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Compact and accurate wave functions can be constructed by quantum Monte Carlo methods.
Typically, these wave functions consist of a sum of a small number of Slater determinants
multiplied by a Jastrow factor. In this paper we study the importance of including high-order,
nucleus-three-electron correlations in the Jastrow factor. An efficient algorithm based on the theory
of invariants is used to compute the high-body correlations. We observe significant improvements
in the variational Monte Carlo energy and in the fluctuations of the local energies but not in the
fixed-node diffusion Monte Carlo energies. Improvements for the ground states of physical,
fermionic atoms are found to be smaller than those for the ground states of fictitious, bosonic atoms,
indicating that errors in the nodal surfaces of the fermionic wave functions are a limiting factor.
© 1997 American Institute of Physics.@S0021-9606~97!00932-X#
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I. INTRODUCTION

Optimized trial wave functions that closely approxima
eigenstates of Hamiltonians are essential ingredients of a
rate electronic structure calculations employing quant
Monte Carlo methods. The quality of these trial wave fun
tions is relevant both for expectation values of physical
terest and for the variance of the Monte Carlo estimato
which is a measure of the efficiency of the computation.

When one uses a variational Monte Carlo method, as
trial wave function approaches an exact eigenstate of
Hamiltonian, the energy and expectation values of quanti
commuting with the Hamiltonian satisfy a zero-varian
principle, i.e., the expectation values approach the ex
eigenstate values, while the Monte Carlo variance goe
zero. More sophisticated forms of quantum Monte Ca
such as diffusion Monte Carlo, attempt to project out t
ground state from the trial state, in which case exact exp
tation values are obtained for observables that commute
the Hamiltonian, even if the trial state is not an exact eig
state. In this case, the quality of the trial states affects o
the statistical errors. However, most practical algorith
suppress admixtures of excited states completely only
nodeless wave functions, such as bosonic ground states
trial functions with nodes, usually the fixed-nod
approximation1 is made, in which case errors in the nod
surface systematically bias the expectation values. The u
variational and mixed-estimators2 of observables that do no
commute with the Hamiltonian always yield results f
which the magnitude of the bias of the expectation val
and also the statistical errors depend on the quality of
trial wave function but no zero-variance principle is satisfi
in this case. In sum, for the commonly used forms of qu
J. Chem. Phys. 107 (8), 22 August 1997 0021-9606/97/107(8)/3
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tum Monte Carlo, it is essential to employ accurate tr
wave functions, in particular in the case of operators that
not commute with the Hamiltonian.

The wave functions used in electronic structure calcu
tions employing quantum Monte Carlo usually consist o
product of a Jastrow factor and one or a sum of Slater de
minants. The simplest, and possibly most commonly u
wave function of this sort consists of a single determin
multiplied by a simple Jastrow factor that is a product ov
electron pair contributions. As regards the physics contai
in the determinantal and Jastrow factors, it is generally
lieved that multiple determinants most efficiently incorpora
near-degeneracy or non-dynamic correlation, while a Jast
factor efficiently supplies the major portion of the dynam
correlation. It has been shown3 that a Jastrow factor tha
correlates two electrons and a nucleus gives much be
variational energies and has much smaller fluctuations of
local energy than a Jastrow factor correlating only pairs
electrons. Given this success, one may well ask whether
advantageous to include the next most important corr
tions, viz. four-body correlations of three electrons and
nucleus.

There are different measures of success that one can
to answer this question. The criteria we shall use in t
paper are the reduction in the variational energy and in
fluctuations in the local energy. It is reasonable to equa
reduction in these two quantities to improvement of the qu
ity of the wave function and to a reduction of the systema
error in expectation values of operators that do not comm
with the Hamiltonian. We note that, as far as diffusio
Monte Carlo is concerned, a reduction of the fluctuations
3007007/7/$10.00 © 1997 American Institute of Physics

IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



t

o
de
p

te
xe
d

im
oc

i
od

f
th

or
I
n
on

b

nd
rs
B
n

va
N

s

it

or

a
se
o
th

f
s,
n

ro

e
f

e
ua

le

-

he

of
the

ded
. In
ed

e-
nc-
lts
Ja-
ef-

are

nd
ifi-

by
r to

an
tion
r-
ck

di-
e-
mal

it

on-

vi-
la-
in

3008 Huang, Umrigar, and Nightingale: Accuracy of quantum Monte Carlo correlations
the local energy also has the important advantage that
time-step error is usually reduced also.4

