Inter-dimensional degeneracies in van der Waals clusters

Peter Nightingale
nightingale@phys.uri.edu
Department of Physics
Kingston, RI 02881, USA

Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Waals clusters reveal identity of the spectra in $N-1$ and $N+1$ spatial dimensions.

Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Waals clusters reveal identity of the spectra in $N-1$ and $N+1$ spatial dimensions.
- We derive this result exactly by showing that for spatial dimension $D \geq N-1$ the Schrödinger equation can be transformed into an differential equation with the D as a parameter.

Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Waals clusters reveal identity of the spectra in $N-1$ and $N+1$ spatial dimensions.
- We derive this result exactly by showing that for spatial dimension $D \geq N-1$ the Schrödinger equation can be transformed into an differential equation with the D as a parameter.
- D appears only in an effective potential that is symmetric in D about $D=N$.

Abstract

- Quantum Monte Carlo results for energies of S-states of N particle van der Walls clusters reveal identity of the spectra in $N-1$ and $N+1$ spatial dimensions.
- We derive this result exactly by showing that for spatial dimension $D \geq N-1$ the Schrödinger equation can be transformed into an differential equation with the D as a parameter.
- D appears only in an effective potential that is symmetric in D about $1=N$.

${ }^{L A} T_{E} X$ with prosper. sty does it all. (prosper.scourceforge.net)

Basic definitions

- N atom cluster in D dimensions; positions given by $D \times N$ matrix of Cartesian coordinates

$$
\mathbf{R}=\left(\mathbf{r}_{1} \mathbf{r}_{2} \ldots \mathbf{r}_{N}\right)
$$

with

$$
\mathbf{r}_{i}=\left(\begin{array}{c}
x_{1 i} \\
\vdots \\
x_{D i}
\end{array}\right)
$$

Basic definitions

- N atom cluster in D dimensions; positions given by $D \times N$ matrix of Cartesian coordinates

$$
\mathbf{R}=\left(\mathbf{r}_{1} \mathbf{r}_{2} \ldots \mathbf{r}_{N}\right)
$$

with

$$
\mathbf{r}_{i}=\left(\begin{array}{c}
x_{1 i} \\
\vdots \\
x_{D i}
\end{array}\right)
$$

- Define difference vectors and their lengths

$$
\begin{aligned}
\mathbf{r}_{i j} & =\mathbf{r}_{j}-\mathbf{r}_{i} \\
r_{i j} & =\left|\mathbf{r}_{i j}\right|
\end{aligned}
$$

Basic definitions

- Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass μ

$$
H=-\frac{1}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{(i, j)} V\left(r_{i j}\right),
$$

Basic definitions

- Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass μ

$$
H=-\frac{1}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{(i, j)} V\left(r_{i j}\right),
$$

- with

$$
\nabla_{i}^{2}=\sum_{\alpha=1}^{D} \frac{\partial^{2}}{\partial x_{\alpha i}^{2}}
$$

Basic definitions

- Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass μ

$$
H=-\frac{1}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{(i, j)} V\left(r_{i j}\right),
$$

- with

$$
\nabla_{i}^{2}=\sum_{\alpha=1}^{D} \frac{\partial^{2}}{\partial x_{\alpha i}^{2}}
$$

- Dimensionless Lennard-Jones potential V

$$
V(r)=\frac{1}{r^{12}}-\frac{2}{r^{6}} .
$$

Basic definitions

- Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass μ

$$
H=-\frac{1}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{(i, j)} V\left(r_{i j}\right),
$$

- with

$$
\nabla_{i}^{2}=\sum_{\alpha=1}^{D} \frac{\partial^{2}}{\partial x_{\alpha i}^{2}}
$$

- Dimensionless Lennard-Jones potential V

$$
V(r)=\frac{1}{r^{12}}-\frac{2}{r^{6}} .
$$

- Inverse dimensionless mass is $m^{-1}=\hbar^{2} / 2^{\frac{1}{3}} \mu \sigma^{2} \epsilon$ proportional to the square of the de Boer parameter[1]; ϵ and σ the standard Lennard-Jones parameters. [J. de Boer, Physica, 14, 139 (1948)]

Monte Carlo trial function optimization

- Generate a sample of configurations $\mathbf{R}_{\sigma}(\sigma=1, \ldots, s)$ from a relative probability density function $\psi_{g}\left(\mathbf{R}_{\sigma}\right)^{2}$.

