Electric Field of Point Charges in Plane (1)

Determine magnitude of \vec{E}_1 and \vec{E}_1 and identify directions in plane:

$$E_1 = \frac{k|q_1|}{(3m)^2} = 7.99\text{N/C}, \quad E_2 = \frac{k|q_2|}{(5m)^2} = 4.32\text{N/C}.$$

Determine x- and y-components of \vec{E}_1 and \vec{E}_2 and of the resultant field \vec{E}:

$$E_{1x}^x = 0, \quad E_{1y}^y = 7.99\text{N/C};$$
$$E_{2x}^x = -3.46\text{N/C}, \quad E_{2y}^y = 2.59\text{N/C};$$
$$E_x = -3.46\text{N/C}, \quad E_y = 10.6\text{N/C}.$$

Determine magnitude and direction of \vec{E}:

$$E = \sqrt{E_{x}^2 + E_{y}^2} = 11.2\text{N/C}, \quad \theta = \arctan \left(\frac{E_y}{E_x} \right) = 108^\circ.$$
(a) Find the electric charge q_2.

(b) Find the angle θ.

\[q_1 = 3 \text{nC} \]
\[q_2 = 4 \text{nC} \]
Two point charges, one known and the other unknown, produce a horizontal electric field as shown.

What is the value of the unknown charge?

\[E = \frac{kq_1q_2}{r^2} \]

where:
- \(E \) is the electric field strength
- \(k \) is Coulomb's constant
- \(q_1 \) and \(q_2 \) are the charges
- \(r \) is the distance between the charges

For the given diagram:
- \(q_1 = 1 \text{nC} \)
- \(r = 5 \text{m} \)

Solving for \(q_2 \):

\[q_2 = \frac{Er^2}{kq_1} \]

Substituting the given values:

\[q_2 = \frac{(E)(5^2)}{(8.99 \times 10^9)(1 \times 10^{-9})} \]

Calculate the value of \(q_2 \).
Consider four triangles with point charges of equal magnitude at two of the three corners.

(a) Determine the direction of the electric field \vec{E}_i at the third corner of triangle (i).
(b) Rank the fields E_i according to strength.
Find magnitude and direction of the resultant electric field at point P.

- $E_1 = \frac{k|q_1|}{8m^2} = 3.38 \text{ N/C}$.
- $E_2 = \frac{k|q_2|}{4m^2} = 6.75 \text{ N/C}$.
- $E_3 = \frac{k|q_3|}{8m^2} = 3.38 \text{ N/C}$.
- $E_x = E_1 \cos 45^\circ + E_3 \cos 45^\circ = 4.78 \text{ N/C}$.
- $E_y = E_2 = 6.75 \text{ N/C}$.
- $E = \sqrt{E_x^2 + E_y^2} = 8.27 \text{ N/C}$.
- $\tan \theta = \frac{E_y}{E_x} = 1.41$.
- $\theta = \arctan 1.41 = 54.7^\circ$.

$q_1 = +3 \text{nC}$
$q_2 = +3 \text{nC}$
$q_3 = -3 \text{nC}$