An alternative measure of the success of modification
the trial wave function is the improvement in the fixed-no
estimate of the energy. The wave functions used in this pa
were obtained by simultaneous optimization of parame
appearing in the determinantal and Jastrow factors. For fi
parameters, the former determines the location of the no
surface and the value of the fixed-node energy. The opt
zation feeds back changes in the Jastrow factor to the l
tion of the nodal surface. We observe in the work reported
this paper that this has only a small effect on the fixed-n
energy. Apparently, the nodal surface changes little even
modifications of the Jastrow factor that greatly improve
wave function.

The purpose of this paper is to study the effect of inc
poration of many-body correlations in the Jastrow factor.
Sec. II we present the form of the trial wave functions a
discuss the cusp conditions imposed on the wave functi
which reduce greatly the number of free parameters to
optimized. To facilitate the computations, we use bases
invariants, similar to those introduced by Mushinski a
Nightingale5 in their study of bosonic van der Waals cluste
The basis invariants employed are given in Appendix
where we also present an algorithm for using the invaria
to calculate the wave function and its first two spatial deri
tives. In Sec. III we present the results for the Li, Be and
atoms, and also for fictitious bosonic Li, Be and Ne atom
These latter model systems are introduced to allow us
disentangle flaws of the wave function associated w
many-body correlations and the nodal surface.

II. FUNCTIONAL FORM OF THE WAVE FUNCTION

The wave functions we use have the form

C5(
l

dlDl
↑Dl
↓)

n
Jn . ~1!

Dl
↑ andDl

↓ are the Slater determinants of single particle
bitals for the up and down electrons respectively, andJn is a
Jastrow factor correlatingn-tuples of electrons and
nucleus. The simplest, and possibly most commonly u
wave function of this type contains just a single product
up- and down-spin determinants and a Jastrow factor
correlates only pairs of electrons, i.e.,

J25)
a,i

exp A~r a i !)
i , j

exp Bszi1sz j
~r i j !. ~2!

Here, the indexa labels the nuclei whilei and j label the
electrons;szk56 1

2 denotes thez-component of the spin o
electronk, so that the indext of Bt assumes three value
t50,61, which in principle allows the correlations betwee
electron pairs to depend on the orientation of the elect
spins relative to each other and to the fixedz-component of
the total electron spin. We note in this context that for giv
total S we always chooseSz to be maximal. Dependence o
the function Bt on t allows for a better variational wav
function, as judged by the variational energy and the fluct
J. Chem. Phys., Vol. 107,
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tions in the local energy. More specifically, it is not possib
to satisfy both the cusp conditions6 for parallel and anti-
parallel spins unlessB0 Þ B61 . Unfortunately, however, de
pendence ofBt on t causesspin contamination,7 i.e., the
resulting wave function is no longer an eigenfunction of t
square of the total spin.

Our compromise is to allow for the minimal amount
spin dependence of the Jastrow factor required to satisfy
cusp conditions, a parsimonious approach with the ad
benefit of reducing the number of variational parameters
fact, tests on wave functions with additional freedom show
only a small improvement for wave functions with thre
body Jastrow functions and no improvement for wave fu
tions with four-body Jastrow functions. To obtain the resu
reported here, the electron–electron part of the two-body
strow factorJ2 was chosen to contain spin-dependent co
ficients, but the higher-order factorsJn ,n.2, were chosen to
be spin-independent. We use

Bt~r i j !5
btRi j

11bt8Ri j

, ~3!

where b051/2 ~anti-parallel spins! and b6151/4 ~parallel
spins!; further, the

Ri j [R~r i j !5~12e2kr i j !/k ~4!

are inter-particle distances scaled by the functionR, as given
on the right hand side of Eq.~4!. The functionA in Eq. ~2!,
which has the same functional form asB, but no spin depen-
dence, and the determinantal part of the wave function
adjusted to satisfy the electron-nucleus~e-n! cusp condition.

