Gauss’s Law for Magnetic Field

The net magnetic flux Φ_B through any closed surface is equal to zero:

$$\oint \vec{B} \cdot d\vec{A} = 0.$$

There are no magnetic charges. Magnetic field lines always close in themselves. No matter how the (closed) Gaussian surface is chosen, the net magnetic flux through it always vanishes.

The figures below illustrate Gauss’s laws for the electric and magnetic fields in the context of an electric dipole (left) and a magnetic dipole (right).