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Abstract

• Quantum Monte Carlo results for energies of S-states of N particle van der Waals
clusters reveal identity of the spectra in N − 1 and N + 1 spatial dimensions.

• We derive this result exactly by showing that for spatial dimension D ≥ N − 1 the
Schrödinger equation can be transformed into an differential equation with the D
as a parameter.

• D appears only in an effective potential that is symmetric in D about D = N .

LATEX with prosper.sty does it all.
(prosper.scourceforge.net)
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Basic definitions

• N atom cluster in D dimensions; positions given by D ×N matrix of Cartesian
coordinates

R = (r1r2 . . . rN ),

with

ri =

�
��
��
�

x1i

...
xDi

�
��
��
� .

• Define difference vectors and their lengths

rij = rj − ri,

rij = |rij |.
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Basic definitions

• Dimensionless Hamiltonian of N bosonic van der Waals atoms with atomic mass µ

H = −
1

2m

N

i=1

∇2
i +

(i,j)

V (rij),

• with

∇2
i =

D

α=1

∂2

∂x2
αi

• Dimensionless Lennard-Jones potential V

V (r) =
1

r12
−

2

r6
.

• Inverse dimensionless mass is m−1 = 2/2
1

3 µσ2ε proportional to the square of
the de Boer parameter[1]; ε and σ the standard Lennard-Jones parameters. [J. de
Boer, Physica, 14, 139 (1948)]
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Monte Carlo trial function optimization

• Generate a sample of configurations Rσ (σ = 1, . . . , s) from a relative probability
density function ψg(Rσ)2.

• Trial wave functions are linear combinations of elementary basis functions βi with
non-linear variational parameters.

• Re-weighted functions defined as β̂i(R) = ψg(R)−1βi(R) and

β̂′
i(R) = ψg(R)−1Hβi(R) for least-squares.

• In theory, for a complete set of elementary basis functions βi the Schrödinger
equation becomes

β̂′
i(Rσ) =

n

j=1

β̂j(Rσ)Eji.

• In practice, solve for matrix E in least-squares sense on Monte Carlo sample.
Reproduces stationarity of energy w.r.t. linear parameters for infinite sample.
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Monte Carlo trial function optimization

• Optimal linear combinations of the basis functions βi computed by spectral
decomposition of E :

Eij =
n

k=1

dk
i Ẽkd̂

k
j

with d̂k
j and dk

i left and right eigenvectors of E with eigenvalues Ẽk.

• Yield: trial functions

ψ̃k =
n

i=1

dk
i βi.
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Monte Carlo trial function optimization

• Non-linear parameters of the βi are optimized by minimizing the variance of the

local energy of the linearly optimized ψ̃k

χ2 =

� s
σ=1[ψ̂

k′(Rσ) − Ẽkψ̂
k(Rσ)]2

� s
σ=1 ψ̂

k(Rσ)2
,

where ψ̂k = ψ−1
g ψ̃k and ψ̂k′ = ψ−1

g Hψ̃k.

• For each choice of the non-linear parameters, new optimized linear parameters
have to be computed:

• full optimization of all parameters consists of a linear optimization nested in a
non-linear one.

• Variational bias removed with correlation function Monte Carlo[2]. [D. M. Ceperley
and B. Bernu, J. Chem. Phys., 89, 6316 (1988)]
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Numerical results: three-body case

Kr3 Ar3 1
2

-Ne3

D E1 ∆E1 E1 ∆E1 E1 ∆E1

1 -1.872 548 547 6 -9×10−1 -1.734 808 71 -8×10−1 -0.895 584 -4×10−1

2 -2.760 461 351 5 2×10−10 -2.552 953 22 -1×10−9 -1.302 484 -7×10−7

3 -2.760 555 278 7 6×10−10 -2.553 289 43 1×10−8 -1.308 442 9×10−6

4 -2.760 461 351 3 -5×10−11 -2.552 953 22 -1×10−9 -1.302 483 -2×10−6

5 -2.760 179 569 8 -1×10−9 -2.551 944 61 -2×10−8 -1.284 627 -1×10−5

6 -2.759 709 937 6 5×10−10 -2.550 263 64 7×10−9 -1.254 901 5×10−6

Ground state energies E1 (with errors in the last significant digit) and deviations from

quadratic fits ∆E1 for Kr3, Ar3 and 1
2

-Ne3 in dimensions D = 1 through D = 6.
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Numerical results: four-body case

D E1 ∆E1

1 -2.625 622 56 -2×10−0

2 -4.329 517 95 -8×10−1

3 -5.118 146 05 -2×10−9

4 -5.118 653 84 3×10−9

5 -5.118 146 05 -2×10−9

6 -5.116 622 70 1×10−9

Ground state energies (with errors in the last significant digit) and deviations from

quadratic fits ∆E1 for Ar4 in dimensions D = 1 through D = 6.
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Numerical results: excited states Ar 3

k D = 2 D = 3 D = 4

2 -2.249 860 2 -2.250 185 5 -2.249 860
3 -2.126 038 8 -2.126 361 -2.126 039
4 -1.996 153 -1.996 43 -1.996 153
5 -1.946 3 -1.946 7 -1.946 3

Comparison of the excited state energies Ek (with errors in the last significant digit) of

Ar 3 in D = 2, 3 and 4 dimensions.
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Numerical results: excited states Ar 4

k D = 3 D = 5

2 -4.800 897 73 -4.800 897 75
3 -4.725 156 7 -4.725 156 6
4 -4.630 025 -4.630 025
5 -4.586 389 -4.586 384

Comparison of the excited state energies Ek (with errors in the last significant digit) of

Ar 4 in D = 3 and 5 dimensions.
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Exact results

• Schrödinger equation for an N particle cluster in D spatial dimensions has ND
variables.

