigenstate of thelectron pair contributions. As regards the physics contained
Hamiltonian, the energy and expectation values of quantitiefh the determinantal and Jastrow factors, it is generally be-
commuting with the Hamiltonian satisfy a zero-variancelieved that multiple determinants most efficiently incorporate
principle, i.e., the expectation values approach the exaGiear-degeneracy or non-dynamic correlation, while a Jastrow
eigenstate values, while the Monte Carlo variance goes tfyctor efficiently supplies the major portion of the dynamic
zero. More sophisticated forms of quantum Monte Carlo,correlation. It has been showrhat a Jastrow factor that
such as diffusion Monte Carlo, attempt to project out theggprejates two electrons and a nucleus gives much better
ground state from the trial state, in which case exact eXpeGs, iational energies and has much smaller fluctuations of the

tation values are obtained for observables that commute W|t|?)Cal energy than a Jastrow factor correlating only pairs of

the Hamiltonian, even if the trial state is not an exact eigen- . : .
. . ; electrons. Given this success, one may well ask whether it is

state. In this case, the quality of the trial states affects only . :
advantageous to include the next most important correla-

the statistical errors. However, most practical algorithms, > four-bod lati ¢ th lect q
suppress admixtures of excited states completely only fopONS. Viz. four-body correlations of three electrons and a

nodeless wave functions, such as bosonic ground states. ycleus. )
trial functions with nodes, usually the fixed-node There are different measures of success that one can use

approximation is made, in which case errors in the nodal {0 @nswer this question. The criteria we shall use in this
surface systematically bias the expectation values. The usuB®Per are the reduction in the variational energy and in the
variational and mixed-estimatdrsf observables that do not fluctuations in the local energy. It is reasonable to equate a
commute with the Hamiltonian always yield results for reduction in these two quantities to improvement of the qual-
which the magnitude of the bias of the expectation valuedty of the wave function and to a reduction of the systematic
and also the statistical errors depend on the quality of therror in expectation values of operators that do not commute
trial wave function but no zero-variance principle is satisfiedwith the Hamiltonian. We note that, as far as diffusion

in this case. In sum, for the commonly used forms of quanMonte Carlo is concerned, a reduction of the fluctuations in
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the local energy also has the important advantage that th#ons in the local energy. More specifically, it is not possible
time-step error is usually reduced afso. to satisfy both the cusp conditich$or parallel and anti-

An alternative measure of the success of modification oparallel spins unlesB, # B-.;. Unfortunately, however, de-
the trial wave function is the improvement in the fixed-nodependence ofB, on t causesspin contaminatiof i.e., the
estimate of the energy. The wave functions used in this papeesulting wave function is no longer an eigenfunction of the
were obtained by simultaneous optimization of parametersquare of the total spin.
appearing in the determinantal and Jastrow factors. For fixed Our compromise is to allow for the minimal amount of
parameters, the former determines the location of the nodalpin dependence of the Jastrow factor required to satisfy the
surface and the value of the fixed-node energy. The optimieusp conditions, a parsimonious approach with the added
zation feeds back changes in the Jastrow factor to the locdenefit of reducing the number of variational parameters. In
tion of the nodal surface. We observe in the work reported irfact, tests on wave functions with additional freedom showed
this paper that this has only a small effect on the fixed-nod®nly a small improvement for wave functions with three-
energy. Apparently, the nodal surface changes little even fopody Jastrow functions and no improvement for wave func-
modifications of the Jastrow factor that greatly improve thetions with four-body Jastrow functions. To obtain the results
wave function. reported here, the electron—electron part of the two-body Ja-

The purpose of this paper is to study the effect of incor-strow factorJ, was chosen to contain spin-dependent coef-
poration of many-body correlations in the Jastrow factor. Inficients, but the higher-order factals,n>2, were chosen to
Sec. Il we present the form of the trial wave functions andbe spin-independent. We use
discuss the cusp conditions imposed on the wave functions,
which reduce greatly the number of free parameters to be g (ri)= bRjj &)
optimized. To facilitate the computations, we use bases of = " 1+b/ R’
invariants, similar to those introduced by Mushinski and
Nightingal€ in their study of bosonic van der Waals clusters.
The basis invariants employed are given in Appendix B,
where we also present an algorithm for using the invariants  R;;=R(r;;)=(1—e ")/« (4)

to calculate the wave function and its first two spatial deriva- . . . .
tives. In Sec. lll we present the results for the Li, Be and Ne?'€ inter-particle distances scaled by the funcBioras given

atoms, and also for fictitious bosonic Li, Be and Ne atoms 2" the right hand side of Eq4). The functionA in Eg. (2),

