Electric Potential of a Uniformly Charged Spherical Shell

- Electric charge on shell: \(Q = \sigma A = 4\pi \sigma R^2 \)

- Electric field at \(r > R \): \(E = \frac{kQ}{r^2} \)

- Electric field at \(r < R \): \(E = 0 \)

- Electric potential at \(r > R \):
 \[
 V = -\int_{\infty}^{r} \frac{kQ}{r^2} \, dr = \frac{kQ}{r}
 \]

- Electric potential at \(r < R \):
 \[
 V = -\int_{\infty}^{R} \frac{kQ}{r^2} \, dr - \int_{R}^{r} (0) \, dr = \frac{kQ}{R}
 \]

- Here we have used \(r_0 = \infty \) as the reference value of the radial coordinate.