Inter-dimensional degeneracies in van der Waals clusters

Peter Nightingale

nightingale@phys.uri.edu

Department of Physics

Kingston, RI 02881, USA
Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Waals clusters reveal identity of the spectra in $N - 1$ and $N + 1$ spatial dimensions.
Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Waals clusters reveal identity of the spectra in $N - 1$ and $N + 1$ spatial dimensions.
- We derive this result exactly by showing that for spatial dimension $D \geq N - 1$ the Schrödinger equation can be transformed into an differential equation with the D as a parameter.
Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Waals clusters reveal identity of the spectra in $N - 1$ and $N + 1$ spatial dimensions.
- We derive this result exactly by showing that for spatial dimension $D \geq N - 1$ the Schrödinger equation can be transformed into an differential equation with the D as a parameter.
- D appears only in an effective potential that is symmetric in D about $D = N$.
Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Waals clusters reveal identity of the spectra in $N - 1$ and $N + 1$ spatial dimensions.
- We derive this result exactly by showing that for spatial dimension $D \geq N - 1$ the Schrödinger equation can be transformed into an differential equation with the D as a parameter.
- D appears only in an effective potential that is symmetric in D about $D = N$.

\[\text{\LaTeX with \texttt{proser.sty} does it all.} \]

(proser.sourceforge.net)
Basic definitions

- **N** atom cluster in D dimensions; positions given by $D \times N$ matrix of Cartesian coordinates

\[
\mathbf{R} = (r_1 r_2 \ldots r_N),
\]

with

\[
\mathbf{r}_i = \begin{pmatrix}
x_{1i} \\
\vdots \\
x_{Di}
\end{pmatrix}.
\]
Basic definitions

- N atom cluster in D dimensions; positions given by $D \times N$ matrix of Cartesian coordinates

\[
\mathbf{R} = (\mathbf{r}_1 \mathbf{r}_2 \ldots \mathbf{r}_N),
\]

with

\[
\mathbf{r}_i = \begin{pmatrix}
x_{1i} \\
\vdots \\
x_{Di}
\end{pmatrix}.
\]

- Define difference vectors and their lengths

\[
\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i,
\]

\[
|r_{ij}| = |\mathbf{r}_{ij}|.
\]
Basic definitions

- Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass μ

$$H = -\frac{1}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{(i,j)} V(r_{ij}),$$
Basic definitions

- Dimensionless Hamiltonian of \(N \) bosonic van der Waals atoms with atomic mass \(\mu \)

\[
H = -\frac{1}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{(i,j)} V(r_{ij}),
\]

- with

\[
\nabla_i^2 = \sum_{\alpha=1}^{D} \frac{\partial^2}{\partial x_{\alpha i}^2}
\]
Basic definitions

- Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass μ

 \[H = -\frac{1}{2m} \sum_{i=1}^{N} \nabla^2_i + \sum_{(i,j)} V(r_{ij}), \]

- with

 \[\nabla^2_i = \sum_{\alpha=1}^{D} \frac{\partial^2}{\partial x_{\alpha i}^2} \]

- Dimensionless Lennard-Jones potential V

 \[V(r) = \frac{1}{r^{12}} - \frac{2}{r^6}. \]
Basic definitions

• Dimensionless Hamiltonian of \(N \) bosonic van der Waals atoms with atomic mass \(\mu \)

\[
H = -\frac{1}{2m} \sum_{i=1}^{N} \nabla_{i}^{2} + \sum_{(i,j)} V(r_{ij}),
\]

• with

\[
\nabla_{i}^{2} = \sum_{\alpha=1}^{D} \frac{\partial^{2}}{\partial x_{\alpha i}^{2}}
\]

• Dimensionless Lennard-Jones potential \(V \)

\[
V(r) = \frac{1}{r^{12}} - \frac{2}{r^{6}}.
\]

• Inverse dimensionless mass is \(m^{-1} = \hbar^{2}/2^{\frac{1}{3}} \mu \sigma^{2} \epsilon \) proportional to the square of the de Boer parameter\(^{[1]} \); \(\epsilon \) and \(\sigma \) the standard Lennard-Jones parameters. [J. de Boer, Physica, 14, 139 (1948)]
Monte Carlo trial function optimization

- Generate a sample of configurations \mathbf{R}_σ ($\sigma = 1, \ldots, s$) from a relative probability density function $\psi_g(\mathbf{R}_\sigma)^2$.