These latter model systems are introduced to allow us teé"h'Ch has(;hte;]sa(;n? fun'ctlor:all forrP stt?1m no Sp'? de?en-
disentangle flaws of the wave function associated with ence, an € determinantal part ot the wave function are

many-body correlations and the nodal surface. adjusted to satisfy thg electron-nucle(esn)_cgsp condition.
Both the expectation value of the variational energy and

the fluctuations of the local energy can be reduced signifi-
cantly by going beyond this simplest form, Eg), and it has

where by=1/2 (anti-parallel spinsand b..;=1/4 (parallel
sping; further, the

Il. FUNCTIONAL FORM OF THE WAVE FUNCTION

The wave functions we use have the form been showhthat a large improvement can be obtained by
generalizing the two-body electron-nucleus Jastrow factor to
v=> dD/D/] J,. (1) @ three-body electron—electron-nucléeén) Jastrow factor
| n
D/ andD| are the Slater determinants of single particle or-  J3= [T expC(rij.raira), )

bitals for the up and down electrons respectively, anis a =)
Jastrow factor correlatingn-tuples of electrons and a where again the Greek index labels the nuclei and the roman
nucleus. The simplest, and possibly most commonly useihdices label the electrons. In the present paper, the function
wave function of this type contains just a single product ofC consists of a fifth-order polynomial in the scaled inter-

up- and down-spin determinants and a Jastrow factor thatarticle distances and terms motivated by the Fock

correlates only pairs of electrons, i.e., expansiorf. These latter terms improve the boundary condi-
tions satisfied by the trial wave function in reducing the de-

J,=]] expA(r )11 expBs -+ (i) (2)  pendence of the local energy on the shape of the infinitesimal
ai i<] 2 triangle formed by two electrons and a nucleus, in the limit

Here, the indexx labels the nuclei whilé andj label the that two electrons coincide with a nuclelghe detailed
electrons;s,, = + 1 denotes thez-component of the spin of form of these terms is presented in Ref. 10.

electronk, so that the index of B, assumes three values,  1he next step Is to introduce a four-body, three-electron-
t=0,1, which in principle allows the correlations between Nucleus(e’-n) Jastrow factor

electron pairs to depend on the orientation of the electron

spins relative to each other and to the fixedomponent of 3,=I1 TI expD(rij.rjx.riFaiFaj Fan)- (6)

the total electron spin. We note in this context that for given o Isisk

total S we always choosg, to be maximal. Dependence of Including these four-body terms had not been done previ-
the functionB; on t allows for a better variational wave ously in electronic structure quantum Monte Carlo calcula-
function, as judged by the variational energy and the fluctuations, but up to five-body correlations were included in
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TABLE |. Total energies of Li, Be, and Ne atoms obtained in variational and diffusion Monte Carlo. For each
atom, the first, second, and third rows respectively contain results using wave functionsbaty correla-

tions respectively with=2, n=3, andn=4. The number of configuration state functions in the determinantal
part of the wave function is denoted by C3, is the “exact” total energy from Ref. 15 is the correlation
energy EYMC andEPMC are the percentages of correlation energy recovered in variational and diffusion Monte
Carlo. oy c is the root mean square fluctuation of the local energy in variational Monte Carlo. The numbers in
parentheses are the statistical errors in the last digit. The last column is the efficiency of the four-body corre-
lations as measured in E€{). Energies are in Hartree atomic units.

