Fancy solution:

- Uniform magnetic field \vec{B} points out of the plane.
- Magnetic force on segment ds: $dF = IBds = IBRd\theta$.
- Integrate $dF_x = dF \sin \theta$ and $dF_y = dF \cos \theta$ along semicircle.
- $F_x = IBR \int_0^\pi \sin \theta d\theta = 2IBR$,
 $F_y = IBR \int_0^\pi \cos \theta d\theta = 0$.

![Diagram of magnetic force on a semicircular current]