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Abstract

Quantum Monte Carlo results for energies of S-states of N particle van der Waals
clusters reveal identity of the spectrain N — 1 and NV + 1 spatial dimensions.
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We derive this result exactly by showing that for spatial dimension D > N — 1 the
Schrodinger equation can be transformed into an differential equation with the D
as a parameter.

D appears only in an effective potential that is symmetric in D about D = N.
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Abstract

Quantum Monte Carlo results for energies of S-states of N particle van der Waals
clusters reveal identity of the spectrain N — 1 and NV + 1 spatial dimensions.

We derive this result exactly by showing that for spatial dimension D > N — 1/the
Schrodinger equation can be transformed into an differential equation with t
as a parameter.

D appears only in\an effective potential that is symmetric in D abo

IATEX with pr osper . sty does it all.
(prosper.scourceforge.net)
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Basic definitions

N atom cluster in D dimensions; positions given by D x N matrix of Cartesian
coordinates

R = (rir2...ry),
with

L1q

LDi
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Basic definitions

N atom cluster in D dimensions; positions given by D x N matrix of Cartesian

coordinates
R = (rir2...ry),

with

L1q

T Dj
Define difference vectors and their lengths

rij = I'j — I,

rij = Irigl.
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Basic definitions

Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass u

| N
H=--— DOV D Vi),

=1 (4,5)
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Basic definitions

Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass u

| N
H=--— DOV D Vi),

=1 (4,7)

with

2 = 82
vi = Z amQ.
a=1 (e'%}

Dimensionless Lennard-Jones potential V
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Basic definitions

Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass u

| N
H=--— DOV D Vi),

=1 (4,7)

with

Vi —
2
Dimensionless Lennard-Jones potential V

1 2

Inverse dimensionless mass is m~—1 = h2/2% uo?e proportional to the square of
the de Boer parameter[l]; e and o the standard Lennard-Jones parameters. [J. de
Boer, Physica, 14, 139 (1948)]
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Monte Carlo trial function optimization

Generate a sample of configurations R, (o =1, ..., s) from a relative probability
density function ¢4 (R )?.
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non-linear variational parameters.
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Monte Carlo trial function optimization

¢ Generate a sample of configurations R, (o = 1,..., s) from a relative probability
density function ¢4 (R )?.

¢ Trial wave functions are linear combinations of elementary basis functions 3; with
non-linear variational parameters.

® Re-weighted functions defined as 3;(R) = 14(R)~'3;(R) and
BQ(R) = 14(R) "1 HpB;(R) for least-squares.
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density function ¢4 (R )?.

Trial wave functions are linear combinations of elementary basis functions 3; with
non-linear variational parameters.

Re-weighted functions defined as 3;(R) = 1,(R)~'6;(R) and
BQ(R) = 14(R) "1 HpB;(R) for least-squares.

In theory, for a complete set of elementary basis functions 3; the Schrodinger
equation becomes

Bi(Ro) = > Bj(Ro)Eji-
j=1
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Monte Carlo trial function optimization

Generate a sample of configurations R, (o =1, ..., s) from a relative probability
density function ¢4 (R )?.

Trial wave functions are linear combinations of elementary basis functions 3; with
non-linear variational parameters.

Re-weighted functions defined as §;(R) = 1, (R)~'5;(R) and
BQ(R) = 14(R) "1 HpB;(R) for least-squares.

In theory, for a complete set of elementary basis functions 3; the Schrodinger
equation becomes

Bi(Ro) = > Bj(Ro)Ej;.
j=1

In practice, solve for matrix £ in least-squares sense on Monte Carlo sample.
Reproduces stationarity of energy w.r.t. linear parameters for infinite sample.
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Monte Carlo trial function optimization

Optimal linear combinations of the basis functions 3; computed by spectral
decomposition of &:

n
Eij =) df Byd;
k=1

with ci"; and d,’f left and right eigenvectors of £ with eigenvalues Ej.
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Monte Carlo trial function optimization

Optimal linear combinations of the basis functions 3; computed by spectral
decomposition of &:

n
Eij =) df Byd;
k=1

with ci"; and d,’f left and right eigenvectors of £ with eigenvalues Ej.

Yield: trial functions

F = an d; Bi.
1=1
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Monte Carlo trial function optimization

Non-linear parameters of the 3; are optimized by minimizing the variance of the
local energy of the linearly optimized *

2 _ o1l (Ro) — Epi* (Ro))?
S YR (Ro)2

)

where ¥F = ¢, 19k and k' = o P HF,
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Monte Carlo trial function optimization

Non-linear parameters of the 3; are optimized by minimizing the variance of the
local energy of the linearly optimized *

2~ Eoa[PF (Ro) = Byt (Ro)]?
S YR (Ro)2

)

where ¥F = ¢ 1k and Pk = T HpF.