Atom n CSF Eo E. EVMC EMMC (%) EbMC EXMC (%) owme 7

Li 2 1 —7.478 06 0.04533 —7.474274) 91.6 —7.478 013) 99.9 0.24

3 1 ~7477881) 996  -7.478031) 999 0.037

4 1 —7.477971) 99.8 —7.478 031) 99.9 0.028 60%
Be 2 2 —14.667 36 0.094 34 —14.660 885) 93.1 —14.666 8%4) 99.5 0.35

3 2 —14.666 621) 99.2 —14.667 281) 99.9 0.089

4 2 —14.666 811) 99.4 —14.667 261) 99.9 0.078 31%
Ne 2 1 —-128.9376 0.3905 —128.7132) 42.5 —128.9192) 95.2 1.9

3 1 —128.90081) 90.6 —128.92421) 96.6 0.90

4 1 —128.90293) 91.1 —128.924388) 96.6 0.88 9%

Mushinski and Nightingale’s study of bosonic van der WaalsTable | that inclusion of the four-body correlations also re-
clusters. Of course, inclusion of higher-body correlations insults in a significant but smaller improvement in both the
the Jastrow factor is computationally expensive, and in Refvariational energies and the fluctuations of the local energy.
5 the theory of invariants was employed to reduce the comThe improvement gets smaller with increasing atomic num-
putational effort. In principle, for polynomials of high order, ber and is disappointingly small for Ne.
this approach allows one to obtain a speed-up by a factor In Table |, we also show the diffusion Monte Carlo en-
equal to the number of elements in the particle permutatiorrgies. Since the nodes of the wave functions are determined
symmetry group associated with thg; and r,; in the by the determinantal part of the wave functions only, it is
highest-order correlations included in the Jastrow factor. Irclear that if the same determinants are used in two wave
practice, the speed-up is often considerably smaller and détunctions, the fixed-node diffusion Monte Carlo energies
pends on many variable details of the computation. For furmust be the same to within statistical error. However, we
ther details we refer to Appendix A and Ref. 11. re-optimized also the determinantal part of the wave func-
As mentioned above, near-degeneracy correlations suaions when we added the higher-body terms in the Jastrow
as occur in the case of Be discussed below can be accountesiponents, since we had hoped that the additional freedom
for efficiently®'%***%py inclusion of additional determinants would allow the determinantal part of the wave function to
of low-lying orbitals in Eq.(1). In this work, we use four attain a more optimal nodal structure. However, we find only
determinantgtwo configuration state functiondor Be and  a small improvement in the diffusion Monte Carlo energy

one determinant for Li and Ne. upon going from the two-body to the three-body Jastrow,
while the difference of the three-body and four-body cases is
. RESULTS AND DISCUSSION within the statistical error. The reader should not conclude

from these results that, in diffusion Monte Carlo, improve-
ments in the wave function resulting from improved Jastrow
In Table |, we show the variational Monte Carlo energiesfactors are worthless. First of all, improved Jastrow factors
and the standard deviation of the local energies of Li, Beare likely to yield more reliable expectation values of opera-
and Ne atoms for wave functions containing four-body cor-tors that do not commute with the Hamiltonian. Secondly,
relations and compare them with the results for two-bodyeven if one is interested only in the diffusion Monte Carlo
and three-body correlated wave functions used in our earlieenergy, the improved Jastrow factor results in smaller statis-
work. As is well-knowri by now, inclusion of the three-body tical errors for a given number of Monte Carlo steps and
correlations results in a large improvement in the energy andsually also in smaller time-step errors, leading to a more
a large reduction in the standard deviation of the local en+eliable extrapolation to the zero time-step limit. We typi-
ergy. For Li, Be and Ne, 95%, 89% and 84% of the correla-cally find that the time-step error is much smaller for the
tion energy, missing in the two-body wave functions, is re-three-body Jastrow wave function than for the corresponding
covered while the standard deviation of the local energy iswo-body Jastrow wave function. For example, the three-
reduced by factors of 6, 4 and 2 respectively. Although nobody Jastrow wave function for Be has a time-step error that
shown in the table, a further advantage accrues from the faé$ approximately 30 times smaller than that of the two-body
that the auto-correlation time of the local energies sampled idastrow wave function. However, the time-step error is of
variational Monte Carlt and in diffusion Monte Carlo are comparable magnitude for the three-body and four-body Ja-
somewhat reduced. In the present work, we observe frorstrow wave functions. The best possible Jastrow fagoe