Both the expectation value of the variational energy a
the fluctuations of the local energy can be reduced sign
cantly by going beyond this simplest form, Eq.~2!, and it has
been shown3 that a large improvement can be obtained
generalizing the two-body electron-nucleus Jastrow facto
a three-body electron–electron-nucleus~e2-n! Jastrow factor

J35 )
a,i , j

exp C~r i j ,r a i ,r a j !, ~5!

where again the Greek index labels the nuclei and the rom
indices label the electrons. In the present paper, the func
C consists of a fifth-order polynomial in the scaled inte
particle distances and terms motivated by the Fo
expansion.8 These latter terms improve the boundary con
tions satisfied by the trial wave function in reducing the d
pendence of the local energy on the shape of the infinitesi
triangle formed by two electrons and a nucleus, in the lim
that two electrons coincide with a nucleus.9 The detailed
form of these terms is presented in Ref. 10.

The next step is to introduce a four-body, three-electr
nucleus~e3-n! Jastrow factor

J45)
a

)
i , j ,k

exp D~r i j ,r jk ,r ki ,r a i ,r a j ,r ak!. ~6!

Including these four-body terms had not been done pre
ously in electronic structure quantum Monte Carlo calcu
tions, but up to five-body correlations were included
No. 8, 22 August 1997
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TABLE I. Total energies of Li, Be, and Ne atoms obtained in variational and diffusion Monte Carlo. For
atom, the first, second, and third rows respectively contain results using wave functions withn-body correla-
tions respectively withn52, n53, andn54. The number of configuration state functions in the determina
part of the wave function is denoted by CSF.E0 is the ‘‘exact’’ total energy from Ref. 15.Ec is the correlation
energy.Ec

VMC andEc
DMC are the percentages of correlation energy recovered in variational and diffusion M

Carlo.sVMC is the root mean square fluctuation of the local energy in variational Monte Carlo. The numb
parentheses are the statistical errors in the last digit. The last column is the efficiency of the four-body
lations as measured in Eq.~7!. Energies are in Hartree atomic units.

Atom n CSF E0 Ec EVMC Ec
VMC ~%! EDMC Ec

DMC ~%! sVMC h

Li 2 1 27.478 06 0.045 33 27.474 27~4! 91.6 27.478 01~3! 99.9 0.24
3 1 27.477 88~1! 99.6 27.478 03~1! 99.9 0.037
4 1 27.477 97~1! 99.8 27.478 03~1! 99.9 0.028 60%

Be 2 2 214.667 36 0.094 34 214.660 88~5! 93.1 214.666 89~4! 99.5 0.35
3 2 214.666 62~1! 99.2 214.667 23~1! 99.9 0.089
4 2 214.666 81~1! 99.4 214.667 26~1! 99.9 0.078 31%

Ne 2 1 2128.9376 0.3905 2128.713~2! 42.5 2128.919~2! 95.2 1.9
3 1 2128.9008~1! 90.6 2128.9242~1! 96.6 0.90
4 1 2128.9029~3! 91.1 2128.9243~8! 96.6 0.88 9%
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Mushinski and Nightingale’s study of bosonic van der Wa
clusters. Of course, inclusion of higher-body correlations
the Jastrow factor is computationally expensive, and in R
5 the theory of invariants was employed to reduce the co
putational effort. In principle, for polynomials of high orde
this approach allows one to obtain a speed-up by a fa
equal to the number of elements in the particle permuta
symmetry group associated with ther i j and r a i in the
highest-order correlations included in the Jastrow factor
practice, the speed-up is often considerably smaller and
pends on many variable details of the computation. For
ther details we refer to Appendix A and Ref. 11.

As mentioned above, near-degeneracy correlations s
as occur in the case of Be discussed below can be accou
for efficiently3,10,12,13by inclusion of additional determinant
of low-lying orbitals in Eq.~1!. In this work, we use four
determinants~two configuration state functions! for Be and
one determinant for Li and Ne.

