Coulomb’s Law (1)

Electrostatic force between two charged particles:

\[F = \frac{1}{4\pi \varepsilon_0} \frac{|q_1 q_2|}{r^2} = k \frac{|q_1 q_2|}{r^2} \]

Permittivity constant: \(\varepsilon_0 = 8.854 \times 10^{-12} \text{C}^2\text{N}^{-1}\text{m}^{-2} \)

Coulomb constant: \(k = 8.99 \times 10^9 \text{Nm}^2\text{C}^{-2} \)

Action-reaction pair of forces: \(\vec{F}_{21} = -\vec{F}_{12} \).
Coulomb’s Law (1)

Electrostatic force between two charged particles:

\[F = \frac{1}{4\pi \varepsilon_0} \frac{|q_1 q_2|}{r^2} = k \frac{|q_1 q_2|}{r^2} \]

Permittivity constant: \(\varepsilon_0 = 8.854 \times 10^{-12} \text{C}^2\text{N}^{-1}\text{m}^{-2} \)

Coulomb constant: \(k = 8.99 \times 10^9 \text{Nm}^2\text{C}^{-2} \)

Action-reaction pair of forces: \(\vec{F}_{21} = -\vec{F}_{12} \).

Newton’s law of gravitation (for comparison)

Gravitational force between two massive particles:

\[F = G \frac{m_1 m_2}{r^2} \]

Gravitational constant: \(G = 6.673 \times 10^{-11} \text{Nm}^2\text{kg}^{-2} \)