In theory, for a complete set of elementary basis functions i the Schrödinger equation becomes

$$
\hat{0}_i(\mathbf{R}) = \sum_{j=1}^{n} \hat{j}(\mathbf{R}) E_{ji}.
$$

In practice, solve for matrix E in least-squares sense on Monte Carlo sample. Reproduces stationarity of energy w.r.t. linear parameters for infinite sample.
Monte Carlo trial function optimization

- Generate a sample of configurations \mathbf{R}_σ ($\sigma = 1, \ldots, s$) from a relative probability density function $\psi_g (\mathbf{R}_\sigma)^2$.
- Trial wave functions are linear combinations of elementary basis functions β_i with non-linear variational parameters.
Monte Carlo trial function optimization

• Generate a sample of configurations \mathbf{R}_σ ($\sigma = 1, \ldots, s$) from a relative probability density function $\psi_g(\mathbf{R}_\sigma)^2$.

• Trial wave functions are linear combinations of elementary basis functions β_i with non-linear variational parameters.

• Re-weighted functions defined as $\hat{\beta}_i(R) = \psi_g(R)^{-1} \beta_i(R)$ and $\hat{\beta}'_i(R) = \psi_g(R)^{-1} H \beta_i(R)$ for least-squares.
Monte Carlo trial function optimization

- Generate a sample of configurations \mathbf{R}_σ ($\sigma = 1, \ldots, s$) from a relative probability density function $\psi_g(\mathbf{R}_\sigma)^2$.
- Trial wave functions are linear combinations of elementary basis functions β_i with non-linear variational parameters.
- Re-weighted functions defined as $\hat{\beta}_i(R) = \psi_g(R)^{-1} \beta_i(R)$ and $\hat{\beta}'_i(R) = \psi_g(R)^{-1} H \beta_i(R)$ for least-squares.
- In theory, for a complete set of elementary basis functions β_i the Schrödinger equation becomes

$$\hat{\beta}'_i(\mathbf{R}_\sigma) = \sum_{j=1}^{n} \hat{\beta}_j(\mathbf{R}_\sigma) \mathcal{E}_{ji}.$$
Monte Carlo trial function optimization

• Generate a sample of configurations $\mathbf{R}_\sigma (\sigma = 1, \ldots, s)$ from a relative probability density function $\psi_g(\mathbf{R}_\sigma)^2$.

• Trial wave functions are linear combinations of elementary basis functions β_i with non-linear variational parameters.

• Re-weighted functions defined as $\hat{\beta}_i(R) = \psi_g(R)^{-1} \beta_i(R)$ and $\hat{\beta}'_i(R) = \psi_g(R)^{-1} H \beta_i(R)$ for least-squares.

• In theory, for a complete set of elementary basis functions β_i the Schrödinger equation becomes

$$\hat{\beta}'_i(\mathbf{R}_\sigma) = \sum_{j=1}^{n} \hat{\beta}_j(\mathbf{R}_\sigma) \mathcal{E}_{ji}.$$

• In practice, solve for matrix \mathcal{E} in least-squares sense on Monte Carlo sample. Reproduces stationarity of energy w.r.t. linear parameters for infinite sample.
Monte Carlo trial function optimization

- Optimal linear combinations of the basis functions \(\beta_i \) computed by spectral decomposition of \(\mathcal{E} \):

\[
\mathcal{E}_{ij} = \sum_{k=1}^{n} d_{ik}^k \tilde{E}_k \hat{d}_{kj}^k
\]

with \(\hat{d}_{ij}^k \) and \(d_{i}^k \) left and right eigenvectors of \(\mathcal{E} \) with eigenvalues \(\tilde{E}_k \).
Monte Carlo trial function optimization

- Optimal linear combinations of the basis functions β_i computed by spectral decomposition of \mathcal{E}:

$$\mathcal{E}_{ij} = \sum_{k=1}^{n} d_i^k \tilde{E}_k \hat{d}_j^k$$

with \hat{d}_j^k and d_i^k left and right eigenvectors of \mathcal{E} with eigenvalues \tilde{E}_k.