Monte Carlo trial function optimization

- Generate a sample of configurations $\mathbf{R}_{\sigma}(\sigma=1, \ldots, s)$ from a relative probability density function $\psi_{g}\left(\mathbf{R}_{\sigma}\right)^{2}$.
- Trial wave functions are linear combinations of elementary basis functions β_{i} with non-linear variational parameters.

Monte Carlo trial function optimization

- Generate a sample of configurations $\mathbf{R}_{\sigma}(\sigma=1, \ldots, s)$ from a relative probability density function $\psi_{g}\left(\mathbf{R}_{\sigma}\right)^{2}$.
- Trial wave functions are linear combinations of elementary basis functions β_{i} with non-linear variational parameters.
- Re-weighted functions defined as $\hat{\beta}_{i}(R)=\psi_{g}(R)^{-1} \beta_{i}(R)$ and $\hat{\beta}_{i}^{\prime}(R)=\psi_{g}(R)^{-1} H \beta_{i}(R)$ for least-squares.

Monte Carlo trial function optimization

- Generate a sample of configurations $\mathbf{R}_{\sigma}(\sigma=1, \ldots, s)$ from a relative probability density function $\psi_{g}\left(\mathbf{R}_{\sigma}\right)^{2}$.
- Trial wave functions are linear combinations of elementary basis functions β_{i} with non-linear variational parameters.
- Re-weighted functions defined as $\hat{\beta}_{i}(R)=\psi_{g}(R)^{-1} \beta_{i}(R)$ and $\hat{\beta}_{i}^{\prime}(R)=\psi_{g}(R)^{-1} H \beta_{i}(R)$ for least-squares.
- In theory, for a complete set of elementary basis functions β_{i} the Schrödinger equation becomes

$$
\hat{\beta}_{i}^{\prime}\left(\mathbf{R}_{\sigma}\right)=\sum_{j=1}^{n} \hat{\beta}_{j}\left(\mathbf{R}_{\sigma}\right) \mathcal{E}_{j i} .
$$

Monte Carlo trial function optimization

- Generate a sample of configurations $\mathbf{R}_{\sigma}(\sigma=1, \ldots, s)$ from a relative probability density function $\psi_{g}\left(\mathbf{R}_{\sigma}\right)^{2}$.
- Trial wave functions are linear combinations of elementary basis functions β_{i} with non-linear variational parameters.
- Re-weighted functions defined as $\hat{\beta}_{i}(R)=\psi_{g}(R)^{-1} \beta_{i}(R)$ and $\hat{\beta}_{i}^{\prime}(R)=\psi_{g}(R)^{-1} H \beta_{i}(R)$ for least-squares.
- In theory, for a complete set of elementary basis functions β_{i} the Schrödinger equation becomes

$$
\hat{\beta}_{i}^{\prime}\left(\mathbf{R}_{\sigma}\right)=\sum_{j=1}^{n} \hat{\beta}_{j}\left(\mathbf{R}_{\sigma}\right) \mathcal{E}_{j i} .
$$

- In practice, solve for matrix \mathcal{E} in least-squares sense on Monte Carlo sample. Reproduces stationarity of energy w.r.t. linear parameters for infinite sample.

Monte Carlo trial function optimization

- Optimal linear combinations of the basis functions β_{i} computed by spectral decomposition of \mathcal{E} :

$$
\mathcal{E}_{i j}=\sum_{k=1}^{n} d_{i}^{k} \tilde{E}_{k} \hat{d}_{j}^{k}
$$

with \hat{d}_{j}^{k} and d_{i}^{k} left and right eigenvectors of \mathcal{E} with eigenvalues \tilde{E}_{k}.