For each choice of the non-linear parameters, new optimized linear parameters
have to be computed:

full optimization of all parameters consists of a linear optimization nested in a
non-linear one.
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Numerical results: three-body case

Krs

Arsg

1
5 'Ne3

En

AFE;

En

AFE;

Fr AFE;

o oA WNPR|ID

-1.872 548 547 6
-2.760 461 351 5
-2.760 555 278 7
-2.760 461 351 3
-2.760 179 569 8
-2.759 709 937 6

9x10~1
2x10~10
6x10—10
-5x10~ 11
-1x107°
5x10~10

-1.734 808 71
-2.552 953 22
-2.553 289 43
-2.552 953 22
-2.551 944 61
-2.550 263 64

-8x10~1
-1x10~?
1x10~8
-1x10—?
-2x1078
7x10?

-4x10~1
7x10~7
9x 106
2x10~6
-1x107°
5x106

-0.895 584
-1.302 484
-1.308 442
-1.302 483
-1.284 627
-1.254 901

Ground state energies E; (with errors in the last significant digit) and deviations from

guadratic fits AFE; for Krs, Ars and %-Neg in dimensions D = 1 through D = 6.
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Numerical results: four-body case

E1 AE;
-2.625 62256 | -2x107Y
-4.32951795 | -8x10~!
-5.118 146 05 | -2x10~?
-5.118 65384 | 3x10~?
-5.118 146 05 | -2x10~?
-5.116 62270 | 1x10~?

o g wWwNRIg

Ground state energies (with errors in the last significant digit) and deviations from

quadratic fits AFE; for Aryg in dimensions D = 1 through D = 6.
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Numerical results: excited states Ar

k D=2 D=3 D=4
2 | -2.2498602 | -2.2501855 | -2.249 860
3 | -2.126 0388 | -2.126 361 -2.126 039
4 | -1.996 153 -1.996 43 -1.996 153
5 | -1.946 3 -1.946 7 -1.946 3

Comparison of the excited state energies E;, (with errors in the last significant digit) of

Arsin D = 2,3 and 4 dimensions.
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Numerical results: excited states Ar 4

k D=3 D=5

2 | -4.800897 73 | -4.800 897 75
3 | 47251567 -4.725 156 6
4 | -4.630 025 -4.630 025

5 | -4.586 389 -4.586 384

Comparison of the excited state energies E;, (with errors in the last significant digit) of

Ar4 in D = 3 and 5 dimensions.
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Exact results

Schrodinger equation for an N particle cluster in D spatial dimensions has N D
variables.
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Choose lengths of all distinct inter-particle distances r;; = r;; with 7 £ j;
independent variables if D > N — 1.
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Exact results

Schrodinger equation for an N particle cluster in D spatial dimensions has N D
variables.

Wave functions invariant under rotations and translations depend on fewer than
N D variables.

Choose lengths of all distinct inter-particle distances r;; = r;; with 7 £ j;
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Consider more general D-dimensional Schrédinger equation

A |
(—Z2m‘V§+V>¢=E¢

i=1 v

URI Physics Colloguium — January 21, 2005 — p.12/20



Exact results

Schrodinger equation for an N particle cluster in D spatial dimensions has N D
variables.

Wave functions invariant under rotations and translations depend on fewer than
N D variables.

Choose lengths of all distinct inter-particle distances r;; = r;; with 7 £ j;
independent variables if D > N — 1.

Consider more general D-dimensional Schrédinger equation

A |
(—Z2m‘V§+V>¢=E¢

i=1 v

Rotationally and translationally invariant potential, not necessarily a sum two-body
contributions.
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Exact results

Schrodinger equation for an N particle cluster in D spatial dimensions has N D
variables.

Wave functions invariant under rotations and translations depend on fewer than
N D variables.

Choose lengths of all distinct inter-particle distances r;; = r;; with 7 £ j;
independent variables if D > N — 1.

Consider more general D-dimensional Schrédinger equation

A |
(—Z2m‘V§+V>¢=E¢

i=1 v

Rotationally and translationally invariant potential, not necessarily a sum two-body
contributions.

Mass of each particle may be different.
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Exact results

Apply differential operator identity

_ Z Orij

8380”, 8380”, 87“7,3
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Exact results

Apply differential operator identity

_ Z Orij

amm amm 87“@3

to obtain
2

E :aw

JF# "

+ Z 9isjk

where
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Exact results

Apply differential operator identity

B Z or;

8380”, 8380”, 87“7,3
to obtain
52
E :a” ik o o
’ Y Org s Or
i 17 UT ik
where
D
w 827’7;3'_D—1
;5 = E : 02 . i
D
or;; Or; r;,; I,
Jisjk = E w 2tk — 24 "R angle: no D dependence
oa—1 amaz amaz TijTik
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Exact results

In terms of inter-particle distances, the Schrodinger assumes a form with
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Exact results

In terms of inter-particle distances, the Schrodinger assumes a form with
1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

Transform Schroédinger equation so that
1. second-order operator is unchanged
2. linear operator is absent
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Exact results

In terms of inter-particle distances, the Schrodinger assumes a form with
1. linear differential operator depending on D
2. second-order differential operator and a potential energy independent of D

Transform Schroédinger equation so that
1. second-order operator is unchanged
2. linear operator is absent
3. potential is modified by a additional term