- Yield: trial functions

$$\tilde{\psi}^k = \sum_{i=1}^{n} d_i^k \beta_i.$$
Monte Carlo trial function optimization

- Non-linear parameters of the β_i are optimized by minimizing the variance of the local energy of the linearly optimized $\bar{\psi}^k$

$$
\chi^2 = \frac{\sum_{\sigma=1}^{s} [\hat{\psi}^{k'}(R_{\sigma}) - \tilde{E}_k \hat{\psi}^k(R_{\sigma})]^2}{\sum_{\sigma=1}^{s} \hat{\psi}^k(R_{\sigma})^2},
$$

where $\hat{\psi}^k = \psi_g^{-1} \bar{\psi}^k$ and $\hat{\psi}^{k'} = \psi_g^{-1} H \bar{\psi}^k$.
Monte Carlo trial function optimization

- Non-linear parameters of the β_i are optimized by minimizing the variance of the local energy of the linearly optimized $\tilde{\psi}^k$

$$\chi^2 = \frac{\sum_{\sigma=1}^s [\hat{\psi}^{k'}(R,\sigma) - \tilde{E}_k \hat{\psi}^k(R,\sigma)]^2}{\sum_{\sigma=1}^s \hat{\psi}^k(R,\sigma)^2},$$

where $\hat{\psi}^k = \psi^{-1} \tilde{\psi}^k$ and $\hat{\psi}^{k'} = \psi^{-1} H \tilde{\psi}^k$.

- For each choice of the non-linear parameters, new optimized linear parameters have to be computed.
Monte Carlo trial function optimization

Non-linear parameters of the β_i are optimized by minimizing the variance of the local energy of the linearly optimized $\tilde{\psi}^k$

$$\chi^2 = \frac{\sum_{\sigma=1}^{s} [\hat{\psi}^{k'}(R_\sigma) - \bar{E}_k\hat{\psi}^k(R_\sigma)]^2}{\sum_{\sigma=1}^{s} \hat{\psi}^k(R_\sigma)^2},$$

where $\hat{\psi}^k = \psi^{-1}_g \tilde{\psi}^k$ and $\hat{\psi}^{k'} = \psi^{-1}_g H \tilde{\psi}^k$.

For each choice of the non-linear parameters, new optimized linear parameters have to be computed:

full optimization of all parameters consists of a linear optimization nested in a non-linear one.
Numerical results: three-body case

<table>
<thead>
<tr>
<th>D</th>
<th>E_1</th>
<th>ΔE_1</th>
<th>E_1</th>
<th>ΔE_1</th>
<th>E_1</th>
<th>ΔE_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.872 548 547 6</td>
<td>-9×10^{-1}</td>
<td>-1.734 808 71</td>
<td>-8×10^{-1}</td>
<td>-0.895 584</td>
<td>-4×10^{-1}</td>
</tr>
<tr>
<td>2</td>
<td>-2.760 461 351 5</td>
<td>2×10^{-10}</td>
<td>-2.552 953 22</td>
<td>-1×10^{-9}</td>
<td>-1.302 484</td>
<td>-7×10^{-7}</td>
</tr>
<tr>
<td>3</td>
<td>-2.760 555 278 7</td>
<td>6×10^{-10}</td>
<td>-2.553 289 43</td>
<td>1×10^{-8}</td>
<td>-1.308 442</td>
<td>9×10^{-6}</td>
</tr>
<tr>
<td>4</td>
<td>-2.760 461 351 3</td>
<td>-5×10^{-11}</td>
<td>-2.552 953 22</td>
<td>-1×10^{-9}</td>
<td>-1.302 483</td>
<td>-2×10^{-6}</td>
</tr>
<tr>
<td>5</td>
<td>-2.760 179 569 8</td>
<td>-1×10^{-9}</td>
<td>-2.551 944 61</td>
<td>-2×10^{-8}</td>
<td>-1.284 627</td>
<td>-1×10^{-5}</td>
</tr>
<tr>
<td>6</td>
<td>-2.759 709 937 6</td>
<td>5×10^{-10}</td>
<td>-2.550 263 64</td>
<td>7×10^{-9}</td>
<td>-1.254 901</td>
<td>5×10^{-6}</td>
</tr>
</tbody>
</table>