Monte Carlo trial function optimization

- Optimal linear combinations of the basis functions β_{i} computed by spectral decomposition of \mathcal{E} :

$$
\mathcal{E}_{i j}=\sum_{k=1}^{n} d_{i}^{k} \tilde{E}_{k} \hat{d}_{j}^{k}
$$

with \hat{d}_{j}^{k} and d_{i}^{k} left and right eigenvectors of \mathcal{E} with eigenvalues \tilde{E}_{k}.

- Yield: trial functions

$$
\tilde{\psi}^{k}=\sum_{i=1}^{n} d_{i}^{k} \beta_{i}
$$

Monte Carlo trial function optimization

- Non-linear parameters of the β_{i} are optimized by minimizing the variance of the local energy of the linearly optimized $\tilde{\psi}^{k}$

$$
\chi^{2}=\frac{\sum_{\sigma=1}^{s}\left[\hat{\psi}^{k \prime}\left(\mathbf{R}_{\sigma}\right)-\tilde{E}_{k} \hat{\psi}^{k}\left(\mathbf{R}_{\sigma}\right)\right]^{2}}{\sum_{\sigma=1}^{s} \hat{\psi}^{k}\left(\mathbf{R}_{\sigma}\right)^{2}}
$$

where $\hat{\psi}^{k}=\psi_{g}^{-1} \tilde{\psi}^{k}$ and $\hat{\psi}^{k \prime}=\psi_{g}^{-1} H \tilde{\psi}^{k}$.

Monte Carlo trial function optimization

- Non-linear parameters of the β_{i} are optimized by minimizing the variance of the local energy of the linearly optimized $\tilde{\psi}^{k}$

$$
\chi^{2}=\frac{\sum_{\sigma=1}^{s}\left[\hat{\psi}^{k \prime}\left(\mathbf{R}_{\sigma}\right)-\tilde{E}_{k} \hat{\psi}^{k}\left(\mathbf{R}_{\sigma}\right)\right]^{2}}{\sum_{\sigma=1}^{s} \hat{\psi}^{k}\left(\mathbf{R}_{\sigma}\right)^{2}}
$$

where $\hat{\psi}^{k}=\psi_{g}^{-1} \tilde{\psi}^{k}$ and $\hat{\psi}^{k \prime}=\psi_{g}^{-1} H \tilde{\psi}^{k}$.

- For each choice of the non-linear parameters, new optimized linear parameters have to be computed:

Monte Carlo trial function optimization

- Non-linear parameters of the β_{i} are optimized by minimizing the variance of the local energy of the linearly optimized $\tilde{\psi}^{k}$

$$
\chi^{2}=\frac{\sum_{\sigma=1}^{s}\left[\hat{\psi}^{k \prime}\left(\mathbf{R}_{\sigma}\right)-\tilde{E}_{k} \hat{\psi}^{k}\left(\mathbf{R}_{\sigma}\right)\right]^{2}}{\sum_{\sigma=1}^{s} \hat{\psi}^{k}\left(\mathbf{R}_{\sigma}\right)^{2}}
$$

where $\hat{\psi}^{k}=\psi_{g}^{-1} \tilde{\psi}^{k}$ and $\hat{\psi}^{k \prime}=\psi_{g}^{-1} H \tilde{\psi}^{k}$.

- For each choice of the non-linear parameters, new optimized linear parameters have to be computed:
- full optimization of all parameters consists of a linear optimization nested in a non-linear one.