A. Ground state of Li, Be, and Ne
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TABLE II. Total energies of the bosonic ground states of Li, Be, and Nefermionic wave functions have been optimized to local

obtained in variational and_ diffusion Monte Carlo. For each atom, the f”.Stminima and that considerably better local minima exist, al-
and second rows respectively contain results using wave functions with

n-body correlations respectively with=3 andn=4. E'MC andEPMC are  though we consider it unlikely.
the variational and diffusion Monte Carlo energi&®M¢ is the average of In order for the bosonic wave functions to be exact, it is
the two EPMC values which should be identical except for statistical errors. necessary to include aII-body correlations and to go to infi-

oymc IS the root mean square fluctuation of the local energy in varlatlonalnite polynomial order. However, it is expected that the low
Monte Carlo. The numbers in parentheses are the statistical errors in the last . . .

digit. The last column is the efficiency of the four-body correlations asPOdy-order correlations will be the most important ones. As
measured by, in Eq. (7) usingEPMC. Energies are in Hartree atomic units. mentioned in Section Il, in the present paper we used fifth-

order polynomials for the%n and the &n correlations. For

VMC DMC =D . . . . .
Atom n E E EYMC - EPMC ovme 7 bosonic Li, since the%n correlated wave function contains
all body-order correlations, one would expect to obtain the
Li 3  -8.6739201) -8.6739341) 0.000013 0.018 exact ground state energy using variational Monte Carlo en-
4 86739301  -8.6739321) 0.000003 0011 77% orqy provided that one uses polynomials of sufficiently high
Be 3 -19.27435®@) -19.2743872 0.000030 0.035 d bl b hat. | itional
4 102743782 -19.2743874) 0000012 0021 60% Order. From_ Table Il we o serve that, in va_rlatlona Monte
Ne 3 -266.28410@) -266.2843%)  0.00030 0.21 Carlo, the fifth-order polynomial®n correlations account
4 -266.2842(2) -266.284424)  0.00015  0.14 50% for 77% of the correlation energy missing in therewave

function. It appears to be necessary to go to higher
polynomial-order to recover the remaining 23%. In the case
of bosonic Ne, the ®n correlations account for 50% of the
that includes all-body correlations and has an infinite-ordemissing energy in the?en wave function, in support of our
polynomia) would have a variational Monte Carlo energy expectation that the low-body order correlations are the most
that equals the fixed-node diffusion Monte Carlo energyimportant ones. In fact, in view of our observations on
Hence, we measure the efficiency of the four-body contribuposonic Li, it seems likely that, had we employed higher

tions to the Jastrow factor by than fifth-order polynomials, we would have found that the
e3-n correlations really account for more than 50% of the
_ Evme’—Eyme” missing energy in the?n wave function.
= E3-body_ £ . () For any given wave function it is relevant to ask whether
VMC DMC

further improvements can be made most economically by

- . .. increasing the variational freedom of the determinantal part

The percent efficiency rapidly decreases from 60% for Li to . . . .
31% for Be to 9% for Ne; similarly, the reduction in the root O_f the wa\{e functllon(elth.er by mcrgasmg .the number of
mean square fluctuations of the local energy decreases frofndle-particle basis functions or by increasing the number of
24% for Li to 12% for Be to 2% for Ne. We attribute these determinantsor by improving the Jastrow part of the wave
somewhat disappointing results to flaws of the nodal surfacéinction (either by increasing the polynomial-order or the
of the trial wave function, which the four-body interaction body-ordey. It is clear that if we follow the former route to
Jastrow factor is not designed to correct. That is, the approxithe limit of a complete basis of Slater determinants then the
mate, fixed-node, diffusion Monte Carlo wave function hasexact result can be obtained, even without a Jastrow factor.
discontinuous derivatives almost everywhere across thelowever, the rate of convergence would be exceedingly
nodal surface. On the other hand, a Jastrow factor expressatbw, because the Slater determinants lack singularities
in terms of inter-particle coordinates, will have non- present in the wave function, such as the cusps at electron—
analyticities only at the (R —3)-dimensional surface where electron coincidence points. These cusps can already be built
particles coincide, which constitutes only a vanishingly smallinto the wave function at the level of the two-body correla-
fraction of the entire (8/—1)-dimensional nodal surface. tjons by including a Jastrow factor. Incorporating three-body
Hence, over most of the nodal surface, we are attempting t@,rejations is clearly very advantageous, but the results of
descrlbe a non-analytic function as a finite sum of analytlc[his paper show that inclusion of four-body correlations may
functions and we ?XPGC‘ the convergence 10 be slow. not be the most economical next step to further improvement