III. RESULTS AND DISCUSSION

A. Ground state of Li, Be, and Ne

In Table I, we show the variational Monte Carlo energ
and the standard deviation of the local energies of Li,
and Ne atoms for wave functions containing four-body c
relations and compare them with the results for two-bo
and three-body correlated wave functions used in our ea
work. As is well-known3 by now, inclusion of the three-bod
correlations results in a large improvement in the energy
a large reduction in the standard deviation of the local
ergy. For Li, Be and Ne, 95%, 89% and 84% of the corre
tion energy, missing in the two-body wave functions, is
covered while the standard deviation of the local energy
reduced by factors of 6, 4 and 2 respectively. Although
shown in the table, a further advantage accrues from the
that the auto-correlation time of the local energies sample
variational Monte Carlo14 and in diffusion Monte Carlo are
somewhat reduced. In the present work, we observe f
J. Chem. Phys., Vol. 107,
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Table I that inclusion of the four-body correlations also r
sults in a significant but smaller improvement in both t
variational energies and the fluctuations of the local ener
The improvement gets smaller with increasing atomic nu
ber and is disappointingly small for Ne.

In Table I, we also show the diffusion Monte Carlo e
ergies. Since the nodes of the wave functions are determ
by the determinantal part of the wave functions only, it
clear that if the same determinants are used in two w
functions, the fixed-node diffusion Monte Carlo energi
must be the same to within statistical error. However,
re-optimized also the determinantal part of the wave fu
tions when we added the higher-body terms in the Jast
exponents, since we had hoped that the additional freed
would allow the determinantal part of the wave function
attain a more optimal nodal structure. However, we find o
a small improvement in the diffusion Monte Carlo ener
upon going from the two-body to the three-body Jastro
while the difference of the three-body and four-body case
within the statistical error. The reader should not conclu
from these results that, in diffusion Monte Carlo, improv
ments in the wave function resulting from improved Jastr
factors are worthless. First of all, improved Jastrow fact
are likely to yield more reliable expectation values of ope
tors that do not commute with the Hamiltonian. Second
even if one is interested only in the diffusion Monte Car
energy, the improved Jastrow factor results in smaller sta
tical errors for a given number of Monte Carlo steps a
usually also in smaller time-step errors, leading to a m
reliable extrapolation to the zero time-step limit. We typ
cally find that the time-step error is much smaller for t
three-body Jastrow wave function than for the correspond
two-body Jastrow wave function. For example, the thr
body Jastrow wave function for Be has a time-step error t
is approximately 30 times smaller than that of the two-bo
Jastrow wave function. However, the time-step error is
comparable magnitude for the three-body and four-body
strow wave functions. The best possible Jastrow factor~one
No. 8, 22 August 1997
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3010 Huang, Umrigar, and Nightingale: Accuracy of quantum Monte Carlo correlations
that includes all-body correlations and has an infinite-or
polynomial! would have a variational Monte Carlo energ
that equals the fixed-node diffusion Monte Carlo ener
Hence, we measure the efficiency of the four-body contri
tions to the Jastrow factor by

h5
EVMC

3-body2EVMC
4-body

EVMC
3-body2EDMC

. ~7!

The percent efficiency rapidly decreases from 60% for Li
31% for Be to 9% for Ne; similarly, the reduction in the ro
mean square fluctuations of the local energy decreases
24% for Li to 12% for Be to 2% for Ne. We attribute thes
somewhat disappointing results to flaws of the nodal surf
of the trial wave function, which the four-body interactio
Jastrow factor is not designed to correct. That is, the appr
mate, fixed-node, diffusion Monte Carlo wave function h
discontinuous derivatives almost everywhere across
nodal surface. On the other hand, a Jastrow factor expre
in terms of inter-particle coordinates, will have no
analyticities only at the (3N23)-dimensional surface wher
particles coincide, which constitutes only a vanishingly sm
fraction of the entire (3N21)-dimensional nodal surface
Hence, over most of the nodal surface, we are attemptin
describe a non-analytic function as a finite sum of analy
functions and we expect the convergence to be slow.

To test the validity of the above argument, we also p
formed calculations for the nodeless, bosonic ground st
of the Hamiltonians of the same atoms. From Table II we
that the efficiency there is considerably greater, 77% for
60% for Be and 50% for Ne. Also, the improvement in t
fluctuations of the local energy is considerably larger than
the fermionic case.