Numerical results: three-body case

	Kr_{3}		Ar_{3}		$\frac{1}{2}-\mathrm{Ne}_{3}$	
D	E_{1}	ΔE_{1}	E_{1}	ΔE_{1}	E_{1}	ΔE_{1}
1	-1.8725485476	-9×10^{-1}	-1.73480871	-8×10^{-1}	-0.895584	-4×10^{-1}
2	-2.7604613515	2×10^{-10}	-2.55295322	-1×10^{-9}	-1.302484	-7×10^{-7}
3	-2.7605552787	6×10^{-10}	-2.55328943	1×10^{-8}	-1.308442	9×10^{-6}
4	-2.7604613513	-5×10^{-11}	-2.55295322	-1×10^{-9}	-1.302483	-2×10^{-6}
5	-2.7601795698	-1×10^{-9}	-2.55194461	-2×10^{-8}	-1.284627	-1×10^{-5}
6	-2.7597099376	5×10^{-10}	-2.55026364	7×10^{-9}	-1.254901	5×10^{-6}

Ground state energies E_{1} (with errors in the last significant digit) and deviations from quadratic fits ΔE_{1} for $\mathrm{Kr}_{3}, \mathrm{Ar}_{3}$ and $\frac{1}{2}-\mathrm{Ne}_{3}$ in dimensions $D=1$ through $D=6$.

Numerical results: four-body case

D	E_{1}	ΔE_{1}
1	-2.62562256	-2×10^{-0}
2	-4.32951795	-8×10^{-1}
3	-5.11814605	-2×10^{-9}
4	-5.11865384	3×10^{-9}
5	-5.11814605	-2×10^{-9}
6	-5.11662270	1×10^{-9}

Ground state energies (with errors in the last significant digit) and deviations from quadratic fits ΔE_{1} for Ar_{4} in dimensions $D=1$ through $D=6$.

Numerical results: excited states Ar_{3}

k	$D=2$	$D=3$	$D=4$
2	-2.2498602	-2.2501855	-2.249860
3	-2.1260388	-2.126361	-2.126039
4	-1.996153	-1.99643	-1.996153
5	-1.9463	-1.9467	-1.9463

Comparison of the excited state energies E_{k} (with errors in the last significant digit) of Ar_{3} in $D=2,3$ and 4 dimensions.

Numerical results: excited states Ar_{4}

k	$D=3$	$D=5$
2	-4.80089773	-4.80089775
3	-4.7251567	-4.7251566
4	-4.630025	-4.630025
5	-4.586389	-4.586384

Comparison of the excited state energies E_{k} (with errors in the last significant digit) of Ar_{4} in $D=3$ and 5 dimensions.

Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has $N D$ variables.

Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has $N D$ variables.
- Wave functions invariant under rotations and translations depend on fewer than $N D$ variables.

Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has $N D$ variables.
- Wave functions invariant under rotations and translations depend on fewer than $N D$ variables.
- Choose lengths of all distinct inter-particle distances $r_{i j}=r_{j i}$ with $i \neq j$; independent variables if $D \geq N-1$.

Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has $N D$ variables.
- Wave functions invariant under rotations and translations depend on fewer than $N D$ variables.
- Choose lengths of all distinct inter-particle distances $r_{i j}=r_{j i}$ with $i \neq j$; independent variables if $D \geq N-1$.
- Consider more general D-dimensional Schrödinger equation

$$
\left(-\sum_{i=1}^{N} \frac{1}{2 m_{i}} \nabla_{i}^{2}+V\right) \psi=E \psi
$$

Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has $N D$ variables.
- Wave functions invariant under rotations and translations depend on fewer than $N D$ variables.
- Choose lengths of all distinct inter-particle distances $r_{i j}=r_{j i}$ with $i \neq j$; independent variables if $D \geq N-1$.
- Consider more general D-dimensional Schrödinger equation

$$
\left(-\sum_{i=1}^{N} \frac{1}{2 m_{i}} \nabla_{i}^{2}+V\right) \psi=E \psi
$$

- Rotationally and translationally invariant potential, not necessarily a sum two-body contributions.

Exact results

- Schrödinger equation for an N particle cluster in D spatial dimensions has $N D$ variables.
- Wave functions invariant under rotations and translations depend on fewer than $N D$ variables.
- Choose lengths of all distinct inter-particle distances $r_{i j}=r_{j i}$ with $i \neq j$; independent variables if $D \geq N-1$.
- Consider more general D-dimensional Schrödinger equation

$$
\left(-\sum_{i=1}^{N} \frac{1}{2 m_{i}} \nabla_{i}^{2}+V\right) \psi=E \psi
$$

- Rotationally and translationally invariant potential, not necessarily a sum two-body contributions.
- Mass of each particle may be different.