Ground state energies E_1 (with errors in the last significant digit) and deviations from quadratic fits ΔE_1 for Kr_3, Ar_3 and $\frac{1}{2}\text{-Ne}_3$ in dimensions $D = 1$ through $D = 6$.
Numerical results: four-body case

<table>
<thead>
<tr>
<th>D</th>
<th>E_1</th>
<th>ΔE_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.625 622 56</td>
<td>-2 $\times 10^{-0}$</td>
</tr>
<tr>
<td>2</td>
<td>-4.329 517 95</td>
<td>-8 $\times 10^{-1}$</td>
</tr>
<tr>
<td>3</td>
<td>-5.118 146 05</td>
<td>-2 $\times 10^{-9}$</td>
</tr>
<tr>
<td>4</td>
<td>-5.118 653 84</td>
<td>3 $\times 10^{-9}$</td>
</tr>
<tr>
<td>5</td>
<td>-5.118 146 05</td>
<td>-2 $\times 10^{-9}$</td>
</tr>
<tr>
<td>6</td>
<td>-5.116 622 70</td>
<td>1 $\times 10^{-9}$</td>
</tr>
</tbody>
</table>

Ground state energies (with errors in the last significant digit) and deviations from quadratic fits ΔE_1 for Ar_4 in dimensions $D = 1$ through $D = 6$.
Numerical results: excited states Ar_3

Comparison of the excited state energies E_k (with errors in the last significant digit) of Ar_3 in $D = 2, 3$ and 4 dimensions.

<table>
<thead>
<tr>
<th>k</th>
<th>$D = 2$</th>
<th>$D = 3$</th>
<th>$D = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2.249 860 2</td>
<td>-2.250 185 5</td>
<td>-2.249 860</td>
</tr>
<tr>
<td>3</td>
<td>-2.126 038 8</td>
<td>-2.126 361</td>
<td>-2.126 039</td>
</tr>
<tr>
<td>4</td>
<td>-1.996 153</td>
<td>-1.996 43</td>
<td>-1.996 153</td>
</tr>
<tr>
<td>5</td>
<td>-1.946 3</td>
<td>-1.946 7</td>
<td>-1.946 3</td>
</tr>
</tbody>
</table>
Numerical results: excited states Ar_4

<table>
<thead>
<tr>
<th>k</th>
<th>$D = 3$</th>
<th>$D = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-4.800 897 73</td>
<td>-4.800 897 75</td>
</tr>
<tr>
<td>3</td>
<td>-4.725 156 7</td>
<td>-4.725 156 6</td>
</tr>
<tr>
<td>4</td>
<td>-4.630 025</td>
<td>-4.630 025</td>
</tr>
<tr>
<td>5</td>
<td>-4.586 389</td>
<td>-4.586 384</td>
</tr>
</tbody>
</table>

Comparison of the excited state energies E_k (with errors in the last significant digit) of Ar_4 in $D = 3$ and 5 dimensions.
Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has ND variables.
Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has ND variables.
- Wave functions invariant under rotations and translations depend on fewer than ND variables.
Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has ND variables.
- Wave functions invariant under rotations and translations depend on fewer than ND variables.
- Choose lengths of all distinct inter-particle distances $r_{ij} = r_{ji}$ with $i \neq j$; independent variables if $D \geq N - 1$.
Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has ND variables.
- Wave functions invariant under rotations and translations depend on fewer than ND variables.
- Choose lengths of all distinct inter-particle distances $r_{ij} = r_{ji}$ with $i \neq j$; independent variables if $D \geq N - 1$.
- Consider more general D-dimensional Schrödinger equation

$$\left(-\sum_{i=1}^{N} \frac{1}{2m_i} \nabla_i^2 + V \right) \psi = E\psi$$
Exact results

