Electric Flux: Definition

Consider a surface S of arbitrary shape in the presence of an electric field \vec{E}.

Prescription for the calculation of the electric flux through S:

- Divide S into small tiles of area ΔA_i.
- Introduce vector $\Delta \vec{A}_i = \hat{n}_i \Delta A_i$ perpendicular to tile.
 - If S is open choose consistently one of two possible directions for $\Delta \vec{A}_i$.
 - If S is closed choose $\Delta \vec{A}_i$ to be directed outward.
- Electric field at position of tile i: \vec{E}_i.
- Electric flux through tile i:
 \[\Delta \Phi_i^{(E)} = \vec{E}_i \cdot \Delta \vec{A}_i = E_i \Delta A_i \cos \theta_i. \]
- Electric flux through S: $\Phi_E = \sum_i \vec{E}_i \cdot \Delta \vec{A}_i$.
- Limit of infinitesimal tiles: $\Phi_E = \int \vec{E} \cdot d\vec{A}$.
- Electric flux is a scalar.
- The SI unit of electric flux is Nm2/C.