Exact results

- Apply differential operator identity

$$
\frac{\partial}{\partial x_{\alpha i}}=\sum_{j \neq i} \frac{\partial r_{i j}}{\partial x_{\alpha i}} \frac{\partial}{\partial r_{i j}}
$$

Exact results

- Apply differential operator identity

$$
\frac{\partial}{\partial x_{\alpha i}}=\sum_{j \neq i} \frac{\partial r_{i j}}{\partial x_{\alpha i}} \frac{\partial}{\partial r_{i j}}
$$

- to obtain

$$
\nabla_{i}^{2}=\sum_{j \neq i} a_{i ; j} \frac{\partial}{\partial r_{i j}}+\sum_{j, k \neq i} g_{i, j k} \frac{\partial^{2}}{\partial r_{i j} \partial r_{i k}}
$$

where

Exact results

- Apply differential operator identity

$$
\frac{\partial}{\partial x_{\alpha i}}=\sum_{j \neq i} \frac{\partial r_{i j}}{\partial x_{\alpha i}} \frac{\partial}{\partial r_{i j}}
$$

- to obtain

$$
\nabla_{i}^{2}=\sum_{j \neq i} a_{i ; j} \frac{\partial}{\partial r_{i j}}+\sum_{j, k \neq i} g_{i ; j k} \frac{\partial^{2}}{\partial r_{i j} \partial r_{i k}}
$$

where

$$
\begin{gathered}
a_{i ; j}=\sum_{\alpha=1}^{D} \frac{\partial^{2} r_{i j}}{\partial x_{\alpha i}^{2}}=\frac{D-1}{r_{i j}} \\
g_{i ; j k}=\sum_{\alpha=1}^{D} \frac{\partial r_{i j}}{\partial x_{\alpha i}} \frac{\partial r_{i k}}{\partial x_{\alpha i}}=\frac{\mathbf{r}_{i j} \cdot \mathbf{r}_{i k}}{r_{i j} r_{i k}} \text { angle: no } D \text { dependence }
\end{gathered}
$$

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

- Transform Schrödinger equation so that

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

- Transform Schrödinger equation so that

1. second-order operator is unchanged

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

- Transform Schrödinger equation so that

1. second-order operator is unchanged
2. linear operator is absent

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

- Transform Schrödinger equation so that

1. second-order operator is unchanged
2. linear operator is absent
3. potential is modified by a additional term

Exact results

- In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

- Transform Schrödinger equation so that

1. second-order operator is unchanged
2. linear operator is absent
3. potential is modified by a additional term

- Use

$$
\mathbf{H} \psi=E \psi \rightarrow \mathbf{H}^{\prime} \phi=E \phi
$$

with

$$
\psi=\chi \phi \quad \text { and } \quad \mathbf{H}^{\prime}=\frac{1}{\chi} \mathbf{H} \chi
$$

Exact results

Result for general χ special case of Eq. (3.8) of Ref. [3] [J. Avery, D. G. Goodson, and D. R. Herschbach, Theor. Chim. Acta 81, 1 (1991)]

$$
\mathbf{H}^{\prime}=V-\sum_{i=1} \frac{1}{2 m_{i}}\left(S_{i}+T_{i}+U_{i}\right)
$$

with

$$
\begin{gathered}
S_{i}=\sum_{j, k \neq i} g_{i ; j k} \frac{\partial^{2}}{\partial r_{i j} \partial r_{i k}}, \\
T_{i}=\sum_{j \neq i}\left(a_{i ; j}+2 \sum_{k \neq i} g_{i ; j k} \chi^{-1} \frac{\partial \chi}{\partial r_{i k}}\right) \frac{\partial}{\partial r_{i j}},
\end{gathered}
$$

and a "centrifugal" contribution to the effective potential

$$
U_{i}=\sum_{j \neq i} a_{i ; j} \chi^{-1} \frac{\partial \chi}{\partial r_{i j}}+\sum_{j, k \neq i} g_{i ; j k} \chi^{-1} \frac{\partial^{2} \chi}{\partial r_{i k} \partial r_{i k}} .
$$