- Schrödinger equation for an \(N \) particle cluster in \(D \) spatial dimensions has \(ND \) variables.
- Wave functions invariant under rotations and translations depend on fewer than \(ND \) variables.
- Choose lengths of all distinct inter-particle distances \(r_{ij} = r_{ji} \) with \(i \neq j \); independent variables if \(D \geq N - 1 \).
- Consider more general \(D \)-dimensional Schrödinger equation

\[
\left(-\sum_{i=1}^{N} \frac{1}{2m_i} \nabla_i^2 + V \right) \psi = E \psi
\]

- Rotationally and translationally invariant potential, not necessarily a sum two-body contributions.
Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has ND variables.
- Wave functions invariant under rotations and translations depend on fewer than ND variables.
- Choose lengths of all distinct inter-particle distances $r_{ij} = r_{ji}$ with $i \neq j$; independent variables if $D \geq N - 1$.
- Consider more general D-dimensional Schrödinger equation

$$\left(- \sum_{i=1}^{N} \frac{1}{2m_i} \nabla_i^2 + V \right) \psi = E \psi$$

- Rotationally and translationally invariant potential, not necessarily a sum two-body contributions.
- Mass of each particle may be different.
Exact results

• Apply differential operator identity

\[\frac{\partial}{\partial x_{\alpha i}} = \sum_{j \neq i} \frac{\partial r_{ij}}{\partial x_{\alpha i}} \frac{\partial}{\partial r_{ij}} \]
Exact results

- Apply differential operator identity

\[
\frac{\partial}{\partial x_{\alpha i}} = \sum_{j \neq i} \frac{\partial r_{ij}}{\partial x_{\alpha i}} \frac{\partial}{\partial r_{ij}}
\]

- to obtain

\[
\nabla_i^2 = \sum_{j \neq i} a_{i;j} \frac{\partial}{\partial r_{ij}} + \sum_{j,k \neq i} g_{i;jk} \frac{\partial^2}{\partial r_{ij} \partial r_{ik}}
\]

where
Exact results

- Apply differential operator identity

\[
\frac{\partial}{\partial x_\alpha i} = \sum_{j \neq i} \frac{\partial r_{ij}}{\partial x_\alpha i} \frac{\partial}{\partial r_{ij}}
\]

- to obtain

\[
\nabla_i^2 = \sum_{j \neq i} a_{i;j} \frac{\partial}{\partial r_{ij}} + \sum_{j, k \neq i} g_{i;jk} \frac{\partial^2}{\partial r_{ij} \partial r_{ik}}
\]

where

\[
a_{i;j} = \sum_{\alpha=1}^{D} \frac{\partial^2 r_{ij}}{\partial x_\alpha^2} = \frac{D - 1}{r_{ij}}
\]

\[
g_{i;jk} = \sum_{\alpha=1}^{D} \frac{\partial r_{ij}}{\partial x_\alpha} \frac{\partial r_{ik}}{\partial x_\alpha} = \frac{r_{ij} \cdot r_{ik}}{r_{ij} r_{ik}} \text{ angle: no } D \text{ dependence}
\]
Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with
Exact results

- In terms of inter-particle distances, the Schrödinger equation assumes a form with:
 1. a linear differential operator depending on D
 2. a second-order differential operator and a potential energy independent of D
Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with
 1. linear differential operator depending on \(D \)
 2. second-order differential operator and a potential energy independent of \(D \)
Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with
 1. linear differential operator depending on D
 2. second-order differential operator and a potential energy independent of D
- Transform Schrödinger equation so that
Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with
 1. linear differential operator depending on D
 2. second-order differential operator and a potential energy independent of D

- Transform Schrödinger equation so that
 1. second-order operator is unchanged

$H = E \Gamma H_0 = E \Gamma$ with $\Gamma = \varepsilon$ and $H_0 = 1$ to be determined.
Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with
 1. linear differential operator depending on D
 2. second-order differential operator and a potential energy independent of D
- Transform Schrödinger equation so that
 1. second-order operator is unchanged
 2. linear operator is absent
Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with
 1. linear differential operator depending on D
 2. second-order differential operator and a potential energy independent of D
- Transform Schrödinger equation so that
 1. second-order operator is unchanged
 2. linear operator is absent
 3. potential is modified by a additional term
Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with
 1. linear differential operator depending on D
 2. second-order differential operator and a potential energy independent of D