To test the validity of the above argument, we also per-

formed calculations for the nodeless, bosonic ground state%]c the wave functions, at least for the heavier systems. In-

of the Hamiltonians of the same atoms. From Table Il we seétead’ it may be preferable to include more determinants in

that the efficiency there is considerably greater, 77% for Li,’[he wave function. Once a sufficiently large number of de-

60% for Be and 50% for Ne. Also, the improvement in theterminants have been included, it seems likely that it may
fluctuations of the local energy is considerably larger than irfgain become more economical to improve the Jastrow part
the fermionic case. by including the four-body correlations. Such explorations

This supports our conjectured explanation in terms of theare needed in order to fully exploit the flexibility that quan-
nodal surface. However, we do find it considerably easier tdum Monte Carlo offers over conventional quantum chemis-
optimize the bosonic than the fermionic wave functions. As dry methods for the construction of accurate, yet relatively
result, we cannot completely rule out the possibility that thecompact, wave functions.
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TABLE lll. Number of monomials of degrep in d inter-particle distances TABLE V. Number of free parameters associated with terms of degree
correlatingn particles. taking into account the reduction from imposing the cusp conditions.
Spin-up and spin-down electrons are treated as being identical. The asterisk
Number of terms of polynomial order for p=1 indicates that the number of free parameters in the Jastrow factor is
one rather than zero because the e-n cusp condition is satisfied by fixing one

n d p=1 p=2 p=3 p=4 p=5 Total of the parameters in each of the orbitals rather than by fixing one of the

3 3 3 6 10 15 21 55 parameters in the Jastrow factor.

4 6 6 21 56 126 252 461 -

5 10 10 55 220 715 2002 3002 Number of terms of polynomial order

6 15 15 120 680 3060 11628 15503 n d p=1 p=2 p=3 p=4 p=5 Total
3(n 3 1 2 4 7 10 23
4€n) 6 * 2 5 13 31 51
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tions equal to the number of coefficients of the symmetric

APPENDIX A: INVARIANTS: COMBINATORICS polynomial is required to Complete the Computaﬂsﬂf. one
is dealing with a system witiN particles one gets the full

We express the exponent of the Jastrow factor as a polysenefit of the approach by using invariants associated with
nomial in (scaled inter-particle coordinates. For an the group associated with exchangeatifidentical particles.
N-particle system there ate= N(N—1)/2 inter-particle dis-  one problem of this approach is that the basis invariants
tances. The number of monomial terms of degpem the  pecome difficult to construct, but a more fundamental prob-
polynomial is (,P~*), which grows asymptotically as |em is that this approach automatically incorporates all
p?~* for largep and asd®=N?? for largeN. The number of  N_pody correlations, in spite of our expectation thabody
monomials of degrees 1 through 5 are shown in Table Ill forcorrelations become rapidly less important rasncreases.

ferent then each additional monomial adds a variational cogonsists of usingi-body invariants =3 or n=4 for the

efficient but if some of theN particles are identical, terms yesylts reported in this papeand symmetrizing the resulting

that are equivalent because of symmetry must have the sarggpressions over all possible';) choices of the electrons.

coefficients. In Table IV we show the number of distinct A method of construction of these invariants and further de-

coefficients required to take into account correlations betajis will be published elsewher?.

