Calculating the Resistance of a Wire

Uniform cross section

- Length of wire: \(L \)
- Area of cross section: \(A \)
- Resistivity of material: \(\rho \)
- Current density: \(J = \frac{E}{\rho} \) [A/m²]
- Current: \(I = JA \) [A]
- Voltage: \(V = EL \) [V]
- Resistance: \(R \equiv \frac{V}{I} = \frac{\rho L}{A} \) [Ω]

Variable cross section

- Cross-sectional profile: \(A(x) \)
- Resistance of slice: \(dR = \frac{\rho dx}{A(x)} \)
- Resistance of wire: \(R = \rho \int_0^L \frac{dx}{A(x)} \)