• Wave functions invariant under rotations and translations depend on fewer than
ND variables.

• Choose lengths of all distinct inter-particle distances rij = rji with i 6= j;
independent variables if D ≥ N − 1.

• Consider more general D-dimensional Schrödinger equation

−
N

i=1

1

2mi
∇2

i + V ψ = Eψ

• Rotationally and translationally invariant potential, not necessarily a sum two-body
contributions.

• Mass of each particle may be different.
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Exact results

• Apply differential operator identity

∂

∂xαi
=

j 6=i

∂rij

∂xαi

∂

∂rij

• to obtain

∇2
i =

j 6=i

ai;j
∂

∂rij
+

j,k 6=i

gi;jk
∂2

∂rij∂rik

where
•

ai;j =
D

α=1

∂2rij

∂x2
αi

=
D − 1

rij

gi;jk =
D

α=1

∂rij

∂xαi

∂rik

∂xαi
=

rij · rik

rijrik
angle: no D dependence
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Exact results

• In terms of inter-particle distances, the Schrödinger assumes a form with

1. linear differential operator depending on D

2. second-order differential operator and a potential energy independent of D

• Transform Schrödinger equation so that

1. second-order operator is unchanged
2. linear operator is absent

3. potential is modified by a additional term

• Use
Hψ = Eψ → H

′φ = Eφ

with

ψ = χφ and H
′ =

1

χ
Hχ

• χ to be determined.
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Exact results

Result for general χ special case of Eq. (3.8) of Ref. [3] [J. Avery, D. G. Goodson, and D.
R. Herschbach, Theor. Chim. Acta 81, 1 (1991)]

H
′ = V −

i=1

1

2mi
(Si + Ti + Ui)

with

Si =
j,k 6=i

gi;jk
∂2

∂rij∂rik
,

Ti =
j 6=i

�
�ai;j + 2

k 6=i

gi;jkχ
−1 ∂χ

∂rik

�
� ∂

∂rij
,

and a “centrifugal” contribution to the effective potential

Ui =
j 6=i

ai;jχ
−1 ∂χ

∂rij
+

j,k 6=i

gi;jkχ
−1 ∂2χ

∂rik∂rik
.
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Exact results

• Define N matrices of order N − 1

Ĝi = (rijgi;jkrik)j,k 6=i,

the Grammian associated with the N − 1 vectors rij with
j = 1, . . . , i− 1, i+ 1, . . . , N .

• Volume squared of the parallelepiped formed by the vectors from particle i to all
other particles:

ω = det (Ĝi)

• Linear differential operators Ti vanish for the choice

χ = ω(1−D)/4.
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Exact results

• Contributions to effective potential

Ui =
1

8
[(N − 1)2 − (N −D)2]

j 6=i

1

rij

∂ logω

∂rij

=
(N − 1)2 − (N −D)2

16ω2
j,k 6=i

∂ω

∂rij
gi;jk

∂ω

∂rik
.

• Amplitude is symmetric in D about D = N .

• Schrödinger equation has the same energy eigenvalues in D = N − 1 and
D = N + 1.

• Energy minimum at D = N . (Last sum is sum of squares because gi;jk is an inner
product.)
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Summary and discussion

• Transformed the Schrödinger equation for S-states of N -particle clusters in
D ≥ N − 1 dimensions into equation in 1

2
(N − 1)N variables.

• Dependence on D contained in an effective potential energy.

• D can be made continuous, as in dimensional scaling studies.[4]

• Found inter-dimensional degeneracy of an N -body cluster in D = N − 1 and
D = N + 1 dimensions, in agreement with work by Gu et al.[5].

• The minimum energy was observed to be at the dimension D = N .

• Inter-dimensional degeneracy provides a powerful check of the validity of

1. computer code

2. estimates of systematic and statistical errors
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Summary and discussion

• Our transformation of the Schrödinger equation to a differential equation in
1
2
(N − 1)N independent variables is valid only for D ≥ N − 1.

• Resulting equation and its eigenvalue spectrum have an analytical continuation for
D < N − 1 and is symmetric about D = N .

• The same applies to the spectrum.

• Continuation unrelated to physical spectrum of N particle clusters for D ≤ N − 1.

• Fundamental problem with the work by Gonzalez and Leal[6]: 1/D expansion

estimates of energy levels of Lennard-Jones clusters in D = 3 with
N = 3, 4, . . . , 7 and 13 obained by analytic continuation from large D.
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