- Transform Schrödinger equation so that
 1. second-order operator is unchanged
 2. linear operator is absent
 3. potential is modified by an additional term

- Use
 $$
 H\psi = E\psi \rightarrow H'\phi = E\phi
 $$

 with
 $$
 \psi = \chi\phi \quad \text{and} \quad H' = \frac{1}{\chi}H\chi
 $$
Exact results

$$H' = V - \sum_{i=1}^{n} \frac{1}{2m_i} (S_i + T_i + U_i)$$

with

$$S_i = \sum_{j, k \neq i} g_{i;jk} \frac{\partial^2}{\partial r_{ij} \partial r_{ik}},$$

$$T_i = \sum_{j \neq i} \left(a_{i;j} + 2 \sum_{k \neq i} g_{i;jk} \chi^{-1} \frac{\partial \chi}{\partial r_{ik}} \right) \frac{\partial}{\partial r_{ij}},$$

and a “centrifugal” contribution to the effective potential

$$U_i = \sum_{j \neq i} a_{i;j} \chi^{-1} \frac{\partial \chi}{\partial r_{ij}} + \sum_{j, k \neq i} g_{i;jk} \chi^{-1} \frac{\partial^2 \chi}{\partial r_{ik} \partial r_{ik}}.$$
Exact results

- Define N matrices of order $N - 1$

$$\hat{G}_i = (r_{ij} g_{i;jk} r_{ik})_{j,k\neq i},$$

the Grammian associated with the $N - 1$ vectors r_{ij} with $j = 1, \ldots, i - 1, i + 1, \ldots, N$.
Exact results

- Define N matrices of order $N - 1$

\[\hat{G}_i = (r_{ij}g_{ik}r_{jk})_{j,k \neq i}, \]

the Grammian associated with the $N - 1$ vectors r_{ij} with
$j = 1, \ldots, i - 1, i + 1, \ldots, N$.

- Volume squared of the parallelepiped formed by the vectors from particle i to all other particles:

\[\omega = \det (\hat{G}_i) \]
Exact results

• Define N matrices of order $N - 1$

$$\hat{G}_i = (r_{ij} g_{ijk} r_{ik})_{j,k \neq i},$$

the Grammian associated with the $N - 1$ vectors \mathbf{r}_{ij} with $j = 1, \ldots, i - 1, i + 1, \ldots, N$.

• Volume squared of the parallelepiped formed by the vectors from particle i to all other particles:

$$\omega = \det (\hat{G}_i)$$

• Linear differential operators T_i vanish for the choice

$$\chi = \omega^{(1-D)/4}.$$
Exact results

- Contributions to effective potential

\[
U_i = \frac{1}{8} [(N - 1)^2 - (N - D)^2] \sum_{j \neq i} \frac{1}{r_{ij}} \frac{\partial \log \omega}{\partial r_{ij}} \\
= \frac{(N - 1)^2 - (N - D)^2}{16\omega^2} \sum_{j,k \neq i} \frac{\partial \omega}{\partial r_{ij}} g_{i;jk} \frac{\partial \omega}{\partial r_{ik}}.
\]
Exact results

- Contributions to effective potential

\[
U_i = \frac{1}{8} [(N - 1)^2 - (N - D)^2] \sum_{j \neq i} \frac{1}{r_{ij}} \frac{\partial \log \omega}{\partial r_{ij}} \\
= \frac{(N - 1)^2 - (N - D)^2}{16\omega^2} \sum_{j, k \neq i} \frac{\partial \omega}{\partial r_{ij}} g_{i;jk} \frac{\partial \omega}{\partial r_{ik}}.
\]

- Amplitude is symmetric in \(D \) about \(D = N \).
Exact results

• Contributions to effective potential

\[U_i = \frac{1}{8} [(N - 1)^2 - (N - D)^2] \sum_{j \neq i} \frac{1}{r_{ij}} \frac{\partial \log \omega}{\partial r_{ij}} \]

\[= \frac{(N - 1)^2 - (N - D)^2}{16 \omega^2} \sum_{j,k \neq i} \frac{\partial \omega}{\partial r_{ij}} g_{ij;jk} \frac{\partial \omega}{\partial r_{ik}}. \]

• Amplitude is symmetric in \(D \) about \(D = N \).