Exact results

- Define N matrices of order $N-1$

$$
\hat{G}_{i}=\left(r_{i j} g_{i ; j k} r_{i k}\right)_{j, k \neq i},
$$

the Grammian associated with the $N-1$ vectors $\mathbf{r}_{i j}$ with $j=1, \ldots, i-1, i+1, \ldots, N$.

Exact results

- Define N matrices of order $N-1$

$$
\hat{G}_{i}=\left(r_{i j} g_{i ; j k} r_{i k}\right)_{j, k \neq i},
$$

the Grammian associated with the $N-1$ vectors $\mathbf{r}_{i j}$ with
$j=1, \ldots, i-1, i+1, \ldots, N$.

- Volume squared of the parallelepiped formed by the vectors from particle i to all other particles:

$$
\omega=\operatorname{det}\left(\hat{G}_{i}\right)
$$

Exact results

- Define N matrices of order $N-1$

$$
\hat{G}_{i}=\left(r_{i j} g_{i ; j k} r_{i k}\right)_{j, k \neq i},
$$

the Grammian associated with the $N-1$ vectors $\mathbf{r}_{i j}$ with
$j=1, \ldots, i-1, i+1, \ldots, N$.

- Volume squared of the parallelepiped formed by the vectors from particle i to all other particles:

$$
\omega=\operatorname{det}\left(\hat{G}_{i}\right)
$$

- Linear differential operators T_{i} vanish for the choice

$$
\chi=\omega^{(1-D) / 4} .
$$

Exact results

- Contributions to effective potential

$$
\begin{aligned}
U_{i} & =\frac{1}{8}\left[(N-1)^{2}-(N-D)^{2}\right] \sum_{j \neq i} \frac{1}{r_{i j}} \frac{\partial \log \omega}{\partial r_{i j}} \\
& =\frac{(N-1)^{2}-(N-D)^{2}}{16 \omega^{2}} \sum_{j, k \neq i} \frac{\partial \omega}{\partial r_{i j}} g_{i ; j k} \frac{\partial \omega}{\partial r_{i k}}
\end{aligned}
$$

Exact results

- Contributions to effective potential

$$
\begin{aligned}
U_{i} & =\frac{1}{8}\left[(N-1)^{2}-(N-D)^{2}\right] \sum_{j \neq i} \frac{1}{r_{i j}} \frac{\partial \log \omega}{\partial r_{i j}} \\
& =\frac{(N-1)^{2}-(N-D)^{2}}{16 \omega^{2}} \sum_{j, k \neq i} \frac{\partial \omega}{\partial r_{i j}} g_{i ; j k} \frac{\partial \omega}{\partial r_{i k}}
\end{aligned}
$$

- Amplitude is symmetric in D about $D=N$.

Exact results

- Contributions to effective potential

$$
\begin{aligned}
U_{i} & =\frac{1}{8}\left[(N-1)^{2}-(N-D)^{2}\right] \sum_{j \neq i} \frac{1}{r_{i j}} \frac{\partial \log \omega}{\partial r_{i j}} \\
& =\frac{(N-1)^{2}-(N-D)^{2}}{16 \omega^{2}} \sum_{j, k \neq i} \frac{\partial \omega}{\partial r_{i j}} g_{i ; j k} \frac{\partial \omega}{\partial r_{i k}} .
\end{aligned}
$$

- Amplitude is symmetric in D about $D=N$.
- Schrödinger equation has the same energy eigenvalues in $D=N-1$ and $D=N+1$.