This supports our conjectured explanation in terms of
nodal surface. However, we do find it considerably easie
optimize the bosonic than the fermionic wave functions. A
result, we cannot completely rule out the possibility that

TABLE II. Total energies of the bosonic ground states of Li, Be, and
obtained in variational and diffusion Monte Carlo. For each atom, the
and second rows respectively contain results using wave functions
n-body correlations respectively withn53 andn54. EVMC andEDMC are

the variational and diffusion Monte Carlo energies.ĒDMC is the average of
the twoEDMC values which should be identical except for statistical erro
sVMC is the root mean square fluctuation of the local energy in variatio
Monte Carlo. The numbers in parentheses are the statistical errors in th
digit. The last column is the efficiency of the four-body correlations

measured byh in Eq. ~7! usingĒDMC. Energies are in Hartree atomic unit

Atom n EVMC EDMC
EVMC - ĒDMC sVMC h

Li 3 -8.673 920~1! -8.673 934~1! 0.000 013 0.018
4 -8.673 930~1! -8.673 932~1! 0.000 003 0.011 77%

Be 3 -19.274 357~2! -19.274 387~2! 0.000 030 0.035
4 -19.274 375~2! -19.274 387~4! 0.000 012 0.021 60%

Ne 3 -266.284 11~2! -266.284 39~2! 0.00030 0.21
4 -266.284 26~2! -266.284 42~4! 0.00015 0.14 50%
J. Chem. Phys., Vol. 107,
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fermionic wave functions have been optimized to loc
minima and that considerably better local minima exist,
though we consider it unlikely.

In order for the bosonic wave functions to be exact, it
necessary to include all-body correlations and to go to i
nite polynomial order. However, it is expected that the lo
body-order correlations will be the most important ones.
mentioned in Section II, in the present paper we used fi
order polynomials for the e2-n and the e3-n correlations. For
bosonic Li, since the e3-n correlated wave function contain
all body-order correlations, one would expect to obtain
exact ground state energy using variational Monte Carlo
ergy, provided that one uses polynomials of sufficiently hi
order. From Table II we observe that, in variational Mon
Carlo, the fifth-order polynomial e3-n correlations accoun
for 77% of the correlation energy missing in the e2-n wave
function. It appears to be necessary to go to hig
polynomial-order to recover the remaining 23%. In the ca
of bosonic Ne, the e3-n correlations account for 50% of th
missing energy in the e2-n wave function, in support of ou
expectation that the low-body order correlations are the m
important ones. In fact, in view of our observations
bosonic Li, it seems likely that, had we employed high
than fifth-order polynomials, we would have found that t
e3-n correlations really account for more than 50% of t
missing energy in the e2-n wave function.

For any given wave function it is relevant to ask wheth
further improvements can be made most economically
increasing the variational freedom of the determinantal p
of the wave function~either by increasing the number o
single-particle basis functions or by increasing the numbe
determinants! or by improving the Jastrow part of the wav
function ~either by increasing the polynomial-order or th
body-order!. It is clear that if we follow the former route to
the limit of a complete basis of Slater determinants then
exact result can be obtained, even without a Jastrow fac
However, the rate of convergence would be exceedin
slow, because the Slater determinants lack singulari
present in the wave function, such as the cusps at electr
electron coincidence points. These cusps can already be
into the wave function at the level of the two-body corre
tions by including a Jastrow factor. Incorporating three-bo
correlations is clearly very advantageous, but the results
this paper show that inclusion of four-body correlations m
not be the most economical next step to further improvem
of the wave functions, at least for the heavier systems.
stead, it may be preferable to include more determinant
the wave function. Once a sufficiently large number of d
terminants have been included, it seems likely that it m
again become more economical to improve the Jastrow
by including the four-body correlations. Such exploratio
are needed in order to fully exploit the flexibility that qua
tum Monte Carlo offers over conventional quantum chem
try methods for the construction of accurate, yet relativ
compact, wave functions.

t
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APPENDIX A: INVARIANTS: COMBINATORICS

We express the exponent of the Jastrow factor as a p
nomial in ~scaled! inter-particle coordinates. For a
N-particle system there ared5 N(N21)/2 inter-particle dis-
tances. The number of monomial terms of degreep in the
polynomial is ( p

d1p21), which grows asymptotically as
pd21 for largep and asdp5N2p for largeN. The number of
monomials of degrees 1 through 5 are shown in Table III
the three- to six-body correlations. If allN particles are dif-
ferent then each additional monomial adds a variational
efficient but if some of theN particles are identical, term
that are equivalent because of symmetry must have the s
coefficients. In Table IV we show the number of distin
coefficients required to take into account correlations
tween two to four electrons and a nucleus.