URI Physics Colloguium — January 21, 2005 — p.14/20



Exact results

In terms of inter-particle distances, the Schrodinger assumes a form with

1. linear differential operator depending on D

2. second-order differential operator and a potential energy independent of D

Transform Schroédinger equation so that
1. second-order operator is unchanged
2. linear operator is absent
3. potential is modified by a additional term
Use
Hy =FEy —-H¢=Eop
with

1
Yv=x¢p and H' = —Hy
X
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Exact results

Result for general x special case of Eq. (3.8) of Ref. [3] [J. Avery, D. G. Goodson, and D.
R. Herschbach, Theor. Chim. Acta 81, 1 (1991)]

1
_V_;%nz

with

2

9i;5k A
sz?éz " ar” a’rlk
4 Ox 0
Ti=) | ais+2)_ gijex 1@ v | o
jAi ki Tik T'ij

and a contribution to the effective potential

_1 Ox _ 0% x
Ui =2 aiX ' 5=+ > GijeX  5———.
JFi '
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Exact results

Define N matrices of order N — 1
éi = (Tijgz';jk%k)j,k;éi,

the Grammian associated with the N — 1 vectors r;; with
j=1,...,i—1,i+1,...,N.
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Exact results

Define N matrices of order N — 1
éi = (Tijgz';jkmk)j,k;éi,

the Grammian associated with the N — 1 vectors r;; with
j=1,...,i—1,i+1,...,N.

Volume squared of the parallelepiped formed by the vectors from particle 2 to all
other particles:

w = det (G;)
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Exact results

Define N matrices of order N — 1
éi = (Tijgz';jkmk)j,k;éi,

the Grammian associated with the N — 1 vectors r;; with
j=1,...,i—1,i+1,...,N.

Volume squared of the parallelepiped formed by the vectors from particle 2 to all
other particles:

w = det (G;)

Linear differential operators 77 vanish for the choice

¥ = w1=D)/4,
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Exact results

Contributions to effective potential

1 1 ol
Ui = =[(N-1)%—=(N—D)? S
8 j;éi 'r‘@-j 87“1-]-
(N —1)? — (N — D)? Z Ow Ow
= —— ik -
16w2 ki 87“1-]- J 8rik
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Exact results

Contributions to effective potential

1 1 01
Ui = SIN=1)? - (N -D)? -
8 j;éi 'r‘@-j 87“1'3'
(N —1)? — (N — D)? Z Ow Ow
= —— ik
16w? Py Ori; 7" Ory

Amplitude is symmetric in D about D = N.
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Exact results

Contributions to effective potential

1 1 81
Ui = =[(N-1)%—=(N—D)? S
8 j;éi 'r‘@-j 87“1'3'
(N —1)? — (N — D)? Z Ow Ow
= ——— ik
16w? Py Ori; 7" Ory

Amplitude is symmetric in D about D = N.

Schrodinger equation has the same energy eigenvaluesin D = N — 1 and
D =N +1.
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Exact results

Contributions to effective potential

1 1 Ol
Ui = <[(N-1)?2—(N-D)? b
8 j;éi 'r‘@-j (97“1'3'
(N —1)? — (N — D)? Ow Ow
- T S gy
16w or; or; 1

g k#i

Amplitude is symmetric in D about D = N.

Schrodinger equation has the same energy eigenvaluesin D = N — 1 and
D =N +1.

Energy minimum at D = N. (Last sum is sum of squares because g;.; is an inner
product.)
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Summary and discussion

Transformed the Schrddinger equation for S-states of NV-particle clusters in
D > N — 1 dimensions into equation in %(N — 1) N variables.
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The minimum energy was observed to be at the dimension D = N.

Inter-dimensional degeneracy provides a powerful check of the validity of
1. computer code
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Summary and discussion

Transformed the Schrddinger equation for S-states of NV-particle clusters in
D > N — 1 dimensions into equation in %(N — 1) N variables.

Dependence on D contained in an effective potential energy.

D can be made continuous, as in dimensional scaling studies.[4]

Found inter-dimensional degeneracy of an N-body clusterin D = N — 1 and
D = N + 1 dimensions, in agreement with work by Gu et al.[5].

The minimum energy was observed to be at the dimension D = N.

Inter-dimensional degeneracy provides a powerful check of the validity of
1. computer code

2. estimates of systematic and statistical errors
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Summary and discussion

Our transformation of the Schrodinger equation to a differential equation in

%(N — 1) N independent variables is valid only for D > N — 1.
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Resulting equation and its eigenvalue spectrum have an analytical continuation for

D < N — 1 and is symmetric about D = N.
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Summary and discussion
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Summary and discussion

Our transformation of the Schrodinger equation to a differential equation in

%(N — 1) N independent variables is valid only for D > N — 1.

Resulting equation and its eigenvalue spectrum have an analytical continuation for
D < N — 1 and is symmetric about D = N.

The same applies to the spectrum.
Continuation unrelated to physical spectrum of N particle clusters for D < N — 1.

Fundamental problem with the work by Gonzalez and Leal[6]: 1/D expansion

estimates of energy levels of Lennard-Jones clusters in D = 3 with
N = 3,4, ...,7and 13 obained by analytic continuation from large D.
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