Electric Potential Energy of Two Point Charges

Consider two different perspectives:

#1a Electric potential when \(q_1 \) is placed: \(V(\mathbf{r}_2) \doteq V_2 = k \frac{q_1}{r_{12}} \)

Electric potential energy when \(q_2 \) is placed into potential \(V_2 \): \(U = q_2 V_2 = k \frac{q_1 q_2}{r_{12}} \)

#1b Electric potential when \(q_2 \) is placed: \(V(\mathbf{r}_1) \doteq V_1 = k \frac{q_2}{r_{12}} \)

Electric potential energy when \(q_1 \) is placed into potential \(V_1 \): \(U = q_1 V_1 = k \frac{q_1 q_2}{r_{12}} \).

#2 Electric potential energy of \(q_1 \) and \(q_2 \):

\[
U = \frac{1}{2} \sum_{i=1}^{2} q_i V_i,
\]

where \(V_1 = k \frac{q_2}{r_{12}} \), \(V_2 = k \frac{q_1}{r_{12}} \).
Electric Potential Energy of Three Point Charges

#1 Place q_1, then q_2, then q_3, and add all changes in potential energy:

$$U = 0 + k \frac{q_1 q_2}{r_{12}} + k \left(\frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right) = k \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right).$$

#2 Symmetric expression of potential energy U in terms of the potentials V_i experienced by point charges q_1:

$$U = \frac{1}{2} \sum_{i=1}^{3} q_i V_i = k \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right),$$

where

$$V_1 = k \left(\frac{q_2}{r_{12}} + \frac{q_3}{r_{13}} \right),$$

$$V_2 = k \left(\frac{q_1}{r_{12}} + \frac{q_3}{r_{23}} \right),$$

$$V_3 = k \left(\frac{q_1}{r_{13}} + \frac{q_2}{r_{23}} \right).$$