It is apparent that exchange symmetry results in a c
siderable reduction of the number of variational coefficien
but if one simply computes the symmetric polynomials
general polynomials with constrained coefficients, one d
not reduce the computational effort, which still requires
number of elementary arithmetic operations on the orde
the number of coefficients of the general polynomial. On
other hand, following Ref. 5, one can speed-up the com
tation by using results of the theory of invariants, i.e., o
can rewrite symmetric polynomials as unconstrained poly
mials in new variables, viz., symmetrized sums of monom
als forming a finite basis of invariants.

TABLE III. Number of monomials of degreep in d inter-particle distances
correlatingn particles.

Number of terms of polynomial order

n d p51 p52 p53 p54 p55 Total

3 3 3 6 10 15 21 55
4 6 6 21 56 126 252 461
5 10 10 55 220 715 2002 3002
6 15 15 120 680 3060 11 628 15 503

TABLE IV. Number of symmetrized monomials of degreep in d inter-
particle distances correlatingn particles; symmetrization is with respect t
electron interchange. Spin-up and spin-down electrons are treated as
identical.

Number of terms of polynomial order

n d p51 p52 p53 p54 p55 Total

3 ~e2-n! 3 2 4 6 9 12 33
4 ~e3-n! 6 2 6 14 28 54 104
5 ~e4-n! 10 2 7 20 53 125 207
J. Chem. Phys., Vol. 107,
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The decrease of computational effort is a consequenc
the fact that the basis invariants themselves have to be c
puted only once, whereupon a number of arithmetic ope
tions equal to the number of coefficients of the symme
polynomial is required to complete the computation.16 If one
is dealing with a system withN particles one gets the ful
benefit of the approach by using invariants associated w
the group associated with exchange ofall identical particles.
One problem of this approach is that the basis invaria
become difficult to construct, but a more fundamental pro
lem is that this approach automatically incorporates
N-body correlations, in spite of our expectation thatn-body
correlations become rapidly less important asn increases.
We have therefore implemented a hybrid approach wh
consists of usingn-body invariants (n53 or n54 for the
results reported in this paper! and symmetrizing the resulting
expressions over all possible (n21

N ) choices of the electrons
A method of construction of these invariants and further
tails will be published elsewhere.11

In addition to the above symmetry considerations co
cerning the reduction of the number of free variational p
rameters, we mention that imposition of the cusp conditio6

has the additional advantage of ensuring that the local en
is finite at particle coincidences. Table V displays the nu
ber of free variational coefficients, after imposition of th
cusp conditions, when two electrons and a nucleus~e2-n! and
three electrons and a nucleus~e3-n! are correlated. Compari
son of Tables IV and V shows that a large reduction in
number of variational coefficients is achieved.

APPENDIX B: BASIS INVARIANTS

In this appendix we discuss the computation of the po
nomials in the Jastrow factor and we list the invariants u
in our computations.

The exponent of the generalized Jastrow factor is of
following form

P~p1 ,p2 , . . . ,pI !5 (
j 1 , j 2 , . . . ,j I

cj 1 , j 2 , . . . ,j I
p1

j 1p2
j 2
•••pI

j I ,

~B1!

which is a polynomial of the I basis polynomials
p1 ,p2 , . . . ,pI . This polynomial can be computed efficient
using a scheme derived from the recursive, multi-vari
generalization of Horner’s rule. That is, for a polynomi

ing

TABLE V. Number of free parameters associated with terms of degrep
taking into account the reduction from imposing the cusp conditio
Spin-up and spin-down electrons are treated as being identical. The as
for p51 indicates that the number of free parameters in the Jastrow fact
one rather than zero because the e-n cusp condition is satisfied by fixing
of the parameters in each of the orbitals rather than by fixing one of
parameters in the Jastrow factor.