tween two to four electrons and a nucleus. _ In addition to the above symmetry considerations con-
~Itis apparent that exchange symmetry results in & congerning the reduction of the number of free variational pa-

but if one simply computes the symmetric polynomials ashas the additional advantage of ensuring that the local energy
general polynomials with constrained coefficients, one doeg finite at particle coincidences. Table V displays the num-
not reduce the computational effort, which still requires aper of free variational coefficients, after imposition of the
number of elementary arithmetic operations on the order ogusp conditions, when two electrons and a nucleés) and

the number of coefficients of the general polynomial. On thgnpee electrons and a nucle{&-n) are correlated. Compari-
other hand, following Ref. 5, one can speed-up the compuson of Tables IV and V shows that a large reduction in the

tation by using results of the theory of invariants, i.e., onenymber of variational coefficients is achieved.
can rewrite symmetric polynomials as unconstrained polyno-
mials in new variables, viz., symmetrized sums of monomi-yppENDIX B: BASIS INVARIANTS
als forming a finite basis of invariants. _ _ _ _
In this appendix we discuss the computation of the poly-
nomials in the Jastrow factor and we list the invariants used
TABLE IV. Number of symmetrized monomials of degreein d inter- in our computations.

particle distances correlating particles; symmetrization is with respect to The exponent of the generalized Jastrow factor is of the

electron interchange. Spin-up and spin-down electrons are treated as bei?gll . f
identical. owing torm
i — J1p] j
Number of terms of polynomial order P(p1,Ps, - - - ’p')_j jz j Cilipe ..., jlpllpzz. . .pll ,
n d p=1 p=2 p=3 p=4 p=5 Total pizee ! (B1)
which is a polynomial of thel basis polynomials
3@ 3 2 4 6 9 12 33 This polynomial can be computed efficientl
4@ 6 2 6 14 28 54 104 P1,P2s-- D1 poly P clently
5(-n 10 2 7 20 53 125 207 using a scheme derived from the recursive, multi-variate

generalization of Horner’'s rule. That is, for a polynomial
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Co+Cip+C,op?+capd+ - - - in one variablep, the computa- For the case of two identical electrofiabeled byi and
tion is performed as suggested by the expression) and a nucleuglabeled bya) the following set of basis
Cotp{citplc,tp(cs+---)]}. For many variables, one invariants can be used:

considersP to be a polynomial inp, and one applies the

one-variable rule for its evaluation. The coefficients of this ~ P1=Tij (B6)
polynomial inp, are polynomials i, ...,p;_1. These in _
turn are computed recursively with the same scheme. P2=Tait Ty (B7)
We use a variant of this algorithm designed to evaluate =1 .r .
Ps ralra] . (B8)

the monomials irP separately, rather than juBtitself. The
reason is that we use a fixed set of configurations for optiFor three electrongdenoted by subscripts,j,k) and a
mizing the trial wave functions, so that the monomials com-nucleus(denoted byx) we used:

prising the above polynomial do not change during the opti-

mization provided that the scale facterin Eq. (4) is kept P1=rij+Fik+ ik (BY)

constant. We note parenthetically that fixing the valuecof

does not result in a Farge reductio):] in the vagrjiational freedom P2=Fai * T+ Fak (10

for a significant range of values of around the optimal ps=rZ+ri+ra, (B11)

value. Hence, it is computationally efficient to save the val-

ues of the monomials for each configuration of the sample p4:r§i+r§j+r§k, (B12)

used for the wave function optimization, and to evaluate the

value of the polynomiaP for each configuration as a dot Ps="r aklij + T ajlikt T ailjk s (B13)

product of this constant vector of monomials with the vary-

ing coefficient vector; ;. .. Pe=Tijl ikl jk » (B14)
Our variant of Horner's rule is as follows: We start with D=1 it (B15)

the basis invariantp,, . ..,p, and regard them as the basic 7 allallake

variables and therefqre of degree.one. At the. sgcond Stage, pg=r it 4 T ail ekl ik+ T ol okl ji (B16)

we construct all possible polynomials quadratic in the basis

invariants by multiplying all invariants of first degree py, Po="Tailijl ikt T ajlijljk T akl ikl jk - (B17)

then multiply all excepp; by p,, all exceptp,; andp, by p; _ ) o ) )
and so on and so forth. Finally, we note that the above choice of basis invariants is

At stagen of the calculation we construct monomials of NOt unique. They were constructed to yield invariants con-
degreen in the basis invariantp,, . .. .,p, from those of sisting of a small number of monomials ed¢Ht should be

degreen—1 obtained at the previous stage by multiplying noted that the we have no proof that the nine invariants given
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