Exact results

- Contributions to effective potential

$$
\begin{aligned}
U_{i} & =\frac{1}{8}\left[(N-1)^{2}-(N-D)^{2}\right] \sum_{j \neq i} \frac{1}{r_{i j}} \frac{\partial \log \omega}{\partial r_{i j}} \\
& =\frac{(N-1)^{2}-(N-D)^{2}}{16 \omega^{2}} \sum_{j, k \neq i} \frac{\partial \omega}{\partial r_{i j}} g_{i ; j k} \frac{\partial \omega}{\partial r_{i k}} .
\end{aligned}
$$

- Amplitude is symmetric in D about $D=N$.
- Schrödinger equation has the same energy eigenvalues in $D=N-1$ and $D=N+1$.
- Energy minimum at $D=N$. (Last sum is sum of squares because $g_{i ; j k}$ is an inner product.)

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.
- Dependence on D contained in an effective potential energy.

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D=N-1$ and $D=N+1$ dimensions, in agreement with work by Gu et al.[5].

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D=N-1$ and $D=N+1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D=N$.

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D=N-1$ and $D=N+1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D=N$.
- Inter-dimensional degeneracy provides a powerful check of the validity of

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D=N-1$ and $D=N+1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D=N$.
- Inter-dimensional degeneracy provides a powerful check of the validity of

1. computer code

Summary and discussion

- Transformed the Schrödinger equation for S-states of N-particle clusters in $D \geq N-1$ dimensions into equation in $\frac{1}{2}(N-1) N$ variables.
- Dependence on D contained in an effective potential energy.
- D can be made continuous, as in dimensional scaling studies.[4]
- Found inter-dimensional degeneracy of an N-body cluster in $D=N-1$ and $D=N+1$ dimensions, in agreement with work by Gu et al.[5].
- The minimum energy was observed to be at the dimension $D=N$.
- Inter-dimensional degeneracy provides a powerful check of the validity of

1. computer code
2. estimates of systematic and statistical errors

Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N-1) N$ independent variables is valid only for $D \geq N-1$.

Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N-1) N$ independent variables is valid only for $D \geq N-1$.
- Resulting equation and its eigenvalue spectrum have an analytical continuation for $D<N-1$ and is symmetric about $D=N$.

Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N-1) N$ independent variables is valid only for $D \geq N-1$.
- Resulting equation and its eigenvalue spectrum have an analytical continuation for $D<N-1$ and is symmetric about $D=N$.
- The same applies to the spectrum.

Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N-1) N$ independent variables is valid only for $D \geq N-1$.
- Resulting equation and its eigenvalue spectrum have an analytical continuation for $D<N-1$ and is symmetric about $D=N$.
- The same applies to the spectrum.
- Continuation unrelated to physical spectrum of N particle clusters for $D \leq N-1$.

Summary and discussion

- Our transformation of the Schrödinger equation to a differential equation in $\frac{1}{2}(N-1) N$ independent variables is valid only for $D \geq N-1$.
- Resulting equation and its eigenvalue spectrum have an analytical continuation for $D<N-1$ and is symmetric about $D=N$.
- The same applies to the spectrum.
- Continuation unrelated to physical spectrum of N particle clusters for $D \leq N-1$.
- Fundamental problem with the work by Gonzalez and Leal[6]: $1 / D$ expansion estimates of energy levels of Lennard-Jones clusters in $D=3$ with $N=3,4, \ldots, 7$ and 13 obained by analytic continuation from large D.

Bibliography

References

[1] J. de Boer, Physica, 14, 139 (1948)
[2] D. M. Ceperley and B. Bernu, J. Chem. Phys., 89, 6316 (1988)
[3] J. Avery, D. G. Goodson, and D. R. Herschbach, Theor. Chim. Acta 81, 1 (1991)
[4] Q. Shi and S. Kais, J. Chem. Phys. 120, 2199 (2004) and references therein
[5] Xiao-Yan Gu, Zhong-Qi Ma and Jian-Qiang Sun, Europhys. Lett., 5, 586 (2003)
[6] A. Gonzalez and D. Leal, J. Phys. B: At. Mol. Opt. Phys., 26, 1253 (1993)