Number of terms of polynomial order

n d p51 p52 p53 p54 p55 Total

3 ~e2-n! 3 1* 2 4 7 10 23
4 ~e3-n! 6 1* 2 5 13 31 51
No. 8, 22 August 1997
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c01c1p1c2p21c3p31••• in one variablep, the computa-
tion is performed as suggested by the express
c01p$c11p@c21p(c31•••)#%. For many variables, one
considersP to be a polynomial inpI and one applies the
one-variable rule for its evaluation. The coefficients of th
polynomial inpI are polynomials inp1 , . . . ,pI 21 . These in
turn are computed recursively with the same scheme.

We use a variant of this algorithm designed to evalu
the monomials inP separately, rather than justP itself. The
reason is that we use a fixed set of configurations for o
mizing the trial wave functions, so that the monomials co
prising the above polynomial do not change during the o
mization provided that the scale factork in Eq. ~4! is kept
constant. We note parenthetically that fixing the value ok
does not result in a large reduction in the variational freed
for a significant range of values ofk around the optimal
value. Hence, it is computationally efficient to save the v
ues of the monomials for each configuration of the sam
used for the wave function optimization, and to evaluate
value of the polynomialP for each configuration as a do
product of this constant vector of monomials with the va
ing coefficient vectorcj 1 , j 2 , . . . ,j I

.
Our variant of Horner’s rule is as follows: We start wi

the basis invariantsp1 , . . . ,pI and regard them as the bas
variables and therefore of degree one. At the second st
we construct all possible polynomials quadratic in the ba
invariants by multiplying all invariants of first degree byp1 ,
then multiply all exceptp1 by p2 , all exceptp1 andp2 by p3

and so on and so forth.
At stagen of the calculation we construct monomials

degreen in the basis invariantsp1 , . . . ,pI from those of
degreen21 obtained at the previous stage by multiplyin
~1! all the monomials of degreen21 by p1 ; ~2! all except
those descended fromp1 by p2 ; ~3! all except those de
scended fromp1 and p2 by p3 ; etc. Hence, we obtain th
following sequence of monomials:

v15~p1 ;p2 ;p3 ; . . . ;pI !, ~B2!

v25~p1
2 ,p1p2 ,p1p3 , . . . ;p2

2 ,p2p3 . . . ;p3
2 . . . ; . . . ;pI

2!,

~B3!
v35~p1

3 ,p1
2p2 ,p1

2p3 , . . . ,p1p2
2 ,p1p2p3 , . . . ,p1p3

2 . . . ;

p2
3 ,p2

2p3 , . . . ,p2p3
2 . . . ;p3

3 . . . ; . . . ;pI
3!, ~B4!

A

vn5~p1
n ,p1

n21p2 ,•••;p2
n ,p2

n21p3 ,•••;p3
n ,•••;•••;pI

n!.
~B5!

Generalization of the above algorithm to the computation
the gradient and Laplacian required in the computation
straightforward. The basis invariants as functions of
scaled inter-particle distances are homogeneous polynom
of various degrees, and in practical applications one tr
cates the polynomialP at some chosen degree in the inte
particle distances. The above algorithm, however, will g
erate monomials of varying degrees in these at any step.
can be corrected by simply not constructing monomials t
exceed the maximal degree.
J. Chem. Phys., Vol. 107,
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For the case of two identical electrons~labeled byi and
j ) and a nucleus~labeled bya) the following set of basis
invariants can be used:

p15r i j , ~B6!

p25r a i1r a j , ~B7!

p35r a i r a j . ~B8!

For three electrons~denoted by subscriptsi , j ,k) and a
nucleus~denoted bya) we used:

p15r i j 1r ik1r jk , ~B9!

p25r a i1r a j1r ak , ~B10!

p35r i j
2 1r ik

2 1r jk
2 , ~B11!

p45r a i
2 1r a j

2 1r ak
2 , ~B12!

p55r akr i j 1r a j r ik1r a i r jk , ~B13!

p65r i j r ikr jk , ~B14!

p75r a i r a j r ak , ~B15!

p85r a i r a j r i j 1r a i r akr ik1r a j r akr jk , ~B16!

p95r a i r i j r ik1r a j r i j r jk1r akr ikr jk . ~B17!

Finally, we note that the above choice of basis invariants
not unique. They were constructed to yield invariants co
sisting of a small number of monomials each.11 It should be
noted that the we have no proof that the nine invariants gi
above indeed form a complete basis in the mathemat
sense, but they are complete for the fifth-order polynom
used in this paper.
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