• Schrödinger equation has the same energy eigenvalues in \(D = N - 1 \) and \(D = N + 1 \).
Exact results

- Contributions to effective potential

\[
U_i = \frac{1}{8} [(N - 1)^2 - (N - D)^2] \sum_{j \neq i} \frac{1}{r_{ij}} \frac{\partial \log \omega}{\partial r_{ij}}
\]

\[
= \frac{(N - 1)^2 - (N - D)^2}{16 \omega^2} \sum_{j, k \neq i} \frac{\partial \omega}{\partial r_{ij}} g_{i;jk} \frac{\partial \omega}{\partial r_{ik}}.
\]

- Amplitude is symmetric in \(D \) about \(D = N \).
- Schrödinger equation has the same energy eigenvalues in \(D = N - 1 \) and \(D = N + 1 \).
- Energy minimum at \(D = N \). (Last sum is sum of squares because \(g_{i;jk} \) is an inner product.)
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2}(N - 1)N$ variables.
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2}(N - 1)N$ variables.
- Dependence on D contained in an effective potential energy.
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2}(N - 1)N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2}(N - 1)N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D = N - 1$ and $D = N + 1$ dimensions, in agreement with work by Gu et al.[5].
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2}(N - 1)N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D = N - 1$ and $D = N + 1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D = N$.
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2} (N - 1) N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D = N - 1$ and $D = N + 1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D = N$.
- Inter-dimensional degeneracy provides a powerful check of the validity of
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2}(N - 1)N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D = N - 1$ and $D = N + 1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D = N$.
- Inter-dimensional degeneracy provides a powerful check of the validity of 1. computer code
Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N - 1$ dimensions into equation in $\frac{1}{2}(N - 1)N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D = N - 1$ and $D = N + 1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D = N$.
- Inter-dimensional degeneracy provides a powerful check of the validity of
 1. computer code
 2. estimates of systematic and statistical errors
Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N - 1)N$ independent variables is valid only for $D \geq N - 1$.

Resulting equation and its eigenvalue spectrum have an analytical continuation for $D < N$ and is symmetric about $D = N$. The same applies to the spectrum. Continuation unrelated to physical spectrum of N particle clusters for $D = N$.

Fundamental problem with the work by Gonzalez and Leal [6]: $1 = D$ expansion estimates of energy levels of Lennard-Jones clusters in $D = 3$ with $N = 3; 4; \ldots; 7$ and 13 obtained by analytic continuation from large D.

Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N - 1)N$ independent variables is valid only for $D \geq N - 1$.
- Resulting equation and its eigenvalue spectrum have an analytical continuation for $D < N - 1$ and is symmetric about $D = N$.
Summary and discussion

• Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N - 1)N$ independent variables is valid only for $D \geq N - 1$.

• Resulting equation and its eigenvalue spectrum have an analytical continuation for $D < N - 1$ and is symmetric about $D = N$.

• The same applies to the spectrum.
Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2} (N - 1) N$ independent variables is valid only for $D \geq N - 1$.
- Resulting equation and its eigenvalue spectrum have an analytical continuation for $D < N - 1$ and is symmetric about $D = N$.
- The same applies to the spectrum.
- Continuation unrelated to physical spectrum of N particle clusters for $D \leq N - 1$.
Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in \(\frac{1}{2} (N - 1) N \) independent variables is valid only for \(D \geq N - 1 \).
- Resulting equation and its eigenvalue spectrum have an analytical continuation for \(D < N - 1 \) and is symmetric about \(D = N \).
- The same applies to the spectrum.
- Continuation unrelated to physical spectrum of \(N \) particle clusters for \(D \leq N - 1 \).
- **Fundamental problem** with the work by Gonzalez and Leal\[6\]: \(1/D \) expansion estimates of energy levels of Lennard-Jones clusters in \(D = 3 \) with \(N = 3, 4, \ldots, 7 \) and 13 obtained by analytic continuation from large \(D \).
References